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Chronic voluntary wheel running exercise 
ameliorates metabolic dysfunction via PGC‑1α 
expression independently of FNDC5/irisin 
pathway in high fat diet‑induced obese mice
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Abstract 

Exercise is an effective intervention to ameliorate metabolic diseases including obesity and insulin resistance, but the 
mechanisms involved in the metabolic amelioration have not yet been fully elucidated. This study aimed to deter-
mine whether AMPK–SIRT1–PGC-1α–FNDC5/Irisin-UCP1 expression is activated and whether metabolic dysfunction 
is ameliorated by chronic voluntary wheel running (VWR) in high-fat diet (HFD) induced obese mice. C57BL6J mice 
were randomly assigned into three groups at the age of 7 weeks for 10 weeks: normal chow diet (CON) group, HFD 
group, and HFD + VWR group. Chronic VWR ameliorates metabolic parameters and leads to increases in the expres-
sion of PGC-1α in the gastrocnemius muscle in HFD-induced obese mice. In contrast, the expression of AMPKα, SIRT1, 
and FNDC5, or circulating irisin levels did not lead to alteration. Improvement of metabolic health was partly medi-
ated via PGC-1α expression by chronic VWR, but not FNDC5/Irisin pathway in HFD-induced obese mice.
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Background
The increase in metabolic diseases including insulin 
resistance, metabolic syndrome, and diabetes mellitus 
worldwide is largely attributable to the global obesity 

epidemic [1–3]. Obesity is mainly caused by sedentary 
lifestyles and dietary habits, such as a high-fat diet (HFD) 
and a Western diet, in contemporary societies [4–7]. 
Various interventions have been proposed as methods to 
ameliorate obesity by increasing energy expenditure and 
promoting fat mobilization [8, 9].

Exercise is an effective intervention to ameliorate meta-
bolic diseases including obesity, insulin resistance, and 
metabolic syndrome because exercise-induced muscle 
contraction stimulates the secretion of various bioac-
tive hormones that contribute to beneficial effects on 
metabolic homeostasis [10–12]. The positive metabolic 
effects of exercise are influenced by AMP-activated pro-
tein kinase (AMPK) and Sirtuin 1 (SIRT1) expressed in 
skeletal muscle [13, 14]. AMPK and SIRT1 activation 
increase fatty acid oxidation and regulate whole-body 
energy metabolism by interacting with peroxisome pro-
liferator-activated receptor-gamma coactivator 1-alpha 
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(PGC-1α) [14–17]. PGC-1α expressed in skeletal muscle 
plays a pivotal role in maintaining metabolic function 
through glucose homeostasis, increased oxidative capac-
ity, mitochondrial biogenesis, improved insulin sensitiv-
ity, suppressed muscle atrophy, and reduced systemic 
inflammation [18–20].

In skeletal muscle, PGC-1α regulates fibronectin type 
III domain-containing protein 5 (FNDC5) expression 
[21], which cleaved into irisin and released into the cir-
culation [11]. It has been reported that the activation 
of the PGC-1α-FNDC5–Irisin axis enhances energy 
expenditure and increases the expression of thermogenic 
genes, such as uncoupling protein 1 (UCP1) [11, 22]. In 
this respect, exercise-induced activation of the AMPK–
SIRT1–PGC-1α–FNDC5/Irisin–UCP1 axis can be an 
attractive therapeutic target for ameliorating metabolic 
diseases. Although previous studies have reported that 
AMPK and SIRT1 have a direct effect on PGC-1α activity 
and that PGC-1α regulates FNDC5/Irisin–UCP1, stud-
ies on whether chronic voluntary wheel running (VWR) 
exercise activates the AMPK–SIRT1–PGC-1α–FNDC5/
Irisin–UCP1 series of signaling pathways are still lacking.

In addition, although previous studies have shown that 
exercise activates irisin-related signaling mechanisms, it 
is unclear whether 10 weeks of VWR exercise promotes 
this signaling mechanism and whether this activation pat-
tern differs depending on the type of muscle fiber (Type 
I vs. Type I and II mixed). Therefore, this study aimed to 
confirm whether AMPK–SIRT1–PGC-1α–FNDC5/Iri-
sin–UCP1 expression is stimulated and whether meta-
bolic dysfunction is ameliorated by 10  weeks of VWR 
exercise in HFD-induced obese mice.

Materials and methods
Animal models
All experimental procedures were approved by the Ani-
mal Care Use Committee of the Incheon National Univer-
sity (INU-ANIM-2018-17). Six-week-old male wild-type 
C57BL6J mice were purchased from Jung Ang Lab Ani-
mal Inc. (Seoul, South Korea) and were housed in an ani-
mal facility conditioned with a temperature (20 ± 1 ℃), 
humidity (50–80%), and light-controlled on a 12-h light/
dark cycle. All mice were acclimatized to the new animal 
facility for 1 week and were randomly assigned into three 
groups at the age of 7 weeks for 10 weeks: normal chow 
diet (control, CON, n = 14) group, high-fat diet (HFD, 
n = 14) group, and HFD with VWR (HFD + VWR, n = 14) 
group. The control group was placed on a standard chow 
diet that contained 3.5% fat (RodFeed, DBL, Inc.), while 
HFD and HFD + VWR groups were placed on the HFD 
that contained 20% carbohydrates, 20% protein, and 60% 
fat (D12492, Research Diets Inc, New Jersey, USA). All 
groups of mice were given access to a diet (normal chow 

or high-fat) and water ad libitum. Body mass was meas-
ured with an electronic scale (Mettler toledo, Switzer-
land) on a weekly basis.

VWR exercise
VWR exercise monitoring was assessed in polycarbonate 
cages (20.5  cm wide × 36.5  cm long × 14  cm high) with 
free access to wheels (wheel diameter of 10.16 cm, inte-
rior diameter of 9.2 cm, wheel width of 5.1 cm, Colum-
bus Instruments, Ohio, USA). CON and HFD groups 
were not treated with a running wheel. The total wheel 
running distance of the HFD + VWR group was recorded 
every 30 min for 24 h each day. The recorded revolutions 
were converted to km/day and recorded for 10 weeks.

Measurement of blood parameters
Whole blood was obtained from tail vein after anesthesia 
with an intraperitoneal (IP) injection of 2.5% tribromoe-
thanol (0.01  mL/g of body weight) to measure glucose 
and triglycerides levels in circulation. Blood glucose was 
measured using accu-check performa (Roche, South 
Korea) and triglycerides were measured using accutrend 
plus (Mannheim, Germany) by cutting the tail of the 
mouse before sacrifice and placing the blood on a blood 
test strip.

Enzyme‑linked immunosorbent assay (ELISA) analyses 
for measurement of insulin and irisin and HOMA‑IR 
calculation
Serum samples were collected by extracting whole blood 
from the IP vena cava of anesthetized mouse and stored 
at room temperature for 30  min for coagulation. Then, 
the samples were centrifuged at 12,000  rpm for 10  min 
and stored at – 80 °C freezer until analysis. Commercially 
available ELISA kits were used according to the manufac-
turer’s instructions to determine serum irisin (AdipoGen 
Life Sciences, San Diego, CA, USA, AG-45A-0046YEK-
KI01) and insulin (ALPCO, Salem, NH, USA, 80-INSMS-
E01) concentrations. All serum samples were measured 
in duplicate. Insulin resistance was determined by home-
ostatic model assessment for insulin resistance (HOMA-
IR) and HOMA-IR formula is: HOMA-IR = (glucose 
[mmol/L] × (insulin [mU/L])/22.5 [23].

Tissue collection
Gastrocnemius and soleus muscles were isolated from 
both legs, and brown adipose tissue (BAT) was isolated 
from the interscapular region of mice. To isolate BAT, the 
dorsal interscapular region of the mice was incised, the 
butterfly shaped interscapular adipose tissue was sepa-
rated, and then the white adipose tissue was removed. 
To isolate gastrocnemius and soleus muscles, the skin 
on both legs of the mice was peeled off and the skeletal 
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muscles of the lower extremity were exposed. Then, the 
tendon was incised and the gastrocnemius was isolated. 
After the separation of the gastrocnemius muscle, the 
soleus muscle was exposed and the soleus muscle iso-
lated by incising the tendon.

Western blot analyses
The collected skeletal muscles and fat tissues were 
homogenized with CelLytic MT lysis buffer (Sigma-
Aldrich) mixed with protease inhibitors cocktail (Sigma-
Aldrich) at 1:100 ratio. Protein amounts from all samples 
were assessed using the BCA protein assay kit (Thermo 
Scientific) followed by protein concentration normali-
zation prior to all western blot experiments. The same 
amount of protein was separated with SDS–PAGE in 
12% or 7.5% polyacrylamide gel and then transferred to 
PVDF (Bio-Rad, CA, USA). Membranes were blocked for 
1  h at room temperature in blocking solution (5% skim 
milk) followed by overnight incubation (4 °C) in primary 
antibody diluted in blocking solution (5% Bovine Serum 
Albumin). Membranes were probed using the following 
antibodies: total FNDC5 (Abcam, catalog# ab-174833, 
1:1000), PGC‐1α (Abcam, catalog# ab-54481, 1:1000), 
UCP1 (Abcam, catalog# ab-10983, 1:1000), AMPKα 
(Cell signaling, catalog#2562, 1:1000), SIRT1 (Cell signal-
ing, catalog# 9475, 1:500), and β‐actin (Santa Cruz Bio-
technology, catalog# sc-47778, 1:1000). Following TBST 
washes, FNDC5, PGC-1α, UCP1, AMPKα, SIRT1, and 
β‐actin were incubated for 1 h at room temperature with 
secondary antibodies (Abcam, 1:2000). All bands were 
visualized by enhanced chemiluminescence. FNDC5, 
PGC-1α, UCP1, AMPKα, SIRT1, and β‐actin bands were 
detected and quantified using Bio‐Rad ChemiDoc Touch 
Imaging System (Bio-Rad Laboratories, Hercules, CA, 
USA) with Image Software Lab.

Statistical analysis
All statistical analyses were evaluated using GraphPad 
Prism (version 9.0, GraphPad Software, USA). All vari-
ables were presented as a mean ± SEM and normality 
of distribution for variables was assessed using the Sha-
piro–Wilk test. The comparison of every week for the 
body weight was performed by two-way mixed model 
(group x time) ANOVA with repeated measurements. 
The remaining variables were performed by one-way 
ANOVA, and in the case of variables not following the 
normality, Kruskal–Wallis test was performed. Inter-
group differences were performed with Bonferroni post-
hoc comparisons. The correlations were performed via 
Pearson’s correlation analysis, and in the case of variables 
not following the normality, Spearman’s correlation anal-
ysis was performed. The significance level was P < 0.05.

Results
Effects of HFD and VWR exercise on weight, blood glucose, 
triglycerides, insulin, and HOMA‑IR
After 10  weeks of diet and VWR exercise intervention, 
the HFD and HFD + VWR groups had significantly 
increased weight compared to the CON group (both 
P < 0.0001), but the HFD + VWR group had significantly 
lower weight compared to the HFD group (P < 0.0001, 
Fig. 1A). The HFD group showed significantly increased 
blood glucose (Fig.  1B), triglycerides (Fig.  1C), insu-
lin (Fig.  1E), and HOMA-IR (Fig.  1F) levels compared 
to the CON group. Furthermore, the HFD group had 
significantly higher blood glucose levels than that of 
the HFD + VWR group (Fig.  1B). However, when com-
pared to the CON group, HFD + VWR group did not 
show an increase in blood glucose, triglycerides, insu-
lin, or HOMA-IR indicating that VWR exercise pre-
vented weight gain and improved metabolic parameters 
in HFD-induced obese mice. The average daily volun-
tary wheel exercise distance in HFD + VWR group was 
8.25 ± 0.8 km (Fig. 1D).

Effects of chronic VWR exercise on AMPKα, SIRT1, PGC‑1α, 
and FNDC5 in the gastrocnemius and soleus muscles
To determine whether chronic WVR exercise activates 
AMPKα, SIRT1, PGC-1α, and FNDC5 in the skeletal 
muscles, we measured protein expression in the gas-
trocnemius and soleus muscles which were type I and II 
mixed muscle fiber and type I muscle fiber, respectively. 
The expression levels of AMPKα (Fig.  2A) and SIRT1 
(Fig.  2B) in the gastrocnemius muscle were comparable 
among the groups, with a tendency toward an increase 
in AMPKα expression in the HFD + VWR group, but the 
difference was not statistically significant. The expression 
of PGC-1α in the gastrocnemius muscle of HFD + VWR 
group was significantly higher than that in the CON 
and HFD groups (Fig.  2C). However, the expression of 
FNDC5 in the gastrocnemius muscle was comparable 
among the groups (Fig. 2D). Expression levels of AMPKα, 
SIRT1, PGC-1α, and FNDC5 were also examined in the 
soleus muscle. The expression levels of AMPKα (Fig. 3A), 
SIRT1 (Fig. 3B), PGC-1α (Fig. 3C), and FNDC5 (Fig. 3D) 
in the soleus muscles were comparable among the 
groups.

Effects of chronic VWR exercise on irisin in serum
To test whether chronic VWR exercise increases circulat-
ing irisin levels, we measured irisin concentration using 
ELISA. The concentrations of irisin were comparable 
among the groups. Chronic VWR exercise did not lead to 
an increase in circulating irisin levels (Fig. 4).
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Effects of chronic VWR exercise on UCP1 in BAT
To test whether chronic VWR exercise increases 
UCP1 expression, we examined its expression in 
BAT. UCP1 expression was significantly higher in 
HFD and HFD + VWR groups compared to the CON 
group (Fig.  5). However, no significant differences in 
UCP1 expression were found between the HFD and 
HFD + VWR groups.

Correlation analysis between expressed proteins 
in the gastrocnemius and soleus muscles
A previous study reported that PGC-1α regulates 
FNDC5 activation in response to chronic exercise and 
that PGC-1α shows a positive correlation with FNDC5 
in skeletal muscle [24]. However, the activation pat-
tern of PGC1α and FNDC5 differed according to muscle 
fiber type after exercise [25, 26]. Therefore, in this study, 
a correlation analysis was conducted to investigate the 
protein expression patterns according to muscle fiber 
types. The results of the correlations in the gastrocne-
mius muscles showed a significant positive correlation 
between SIRT1, PGC-1α, and FNDC5 (Fig. 6F, C, respec-
tively). Furthermore, a significant positive correlation 
was observed between the SIRT1 and PGC-1α expression 

(Fig.  6B). However, no correlation was found between 
SIRT1, PGC-1α, FNDC5, and AMPKα (Fig.  6A, E, D, 
respectively). A correlation analysis was also performed 
between proteins expressed in the soleus muscle. A 
positive correlation was observed between AMPKα and 
PGC-1α expression (Fig. 7A). However, a negative corre-
lation was found between SIRT1 and FNDC5 expression 
(Fig.  7F). Furthermore, the remaining variables showed 
no correlation (Fig. 7B, C, D and E, respectively).

Discussion
This study aimed to determine whether AMPK–SIRT1-
PGC-1α–FNDC5/Irisin–UCP1 expression, which is 
an irisin-related signaling pathway, was activated and 
whether metabolic dysfunction was ameliorated by 
10  weeks of chronic VWR exercise in HFD-induced 
obese mice. In this study, chronic VWR exercise pre-
vented weight gain and improved metabolic risk factors, 
such as blood glucose, triglycerides, insulin, and HOMA-
IR. Although no alterations in FNDC5/Irisin were 
observed in response to chronic VWR exercise, a signifi-
cantly increased expression of PGC-1α protein was found 
only in the gastrocnemius muscle which has both type 
I and II muscle fibers. Furthermore, increased PGC-1α 

Fig. 1  Effects of HFD and VWR exercise on weight A, blood glucose B, triglycerides C, running distance D, insulin E, and HOMA-IR F. Values are 
shown as mean ± SEM. *P < .05, **P < .01, ***P < .001
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protein expression was associated with increased SIRT1 
and FNDC5 in the gastrocnemius muscle, but not in the 
soleus muscle which has many type I muscle fibers. These 
results suggest that protein expression patterns may dif-
fer depending on muscle fiber type. The protein expres-
sion of UCP1 in BAT was significantly increased in the 
HFD and HFD + VWR groups compared to the CON 
group.

A sedentary lifestyle and type 2 diabetes mellitus are 
associated with decreased expression of PGC-1α in the 

skeletal muscle [20, 27]. Conversely, increased expres-
sion of PGC-1α in skeletal muscle is known to ameliorate 
metabolic factors, such as insulin sensitivity and insulin 
resistance [28, 29]. The increased expression of PGC-1α 
induced by exercise in the skeletal muscles may differ 
depending on the muscle fiber type, exercise type, and 
exercise duration. One previous study found that when 
mice were treated with VWR exercise for 1, 2, 4, 6, and 
8  weeks, the expression of PGC-1α was increased only 
in the plantaris muscle which has type II muscle fiber, 

Fig. 2  Effects of HFD and VWR exercise on AMPKα A, SIRT1 B, PGC-1α C, and FNDC5 D in the gastrocnemius muscles. Values are shown as 
mean ± SEM. *P < .05
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but not in the soleus muscle which has type I muscle fib-
ers [25]. In addition, no significant alteration of PGC-1α 
in the plantaris muscle was evident in the 1 and 2 week 
VWR exercise groups, whereas a significant increase was 
observed in the long-term (4, 6, and 8 weeks) voluntary 
wheel exercise groups [25]. In this study, PGC-1α expres-
sion in the gastrocnemius muscle, but not in the soleus 
muscle, may have increased by chronic VWR exercise, 
because the gastrocnemius muscle has a type I and II 
mixed muscle fiber type, whereas the soleus muscle has 
a type I muscle fiber. Therefore, these results may sug-
gest that increased PGC-1α protein levels in the skeletal 

muscle are associated with long-term exercise and type 
II muscle fiber rather than short-term exercise and type 
I muscle fiber.

Previous studies indicated that exercise-induced 
AMPK activation led to up-regulation of PGC-1α expres-
sion in the skeletal muscle [15, 30, 31]. However, in this 
study, the protein expression of AMPKα did not increase 
in the gastrocnemius and soleus muscles. According to 
these findings, it is possible that other molecules, such 
as the p38 mitogen-activated protein kinase (MAPK) 
signaling pathway, but not AMPK and SIRT1, expressed 
PGC-1α through VWR exercise. Aerobic exercise in 

Fig. 3  Effects of HFD and VWR exercise on AMPKα A, SIRT1 B, PGC-1α C, and FNDC5 D in the soleus muscles. Values are shown as mean ± SEM
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rodents and humans increases the phosphorylation of 
p38 MAPK in the skeletal muscle [32–35]. In addition, 
VWR exercise-induced activation of p38 MAPK has been 
shown to be involved in the regulation of PGC-1α in 
mouse skeletal muscle [36]. In this regard, the expression 
of PGC-1α may be activated by the p38-MAPK signal-
ing pathway induced by chronic VWR exercise in HFD-
induced obese mice. However, further studies are needed 
to investigate the mechanisms involved in these signaling 
pathways.

BAT is characterized by the presence of small fat-filled 
droplets and large numbers of mitochondria [37]. This 
is known to increase energy consumption via  thermo-
genesis [38]. BAT deficiency induces obesity, whereas 
increased BAT levels regulate glucose homeostasis and 
improve insulin sensitivity [39, 40]. Therefore, increased 
thermogenesis in BAT may be a potential therapeutic 

target for ameliorating obesity and metabolic risk fac-
tors. The thermogenic capacity of BAT is demonstrated 
via activated UCP1, which dissipates the chemical energy 
of fatty acids as heat [38, 41–43]. In addition, exercise 
stimulates BAT and induces UCP1 expression [44]. In 
this study, we found that UCP1 levels were significantly 
increased in the HFD and HFD + VWR groups com-
pared to the CON group, but no difference was observed 
between the HFD and HFD + VWR groups. Increased 
UCP1 levels in BAT may be a response to a HFD. Sev-
eral studies have reported that a HFD increases ketogen-
esis and induces obesity, insulin resistance, and systemic 
hyperlipidemia [45, 46]. In addition, a HFD leads to 
increased blood ketones and a darker color by feeding 
ketone esters, decreasing lipid droplet size, and increas-
ing the number of mitochondria in BAT [47]. Giraud 
et al. demonstrated that the HFD group had significantly 
increased UCP1 mRNA levels in BAT compared to the 
standard diet group and the high-carbohydrate diet 
group [48]. Therefore, it is suggested that the signifi-
cantly increased UCP1 levels in BAT may be an effect of 
increased ketone bodies induced by HFD.

Irisin, an exercise-induced myokine, is known to pro-
vide several metabolic benefits, such as ameliorating 
glucose homeostasis by reducing insulin resistance [49]. 
However, the effects of exercise on irisin are still under 
discussion, because different results have been reported 
depending on the intensity and duration of exercise. In 
this study, chronic VWR exercise did not alter FNDC5 
protein or circulating irisin levels. The PGC-1α protein in 
the gastrocnemius muscle was increased without altera-
tion in the levels of FNDC5/Irisin. In contrast, the results 
showed a positive correlation between SIRT1, PGC-1α, 
and FNDC5 in the gastrocnemius muscle. However, 
VWR exercise may not be sufficient to stimulate FNDC5/
Irisin. Previous studies found that VWR exercise for 
4 weeks did not increase FNDC5 levels in mouse gastroc-
nemius muscle [50], and chronic moderate exercise (VO2 
max 70%) did not increase levels of circulating irisin in 
humans [24]. Interestingly, irisin levels in the skeletal 
muscle were not altered by moderate-intensity aerobic 
exercise (HRpeak 65%), but significantly increased after 
high-intensity interval training (six bouts of 1  min at 
HRpeak 85–95%) in humans [51]. In addition, a recent 
study reported that high-intensity interval training elicits 
a higher peak circulating irisin response than moderate-
intensity continuous aerobic exercise [52]. Given these 
previous findings, exercise intensity may be related to 
the FNDC5/Irisin signaling pathways, and VWR exer-
cise may have been insufficient to activate these signal-
ing pathways. Furthermore, irisin may be associated with 
exercise duration. Previous studies showed increased 
levels of FNDC5 expression by acute swimming and 

Fig. 4  Effects of chronic HFD and VWR exercise on irisin in serum. 
Values are shown as mean ± SEM

Fig. 5  Effects of chronic HFD and VWR exercise on UCP1 in brown 
adipose tissue (BAT). Values are shown as mean ± SEM. **P < .01
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Fig. 7  Correlation analysis between expressed proteins in the soleus muscles

Fig. 6  Correlation analysis between expressed proteins in the gastrocnemius muscles
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treadmill exercise in the mouse skeletal muscle and 
increased levels of irisin by 3  weeks of voluntary wheel 
exercise in mouse plasma [11, 26, 53]. In a network meta-
analysis study, acute exercise showed the greatest poten-
tial as the best intervention to improve the levels of irisin 
in humans [54]. In addition, irisin has been shown to be a 
molecule with a short half-life and high degradation rate 
[24, 55, 56]. For these reasons, irisin response after exer-
cise may be conflicted by exercise intensity and duration.

This study has some limitations. First, we analyzed only 
the total AMPKα protein as a signaling pathway. There 
was no alteration in the total AMPKα protein, but phos-
phorylated AMPKα may be activated via exercise. There-
fore, future studies are needed to investigate the ratio of 
phosphorylated AMPKα to total AMPKα protein. Sec-
ond, the normal chow diet with a VWR (CON + VWR) 
group was not assigned. Since there is no CON + VWR 
group in this study, it may be insufficient to logically 
explain protein changes caused by exercise without 
the effect of a HFD. Third, food intake was not meas-
ured in this study. According to previous studies, high-
intensity exercise reduced appetite and food intake [57, 
58], whereas VWR increased food intake and decreased 
plasma leptin levels and the weight of adipose tissue [59]. 
These previous findings indicate that a decrease in food 
intake may not have been seen in the HFD + VWR group 
in this study. However, not measuring food intake is a 
limitation of this study and it may be necessary to record 
food intake in follow-up studies. This is because changes 
in body weight and metabolic parameters may be 
dependent on food intake. Finally, the protein expression 
in the gastrocnemius muscle was analyzed without sepa-
rating the white and red regions. Although we performed 
mRNA analysis by separating the red and white regions 
of the gastrocnemius muscle as a preliminary study after 
this study, the mRNA levels of PGC-1α and FNDC5 in 
the red and white regions of the gastrocnemius muscle 
were comparable between the groups (Additional file 1). 
However, in a previous study, the protein expression of 
PGC-1α was increased by 6 h of prolonged running exer-
cise in the red region of the rat gastrocnemius muscle, 
but not in the white region of the rat gastrocnemius mus-
cle [60]. Therefore, in future studies, it will be necessary 
to investigate the signaling pathways in the white and red 
regions of the gastrocnemius muscle in more detail.

Conclusions
In summary, the chronic VWR exercise did not alter the 
protein expression of AMPKα, SIRT1, and FNDC5 in 
both soleus and gastrocnemius muscles, or circulating 
irisin when compared to the control group. In contrast, 
chronic VWR exercise leads to increase in the expression 

of PGC-1α in the gastrocnemius muscle. Furthermore, 
chronic VWR exercise ameliorates weight gain and meta-
bolic parameters, such as blood glucose, triglycerides, 
and insulin resistance in HFD-induced obese mice. This 
study showed that chronic VWR exercise ameliorates 
metabolic health via PGC-1α expression independently 
of FNDC5/Irisin pathway in HFD-induced obese mice.
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