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Abstract Thyroid hormones are vital for survival of

mammalian species and play critical roles in growth,

development, and metabolism. Both fetal hypothyroidism

and sex can affect carbohydrate metabolism during adult

life. This study aims to assess carbohydrate metabolism in

male and female offspring born from mothers who were

hypothyroid during pregnancy. Pregnant rats were divided

into two groups; the controls consumed water and the

hypothyroid group received water containing 0.025 %

6-propyl-2-thiouracial throughout gestation. The intrave-

nous glucose tolerance test (0.5 g/kg glucose) was carried

out in 3-month-old offspring. Findings showed that com-

pared to controls, male fetal hypothyroid rats during

adulthood had glucose intolerance (area under the curve:

446.4 ± 9.7 vs. 486.4 ± 8.8, p \ 0.01 in control and fetal

hypothyroid groups, respectively) whereas females had

improved glucose tolerance (478.1 ± 7.0 vs. 455.9 ± 8.5,

p \ 0.01). In conclusion, sex could modulate the effects of

fetal hypothyroidism on glucose tolerance in rats.
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Introduction

Epidemiological and laboratory studies indicate that a

suboptimal environment during fetal, neonatal, and infant

development is associated with the development of

impaired glucose tolerance, type 2 diabetes mellitus, and

insulin resistance in later adult life [1, 2]. Thyroid hor-

mones (THs) are important for intrauterine growth and

play fundamental roles in the development, growth and

metabolism throughout life [3]. Data shows that maternal

hormonal status significantly influences intrauterine

growth and development [4–6]. THs and insulin act as

metabolic and maturational signals and any change in

their concentrations and bioactivity in response to envi-

ronmental challenges alter fetal development, producing

long-term effects on cardiovascular, reproductive, and

metabolic function [7, 8]. We have previously shown that

fetal hypothyroidism can alter carbohydrate metabolism

in male adult euthyroid rat offspring, which may increase

susceptibility to the development of glucose intolerance

and occurrence of type 2 diabetes later in life [9–11].

The prevalence of diabetes and abnormalities of glucose

metabolism are higher in males than females [12, 13]. In

addition, a previous study demonstrated that female rats

are protected against metabolic defects typically pro-

duced by fructose feeding and detrimental effects of

fructose on metabolism are less severe in this group [14].

Therefore, there is a possibility that the sexual differen-

tiation of offspring can be affected by fetal hypothy-

roidism [15, 16]. Since limited data are available on the

relation between fetal hypothyroidism, sex differences,

and carbohydrate metabolism during adult life, in this

study, we hypothesized that thyroid hormone deficiency

during fetal life could impair glucose tolerance in female

rat offspring.
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Materials and methods

Animals and induction of hypothyroidism

Female Wistar rats were bred locally in the animal facility

of the Research Institute for Endocrine Sciences (RIES) of

Shahid Beheshti University of Medical Sciences. Female

rats (180–220 g), being in the pro-estrus phase of estrus

cycle, were housed with males in polypropylene cages

overnight in an environmentally controlled room (temper-

ature 22 ± 3 �C) with 12 h light/dark cycles. All experi-

ments were carried out in accordance with standards

approved by the local ethics committee of the RIES. The

presence of spermatozoa in the vaginal smears on the

morning after caging was considered as an index of preg-

nancy [17] and this day was considered as day 0 of preg-

nancy. Pregnant females were randomly divided into fetal

hypothyroid (FH) and control (C) groups and then trans-

ferred to separate cages. The FH group received 0.025 %

6-Propyl-2-thiouracil (PTU) (Sigma-Aldrich, Germany) in

drinking water throughout pregnancy while the C group

consumed tap water; treatment was initiated on day 1 of the

pregnancy and discontinued after delivery [18, 19]. After

weaning, the male and female offspring of the C and FH

rats were housed in groups of four per cage, until 3 months

of age. After birth, the body weights of the pups were

recorded weekly (A&D scale EK-300i, Japan; sensitivity

0.1 g) from the first day of the birth till the end of the third

month. Food intakes of offspring were measured weekly

after weaning until the end of the third month.

Glucose and hormones measurements

Blood samples were obtained from the mothers after

delivery and offspring during adulthood by means of a

small incision at the end of their tails [20] and from neo-

nates by cutting the head [21]. Blood was centrifuged at

30009g for 10 min at 4 �C and sera were kept at -20 �C.

Serum glucose was measured by the glucose oxidase

method (Pars Azmoon Co., Tehran, Iran). Serum insulin

was measured using the enzyme-linked immunosorbent

assay (ELISA) method (Mercodia, Uppsala, Sweden), 17

b-estradiol (E2) was measured by the ELISA method

(Diagnostics Biochem Canada Inc.), total triiodothyronine

(TT3) and total thyroxine (TT4) levels were measured by

the ELISA method (Pishtazteb Zaman Co., Tehran, Iran).

Intra- and inter assay coefficients of variation for insulin

and glucose measurements were 5.8, 9.3%, and 2.4, 8.7 %,

and for estrogen, TT3 and TT4 were 3.5, 6.6, 3.2, 4.8 %,

and 4.5, 5.7 %, respectively.

Intravenous glucose tolerance test (IVGTT)

To perform IVGTT, female rats at the estrous phase

(determined by vaginal smears) and age-matched males

were fasted overnight (12–14 h), anesthetized with an

intraperitoneal (i.p) injection of pentobarbital sodium

(60 mg/kg) and the femoral vein was exposed for glucose

infusion. The femoral vein was cannulated with a PE-50

polyethylene tube filled with heparinized saline (20 IU/ml).

Initially, the first blood sample from the tail cut at time zero

was obtained, then a 20 % glucose solution (0.5 g/kg) was

injected through the vein and blood samples (0.3 ml each)

were collected at 5, 10, 15, 20, 30, and 60 min for glucose

and insulin measurement. An equal volume of heparinized

saline was infused through the catheter for replacing blood

removed (10). Computation of the homeostasis model

assessment of insulin resistance (HOMA-IR) index was

performed by the formula: HOMA-IR = fasting insulin

(lU/ml) 9 fasting glucose (mmol/L)/22.5 [22].

Statistical analysis

GraphPad Prism software (version 5) was used for statistical

analyses. Two-way analysis of variance (ANOVA), followed

by a Bonferroni post hoc test were used for comparing animal

Table 1 Serum T3 and T4 concentrations in offspring of the fetal hypothyroid (FH) and control groups at birth and adulthood, and their mothers,

at the time of delivery

Mothers Offspring

At the time of delivery At the time of birth Adulthood

Male Female

Control Hypothyroid Control FH Control FH Control FH

Triiodothyronine (ng/dL) 93.4 ± 3.8 51.7 ± 4.9* 83.0 ± 7.8 39.5 ± 4.3* 95.7 ± 4.3 87.7 ± 5.3 86.8 ± 4.2 84.8 ± 5.6

Thyroxine (lg/dL) 2.4 ± 0.2 0.52 ± 0.04* 0.73 ± 0.06 0.37 ± 0.04* 3.8 ± 0.10 3.4 ± 0.20 3.5 ± 0.10 3.2 ± 0.10

Value sera mean ± SEM

n = 12 in each group

FH fetal hypothyroid

* p \ 0.001 compared to control group
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weights, food intake, and serum glucose and insulin levels

during glucose tolerance test between groups. Overall chan-

ges in glucose and insulin during IVGTT were calculated as

area under the curve (AUC) above the basal level. Student

t test was used for comparing hormone values and AUC

between groups. All data were expressed as mean ± SEM

and P values below 0.05 were considered significant.

Results

Hormone determinations, weight gain, and food intake

of the animals

Administration of PTU in drinking water decreased circu-

lating TT3 and TT4 in hypothyroid mothers and their

neonates. In adult offspring of the PTU-treated group,

hormone levels were not different from those of adult

offspring of controls (Table 1). In female adult offspring of

the fetal hypothyroid group, E2 hormone level was not

different from the control group (Fig. 1). Although body

weight of FH rats in both sexes was significantly lower

compared to controls from the first day until the end of

12 weeks, there was no difference in body weight of off-

spring at the age of 13 weeks in the C and FH groups

(Fig. 2). Food intake was not significantly different

between FH and control rats in both sexes (Fig. 3).

Serum glucose and insulin concentration during IVGTT

Glucose tolerance curves for the four groups are shown in

Fig. 4. Fasted serum glucose levels appeared to be identical

Fig. 1 Serum estrogen concentrations in female (n = 8) fetal hypo-

thyroid and control rats

Fig. 2 Body weight of the

animals during study period in

the male (n = 14) and female

(n = 14) fetal hypothyroid (FH)

and control rats. *p \ 0.01,

statistically significant

differences between treatment

(FH and controls)
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in the control and FH groups (Table 2). In male animals,

mean serum glucose of the FH group was significantly

higher at 5 and 10 min after glucose injection, as compared

to the C group, whereas in female animals, corresponding

values were significantly lower compared with the C group

(Fig. 4a). In female but not in male animals, the AUC of

the serum glucose concentration in FH group during IV-

GTT was significantly lower compared to its respective C

group (Table 2). Results of the IVGTT in male and female

rats from the control and FH groups were also compared;

while no significant differences were observed between

male and female rats in the C group, mean serum glucose

concentrations at 5 and 10 min during IVGTT (Fig. 4a),

and the AUC (Table 2) in male animals of the FH group

were significantly higher, compared with the females of the

same group. As shown in Fig. 4b, no significant differences

were observed between male and female animals of the

control group, but the mean serum insulin concentrations of

the FH group in male animals were lower during the IV-

GTT, compared to females. The AUC of the serum insulin

concentration of male animals were also significantly lower

compared to the female animals in the FH group (Table 2).

In male animals, although means for serum insulin con-

centrations of FH group during IVGTT were significantly

lower (Fig. 4b), the AUC of the serum insulin concentra-

tion of this group was not, as compared to the C group

(Table 2). In female animals, means of serum insulin

concentrations of the FH group and AUC of the serum

insulin were both significantly higher during the IVGTT, as

compared to the C group (Fig. 4b; Table 2). Only the

HOMA-IR index of the male offspring of the FH group was

significantly different from that of the C group. There were

no differences in HOMA-IR index between male and

female animals of either group (Table 2).

Discussion

The main finding of this study is that fetal hypothyroidism

had different effects on glucose tolerance in male and

female rats. During IVGTT, higher serum glucose and

lower serum insulin concentrations were observed in the

FH group of male rats, while adult female offspring born

from hypothyroid mothers had lower serum glucose and

higher serum insulin concentrations compared to the C

group.

In our study, PTU administration decreased TT3 and

TT4 in both mothers and neonates, confirming the induc-

tion of hypothyroidism [23]. Adult offspring born from

hypothyroid mothers had normal serum TT3 and TT4 lev-

els. In line with our findings, previous studies [24] have

also reported normal TT3 and TT4 levels of adult offspring

Fig. 3 Food intake of the

animals during the study period

in male (n = 9) and female

(n = 9) fetal hypothyroid (FH)

and control rats. Inset shows

area under the curve
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rats exposed to maternal hypothyroidism. In the present

study, neonate rats born from mothers with hypothyroidism

had significantly lower birth weight, a finding similar to

those of other studies [9–11, 24–26]. Although, from the

results of this study, we could not explain the lower body

weight in presence of equal food intake, it has been shown

that thyroid hormones are strongly involved in the regu-

lation of body growth during fetal and neonatal periods

through stimulation of growth factors production [26]; in

addition, fetal hypothyroidism leads to an asymmetrical

type of intrauterine growth restriction, with increased

reduction in muscle mass [27].

The results of the present study indicate that adult male

offspring of fetal hypothyroid mothers showed glucose

intolerance, findings in agreement with our previous

reports [9–11]. Rodriguez-Castelan et al. [28] have recently

Fig. 4 Evaluation of

intravenous glucose tolerance

test (IVGTT). Comparison of

changes in serum glucose

(a) and insulin

(b) concentrations following

IVGTT at different time points

in the male (n = 12) and female

(n = 12) fetal hypothyroid (FH)

and control rats. *p \ 0.01,

statistically significant

differences between different

sexes, �p \ 0.05, �p \ 0.01,

statistically significant

differences between different

treatments (FH and controls)

Table 2 Variations of serum glucose and insulin concentrations during intravenous glucose tolerance test in the fetal hypothyroid (FH) and

control groups

Control FH

Male Female Male Female

AUC for glucose (mmol min-1 L-1) 446.4 ± 9.7� 478.1 ± 7.0 486.4 ± 8.8 455.9 ± 8.5�

AUC for insulin (pmol min-1 L-1) 18740 ± 2063 16818 ± 12 14513 ± 1821*,� 20775 ± 751

HOMA-IR 2.3 ± 0.2� 2.4 ± 0.3 2.8 ± 0.1 2.1 ± 0.3

Values are mean ± SEM

AUC area under the curve, HOMA-IR homeostatic model assessment of insulin resistant, FH fetal hypothyroid

* p \ 0.05, Statistically significant differences between different sex
� p \ 0.05, � p \ 0.01 statistically significant differences between different treatments (FH and controls)
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investigated the effects of hypothyroidism on isolated islets

of female rabbits, and they found no difference in the

density, number, or the area of islets, and the number of

cells per islet between the control and hypothyroid groups;

in line with these findings, in our study, adult female off-

spring rats, unlike their male counterparts not only did not

show glucose intolerance but also had improved glucose

tolerance according to IVGTT. We previously reported that

serum glucose concentration during IVGTT was higher at

5 min in 3-month old FH offspring compared to their

controls, a result is in line with our current finding; how-

ever in previous study, the AUC of serum glucose con-

centration did not differ significantly between the FH and C

groups, while in current study, AUC was significantly

higher in males; one possible explanation for this dis-

crepancy may be related to the different doses of the PTU;

as in the previous study we used 200 ppm but in the current

study, higher dose (250 ppm) was used [24].

In the current study, female rats in the FH group showed

improved glucose tolerance, a finding in line with that of,

Berlezet et al. [29] who showed that in female rats, a

nutrition deficiency during gestational and postnatal life of

female rat offspring increases both glucose tolerance and

insulin sensitivity, possibly due to increased hepatic gly-

cogen concentration, increased hepatic glycogen synthesis,

and the higher glucose uptake in skeletal muscle. Estrogen

may contribute to the gender-specific difference observed

in glucose tolerance [30]; it has been suggested that

estrogen improves b-cell function, through binding to its

receptor in rat islets [31], and stimulates insulin release

[32]. Studies have demonstrated that the development of

glucose intolerance after menopause is related to an

imbalance of ovarian hormones, in particular to the

decrease in estrogen [33, 34]. In addition, the prevalence of

insulin resistance and type 2 diabetes is higher in post-

menopausal women [35], where estrogen replacement

therapy could improve glucose tolerance [36, 37]. We

could not explain the exact role of estrogen, as a protective

factor against insulin resistance [38], in the improvement of

glucose tolerance in female rats, however, serum E2 con-

centration was comparable between control and fetal

hypothyroid groups in female rats.

Conclusion

Sex-specific differences were found in the effects of fetal

hypothyroidism on carbohydrate metabolism, with female

offspring exhibiting better glucose tolerance.
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