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Abstract In mammals, circadian rhythms are associated

with multiple physiological events. The aim of the present

study was to examine the effect of lipopolysaccharide

(LPS) on circadian systems in the ovary. Immature female

mice were received an intra-peritoneal injection of equine

chorionic gonadotropin (eCG) and LPS. Total RNA was

collected from the ovary at 6-h intervals throughout a 48 h

of experimental period. The expression of the circadian

genes period 2 (Per2) and brain and muscle ARNT-like 1

(Bmal1) such as circadian genes was measured by quanti-

tative PCR. Although expression of Per2 and Bmal1 in the

ovary did not display clear diurnal oscillation, LPS sup-

pressed the amplitude of Per2 expression. Additionally,

LPS inhibited the expression of cytochrome P450 aro-

matase (CYP19) and luteinizing hormone receptor (LHr)

genes in the ovary of eCG-treated mice. Our data suggest

that Per2 may be associated with the inhibition of CYP19

and LHr expression by LPS in the ovaries of immature

mice.
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Introduction

In mammals, circadian rhythms are associated with mul-

tiple physiological events and are regulated by ‘‘central

clock’’ located in the suprachiasmatic nucleus (SCN) of the

anterior hypothalamus [1]. Circadian rhythms have also

been observed in peripheral tissues includeing liver, kidney

[2, 3], uterus and ovary [4], which are referred to as ‘‘pe-

ripheral clocks’’. The peripheral clocks synchronize with

central clocks through neuronal and hormonal systems [5].

Circadian oscillations are generated by a set of clock genes

forming a transcriptional autoregulatory feedback loop. In

mammals, Clock, Bmal1, Per1, Per2, Cry1, and Cry2 are

associated with this transcriptional feedback loop.

The mammalian ovary is an organ in which follicular

development, ovulation and the formation of corpus luteum

can occur periodically. These physiological events in the

ovary are referred to as the estrous cycle (animal) or

menstrual cycle (human). The functions of granulosa and

theca cells that are the major components of ovarian fol-

licles is associated with the estrous cycle (or menstrual

cycle) in mammals. In mammals, follicle-stimulating hor-

mone (FSH) from the pituitary enhances follicular devel-

opment by promoting granulosa cell function, including

estradiol production and cell proliferation. Estradiol is

synthesized by the enzyme CYP19 (P450aromatase) in the

granulosa cells of growing follicles and subsequently

induces the gene expression of luteinizing hormone

receptor (LHr) in granulosa cells. Follicle-derived estradiol

exerts positive feedback on both the hypothalamus and the

pituitary to trigger a luteinizing hormone (LH) surge that

precedes ovulation.

Recent studies support a role of circadian clock genes on

granulosa and theca cell function in the ovary. The rhyth-

mic expression of clock genes was observed in both
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granulosa and theca cells in rodent ovary [6, 7]. Recent

evidence indicates that FSH can induce the expression of

circadian clock genes in the granulosa cells [8]. It has also

been reported that clock genes expressed in granulosa cells

are involved in the steroidogenesis. Bmal1 is associated

with the production of progesterone (P4) and prostaglandin

(PGE2) in rat granulosa cells [9]. Moreover, Clock is

associated with estradiol (E2) production by enhancing

mRNA expression of LHr and CYP19 in granulosa cells

[10]. Thus, circadian clock genes play an important role for

ovarian cellular functions in mammals.

Ascending infection of the upper female genital tract

with gram-negative bacteria can lead to the development of

pelvic inflammatory disease (PID) in women [11] or

endometritis in dairy cattle [12]. Both are pathophysio-

logical conditions that have been associated with infertility.

Lipopolysaccharide (LPS), the major component of the

outer membrane of gram-negative bacteria, can disturb

normal ovarian function. Injection of intravenous LPS can

inhibit in peripheral plasma estradiol concentrations

despite normal plasma luteinizing hormone (LH) levels in

the rhesus monkey [13]. Moreover, LPS can delay ovula-

tion by attenuating the increased preovulatory estradiol in

heifer [14]. LPS can also been shown to disturb estradiol

production in granulosa cells [15] and progesterone pro-

duction in theca cells [16] in vitro. Thus, LPS can induce

ovarian dysfunction by affecting the functions of follicular

cells such as granulosa and theca cells.

Although circadian clock genes are associated with

ovarian function, it is still unknown whether LPS affects

the circadian rhythm of clock genes during follicular

development in the ovary. We hypothesized that LPS

affects follicular development by disturbing the circadian

rhythm of clock genes. To test this hypothesis, we exam-

ined the effect of exogenous LPS treatment on the circa-

dian rhythm of Per2 and Bmal1 during ovarian follicular

development that is induced by exogenous hormone treat-

ment (equine chorionic gonadotropin).

Materials and methods

Animals and sample collection

ICR female mice (4-week-old; 22–25 g) were purchased

from SANKYO LABO SERVICE Co. Inc. The animals

were housed with free access to food and water at all times

and were maintained on a 12-h light (AM 8:00, zeitgeber

time 0, ZT 0): 12-h dark (PM 8:00, ZT 12) cycle at a

controlled temperature (22–24 �C). The animals were

divided into two randomly assigned groups. In the control

group, the mice received an intra-peritoneal (i.p.) injection

of equine chorionic gonadotropin (eCG, 5 IU, ASKA

Animal Health Co., Ltd. Tokyo, Japan) and saline at ZT 0

on day 1 and saline alone at ZT0 on day 2. In the LPS

group, the mice received an i.p. injection of eCG (5 IU)

and LPS (1.0 lg/g body weight) at ZT 0 on day 1, and LPS

alone at ZT 0 on day 2. In both groups, the mice were

sacrificed by decapitation every 6 h: ZT 0, 6, 12, 18, and 24

on day 1 and day 2, and the livers and ovaries were

removed rapidly. The removed tissues were placed in

Trizol (Life Technologies, Inc., DriveRockville, MD,

USA) and were stored -80 �C until RNA extraction.

RNA extraction, reverse transcription (RT),

and quantitative polymerase chain reaction (PCR)

Collected liver and ovary samples were homogenized in

Trizol reagent and total RNA was extracted from each ovary

and liver according to the manufacturer’s instructions and

then frozen at-80 �C. Before the RT reaction, samples were

treated with DNase and single-strand cDNA was then reverse

transcribed from total RNA using a commercial kit (Prime-

ScriptTM RT Reagent Kit with gDNA Eraser; TAKARA BIO

INC., Shiga, Japan). The RT reaction conditions were as

follows: 15 min of cDNA synthesis at 37 �C and 5 s of

inactivation at 85 �C. The mRNA levels of Per2 and Bmal1,

steroid-synthesis related genes such as LHr and CYP19 were

quantified by real-time PCR using an iQcycler (Bio-Rad

Laboratories, Inc., Tokyo, Japan) and a commercial kit

(QuantiTectTM SYBR� Green PCR; QIAGEN GmbH,

Hilden, Germany).Each primer used is showed in Table 1.

The amplification program included 10 min of activation at

95 �C followed by 50 cycles of PCR (95 �C for 10 s, specific

temperature of each primer’s annealing for 30 s and 72 �C
for 20 s). Values were normalized using b-actin as the

internal standard.

Statistical analysis

All data are presented as mean ± SEM. A one-way

ANOVA was used to test for any diurnal variations in Per2

and Bmal1 expression in each tissue type. Student’s t test

was used to investigate any gene expression differences

between control and LPS-treated mice for expression of

multiple genes. Analyses were considered to be statistically

significant at P\ 0.05.

Results

Effect of LPS treatment on circadian expression

of Per2 and Bmal1 in the liver

The expressions of Per2 and Bmal1 mRNA in the liver of

the control group displayed diurnal rhythms and anti-phase
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(Figs. 1a, 2a). However, in the LPS treatment group, whilst

the expression of Per2 mRNA showed a diurnal rhythm,

levels during the experimental period were suppressed

(Fig. 1b). Additionally, LPS inhibited the mean level of

Per2 mRNA at day 1 and day 2 (Fig. 1c, d). In contrast

with the expression pattern of Per2, LPS treatment did not

affect the diurnal rhythms of Bmal1 (Fig. 2b), or the mean

level of Bmal1 at day 1 or day 2 (Fig. 2c, d).

Effect of LPS treatment on circadian expression

of Per2 and Bmal1 and the expression of CYP19

and LHr genes in the ovary

In control ovary tissues, the diurnal rhythm of Per2

expression was observed at day 2 but not at day 1 (Fig. 3a).

LPS treatment disturbed the diurnal rhythm of Per2

expression at day 2 (Fig. 3b) and the average level of Per2

expression decreased at day 2 (Fig. 3d). The diurnal

rhythms of Bmal1 expression in the ovary with or without

LPS treatment was not observed at day 1 and day 2

(Fig. 4a, b). Additionally, the average levels of Bmal1

expression was the same between both groups (Fig. 4c, d).

The expression of CYP19 and LHr in LPS treated ovary

was suppressed at day 2 (Fig. 5).

Discussion

This study examined the effect of LPS treatment on liver

and ovarian circadian rhythm in mice. In the present study,

we used exogenous hormone-treated immature mice to

induce ovarian follicular development. Although adminis-

tration of LPS did not affect the circadian rhythm of Per2

and Bmal1 in the ovary, change to the circadian rhythm of

Table 1 Primer pairs used for

detection of mRNAs
Genes Primer sequence Size (bp) GeneBank accession no.

Per2 Forward: 50-GGCACATCTCGGGATCG-30

Reverse: 50-GAGCAGAGGTCCTCGCC-30
112 NM_011066

Bmal 1 Forward: 50-GGAGAAGGTGGCCCAAA-30

Reverse: 50-AGGCGATGACCCTCTTA-30
135 NM_001243048

CYP19 Forward: 50-CATGGTCCCGGAAACTGTGA-30

Reverse: 50-CTAGTAGTTGCAGGCACTTC-30
186 NM_007810.3

LHr Forward: 5-TGAGTCCATCACGCTGAAAC-30

Reverse: 50-AGATTAGCGTCGTCCCATTG-30
80 NM_013582.2

b-Actin Forward: 50-CACACCTTCTACAATGAGCTGC-30

Reverse: 50-CATGATCTGGGTCATCTTTTCA-30
108 NM_007393.5
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Fig. 1 Effect of LPS on

circadian rhythm of Per2 in

mouse liver The quantified data

of Per2 at day 1 and day 2 in

liver from mice with (b) or

without (a) LPS treatment.

White and black bars at the top

of the figure indicate the time of

lights-on and lights-off,

respectively. Data are presented

as mean ± SEM, n = 3–4, at

each time point and analyzed by

one-way ANOVA to determine

diurnal variations in clock gene

expression. Mean expression

level of Per2 is shown during

day 1 (c) and day 2 (d) in liver

from mice with or without LPS

treatment. Data are presented as

mean ± SEM and analyzed by

t test to investigate any

differences between control and

LPS-treated mice (*P\ 0.05,

**P\ 0.01)
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these genes were observed in the liver. The liver is a well-

established peripheral oscillator that displays robust circa-

dian rhythms of clock gene expression. To verify the cor-

rect analysis of circadian rhythm in ovary, mRNA

expression of Per2 and Bmal1 in the liver was measured.

Periodic rhythm and antiphase form of Per2 and Bmal1

was observed in the liver. However, injection of LPS

suppressed Per2 expression in the liver at day 1 and day 2.

This observation is consistent with the published literature

that indicates that a single dose of LPS (1 mg/kg) signifi-

cantly suppressed the expression levels of Per2 in the liver

at day 1 [17]. Several clock-controlled elements are present

in the Per2 promoter region [18]. A noncanonical E-box

enhancer (CATGTG, -497 in human and -163 in mouse,

and CACGTT, -356 in human and -23 in mouse) drives

circadian expression of Per2 through Clock/Bmal1-medi-

ated transcriptional activation [19, 20]. Another important

regulatory element is the DBP/E4BP4-binding element (D-
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Fig. 2 Effect of LPS on

circadian rhythm of Bmal1 in

mouse liver The quantified data

of Bmal1 at day 1 and day 2 in

liver from mice with (b) or

without (a) LPS treatment.

White and black bars at the top

of the figure indicate the time of

lights-on and lights-off,

respectively. Data are presented

as mean ± SEM, n = 3–4, at

each time point and analyzed by

one-way ANOVA to investigate

diurnal variations in clock gene

expression. Mean expression

level of Bmal1 is shown during

day 1 (c) and day 2 (d) in liver

from mice with or without LPS

treatment. Expression data are

presented as mean ± SEM
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Fig. 3 Effect of LPS on

circadian rhythm of Per2 in

mouse ovary The quantified

data of Per2 at day 1 and day 2

in ovary from mice with (b) or

without (a) LPS treatment.

White and black bars at the top

of the figure indicate the time of

lights-on and lights-off,

respectively. Data are presented

as mean ± SEM, n = 3–4, at

each time point and analyzed by

one-way ANOVA to examine

diurnal variations in clock gene

expression. Mean expression

level of Per2 is shown during

day 1 (c) and day 2 (d) in ovary

from mice with or without LPS

treatment. Data are presented as

mean ± SEM analyzed by t test

to determine any difference

between control and LPS-

treated mice (**P\ 0.01)
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box). This element influences Per2 expression by a

repressor-antiphasic-to-activator mechanism, which gen-

erates high-amplitude transcriptional activity [18]. Thus,

LPS may inhibit transcription of Per2 by inhibiting tran-

scription factor binding to E-box or D-box in mouse liver.

Rhythmic expression of clock genes in the ovary has

been observed in mature rat [6, 7, 21] and mouse [22].

Rhythmic expression of Per2 was induced within 24 h after

FSH treatment in immature rat granulosa cells within

in vitro culture [7, 23]. We observed that the circadian

rhythms of Per2 and Bmal1 developed in mouse ovary at

day 2 after eCG treatment without LPS. These results

suggest that the generation of clock gene rhythmicity by

gonadotropin in immature granulosa cells may occur prior

to rhythmicity in the ovarian tissue. Although LPS did not

affect the rhythmic expression of Per2 and Bmal1, LPS

suppressed the mean level of Per2 at day 2 in the ovary. As

in the liver, LPS may inhibit the transcription of Per2 by

inhibiting transcription factor binding to E-box or D-box in

the ovary.

In the present study, we demonstrated that expression of

CYP19 and LHr genes was inhibited in the mouse ovary

treated with LPS 48 h after eCG injection. CYP19 is a crit-

ical enzyme in the production of estradiol in granulosa cells

of the growing follicles in the mammalian ovary. Intraperi-

toneal injection of LPS in mice can lead to increased levels of

inflammatory cytokines such as interleukin (IL)-10, IL-6 and

tumor necrosis factor alpha (TNF-a) in blood [24, 25]. TNF-

a and IL-6 inhibit the expression ofCYP19 (P450aromatase)

and LHr in cultured granulosa cells [26–28]. Therefore, IL-6

and TNF-a activation by LPS may be associated with the

observed decrease in the expression ofCYP19 and LHr in the

mouse ovary. Interestingly, we observed that the mean level

of Per2 expression at day 2 decreased in the ovaries treated

with LPS compared to those in the control group. Our pre-

vious study reported that siRNA knock-down of Per2

decreased the expression of LHr gene in bovine granulosa

cells [10]. Together, these results suggest that LPS or LPS-

induced cytokines may suppress LHr expression by inhibit-

ing Per2 in the mouse ovary.

In conclusion, our data indicate that the amplitude of

Per2, but not of Bmal1, in the liver is influenced by LPS

and that Per2 may be associated with the inhibition of

CYP19 and LHr expression by LPS in the ovary. This study

suggests that Per2 is a target factor of LPS in peripheral

tissues. Our results contribute to the understanding of

ovarian pathophysiological functions in mammals.
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