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Abstract
Appropriate cardiovascular adjustment is necessary to meet the metabolic demands of working skeletal muscle during exer-
cise. The sympathetic nervous system plays a crucial role in the regulation of arterial blood pressure and blood flow during 
exercise, and several important neural mechanisms are responsible for changes in sympathetic vasomotor outflow. Changes 
in sympathetic vasomotor outflow (i.e., muscle sympathetic nerve activity: MSNA) in inactive muscles during exercise differ 
depending on the exercise mode (static or dynamic), intensity, duration, and various environmental conditions (e.g., hot and 
cold environments or hypoxic). In 1991, Seals and Victor [6] reviewed MSNA responses to static and dynamic exercise with 
small muscle mass. This review provides an updated comprehensive overview on the MSNA response to exercise including 
large-muscle, dynamic leg exercise, e.g., two-legged cycling, and its regulatory mechanisms in healthy humans.
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Introduction

Precise cardiovascular and hemodynamic adjustments are 
necessary to meet the metabolic demand of active skeletal 
muscle. An appropriate regulation of sympathetic vasomo-
tor outflow is key for maintaining arterial blood pressure 
and to facilitate the delivery of blood flow to active skeletal 
muscle. Central command (a feedforward mechanism origi-
nating from the cerebral cortex and/or subcortical nuclei), 
the exercise pressor reflex (a feedback mechanism originat-
ing from skeletal muscle, i.e., metaboreflex and mechanore-
flex), the arterial baroreflex (a negative feedback mechanism 
originating from the carotid sinus and aortic arch), and car-
diopulmonary baroreflex (a negative feedback mechanism 
originating from low-pressure mechanically sensitive stretch 
receptors located in the heart, vena cava and blood vessels 
of the lungs) work in concert creating complex interactions 
that regulate sympathetic vasomotor outflow during exercise 

[1–4]. Alternations in sympathetic nerve activity during 
exercise have been inferred from changes in plasma norepi-
nephrine concentrations. The main interpretive limitation of 
this measurement is that plasma levels are influenced by nor-
epinephrine release and reuptake of norepinephrine [5, 6]. In 
addition, changes in plasma norepinephrine are progressing 
slowly, resulting in low time resolution. Therefore, direct 
measurement of sympathetic nervous activity is needed to 
provide more definitive insight into the effect of exercise. In 
1972, Delius et al. [7] reported, for the first time, an increase 
in muscle sympathetic nerve activity (MSNA) during sus-
tained muscle contractions (handgrip and leg adduction). 
Thereafter, numerous investigators have reported the MSNA 
response to exercise. These studies have revealed that the 
change in MSNA differs considerably depending on the 
exercise mode (static or dynamic), exercise intensity, dura-
tion of exercise, and environment (normoxia or hypoxia). 
In 1991, Seals and Victor [6] reviewed articles concerning 
MSNA responses to exercise in humans. At that time, no 
data on the MSNA responses to dynamic leg exercise with 
large muscle mass were available. This review aimed to 
provide an updated comprehensive overview on the MSNA 
response to exercise including large-muscle, dynamic leg 
exercise, e.g., two-legged cycling, and its regulatory mecha-
nisms in healthy humans.
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Microneurography

Microneurography is a technique that can be used to measure 
and record the electrical activity of the postganglionic sym-
pathetic nerve [8–10]. In humans, MSNA can be measured 
from the radial, median, and ulnar nerves in the upper limb 
and from the peroneal and tibial nerves in the lower limb 
[10, 11]. Although microneurography has several limitations 
[9, 12], it is a gold standard for the assessment of sympa-
thetic vasomotor outflow. The limb of the MSNA record-
ing site must remain relaxed to avoid electromyographic 
contamination; thus, measurements of MSNA to contract-
ing muscle are not possible, and MSNA has been recorded 
from inactive limb. The most recorded peripheral nerve 
is the peroneal nerve at the fibular head, and the subjects 
perform handgrip [13–21], arm cycling [13, 18, 22–24] or 
one-legged dynamic exercise [25–27]. Additionally, several 
researchers have measured MSNA from the radial [28, 29] or 
median nerve [30–35] during two-legged cycling. Real-time 
ultrasound guidance with microneurography has recently 
been utilized [11]. The assessment of MSNA is often an 
integrated signal of multiple nerve fibers presented as burst 
frequency (bursts/min), burst incidence (bursts/100 heart 
beats), and total activity (mean burst amplitude or burst 
area × number of bursts) [9]. In addition to the difficulty of 
recording MSNA during dynamic two-legged cycling, in 
some cases it is difficult to analyze burst amplitude and, 
thereby, total activity because electromyographic, effer-
ent, and afferent nerve activities alter the baseline of the 
integrated neurogram during dynamic leg cycling [30, 31, 
35]. For a more in-depth discussion of MSNA measurement 
methods and analyses, we refer the reader to previous, more 
detailed reviews [9, 36].

Regulation of MSNA

In this review, we focus on representative studies on MSNA 
regulation during exercise in humans. The reader is referred 
to a number of excellent reviews [1–4] that provide a much 
higher level of detail on individual topics.

Central command

The concept that signals from the higher brain contribute to 
the cardiovascular and hemodynamic adjustments to exer-
cise has been well presented for over a century [1, 3, 4]. 
Originally termed “cortical irradiation”, and now known 
as “central command”, this refers to descending neural 
signals that involve the parallel activation of the somato-
motor, respiratory, and cardiovascular systems [37]. The 
traditional supposition has been that central command sets 

the initial pattern of autonomic activation to the heart and 
blood vessels at the onset of exercise [37–39]. To determine 
the influence of central command on sympathetic vasomo-
tor outflow, Mark et al. [14] compared MSNA responses 
during voluntary and involuntary (percutaneous electrical 
stimulation) biceps contraction at 20% maximal voluntary 
contraction (MVC). MSNA increased during involuntary 
contraction but decreased during voluntary contraction. 
This result suggests that during static exercise with small 
muscle mass, central command does not increase but, rather, 
inhibits MSNA. Victor et al. [40, 41] investigated whether 
central command affects MSNA during static and intense 
intermittent isometric handgrip exercise with and without 
partial neuromuscular blockade. During static handgrip 
exercise at 15% and 30% MVC and intermittent isometric 
handgrip exercise at 25% and 50% MVC, central command 
had very little effect on MSNA. In contrast, intermittent iso-
metric handgrip exercise at 75% MVC induced an increase 
in MSNA [41]. These results suggest that central command 
increases MSNA only during higher intensities of exercise 
[1, 3, 4]. To date, no data on the influence of central com-
mand on MSNA responses to dynamic exercise with large 
muscle mass are available.

Exercise pressor reflex

A lot of researchers have devoted themselves to understand-
ing the feedback mechanisms emanating from active skeletal 
muscle, and the importance of the exercise pressor reflex 
to the arterial blood pressure during dynamic exercise has 
been demonstrated [1, 3, 4, 42]. Skeletal muscle afferents 
are comprised of mechanically and metabolically sensitive 
sensory fibers (myelinated group III and unmyelinated group 
IV afferent fibers) that provide feedback to cardiovascular 
control areas in the brain stem [43–45]. Importantly, these 
temporal profiles for the activation of chemically sensi-
tive receptors and channels are not absolute, since both 
group III and IV afferent fibers exhibit polymodal qualities 
[3, 43]. It has been suggested that the activation of both 
mechanically and metabolically sensitive afferent fibers 
contributes to exercise pressor reflex-mediated sympathetic 
vasomotor outflow [1, 3, 4]. It is very challenging to isolate 
the stimulation of mechanoreceptors in humans; primary 
adopted strategies include passive muscle stretch or passive 
limb movement. Indeed, Middlekauff et al. [46] recorded 
MSNA during passive arm extension/flexion movement, and 
MSNA remained unchanged from baseline during passive 
movement in healthy subjects. Cui et al. [47] investigated 
whether isolated stimulation of the mechanoreceptors can 
induce responses in MSNA. They found that passive leg 
calf muscle stretching induced transient increases in MSNA, 
supporting the idea that mechanoreceptors in muscles play a 
role in evoking the sympathetic response. During fatiguing 
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isometric muscle contraction, the activity of muscle mecha-
noreceptors typically increases [48]. Thus, the accumula-
tion of metabolites within active skeletal muscle can sen-
sitize mechanically sensitive skeletal muscle afferents [4]. 
In contrast to the mechanoreflex, numerous human studies 
have shown a rather robust ability of the muscle metabore-
flex to induce increases in MSNA. The majority of studies 
have used post-exercise ischemia to trap exercise-induced 
metabolites within the previously active muscle [4, 14, 49], 
e.g., an occlusion cuff placed over the upper arm is inflated 
to suprasystolic pressure (> 240 mmHg) after handgrip exer-
cise. Thus, their stimulatory effect on metabolically sensi-
tive skeletal muscle afferents is preserved in the absence of 
the muscle mechanoreflex and central command [1]. This 
maneuver has been consistently shown to maintain a major 
portion (~ 85%) of the exercise-induced increase in MSNA 
[1, 14] in an exercise intensity-dependent manner [50].

Arterial baroreflex

Arterial baroreceptors are located in the carotid artery and 
aorta and play a key role in the rapid sympathetic vasomo-
tor adjustments to acute cardiovascular stressors [2]. These 
baroreceptors are mechanically sensitive and function as 
sensors in a negative feedback control loop that responds 
to beat-to-beat changes in arterial blood pressure [1, 3, 4]. 
When arterial blood pressure is elevated, baroreceptors are 
stretched, leading to further increases in afferent firing and 
resulting in a reflex-mediated decrease in MSNA [2]. In con-
trast, when arterial blood pressure decreases, tonic affer-
ent firing is decreased, resulting in an increase in MSNA 
[2]. These neural adjustments affect blood vessels (altering 
total vascular conductance), to return arterial blood pres-
sure to its original set point pressure [2, 3]. The ability of 
the arterial baroreflex to regulate arterial blood pressure is 
critically dependent on alterations in vascular tone both at 
rest and during exercise. Indeed, some studies have reported 
a progressive resetting of the baroreflex control of MSNA, 
to operate around the exercise-induced elevations in arte-
rial blood pressure with maintained or increased sensitivity 
[23, 24, 51, 52]. Therefore, the arterial baroreflex control of 
MSNA is well maintained throughout a bout of exercise, and 
the arterial baroreflex plays an important role in the regula-
tion of MSNA during exercise [1–4].

Cardiopulmonary baroreflex

Cardiopulmonary baroreceptors are mechanically sensitive 
stretch receptors located in the heart, vena cava, and blood 
vessels of the lungs that sense changes in central blood vol-
ume and pressure [53–55] and reflexively modulate MSNA. 
These phenomena have been revealed by multiple studies 
that recorded MSNA during lower body negative pressure 

and lower body positive pressure at resting conditions 
[15–17, 50, 56–58]. The cardiopulmonary baroreflex dur-
ing dynamic exercise has been but seldom studied, and most 
representative work was performed by Ray et al. [25] who 
showed that MSNA was affected by changes in central blood 
volume mediated by the cardiopulmonary baroreflex dur-
ing dynamic one-legged knee extension exercise in the sit-
ting and supine positions. They found a reduction in MSNA 
below resting levels when exercise was performed in the 
sitting position, while no changes in MSNA were observed 
when exercise was performed in the supine position. Based 
on these data, it is believed that a decrease in MSNA in 
dynamic leg exercise is linked to the loading of cardio-
pulmonary baroreceptors, which is attributable to muscle 
pump-induced increases in venous return or central blood 
volume [2, 25, 55, 59, 60]. We [61] recently demonstrated 
that the enhanced muscle pump-induced increase in central 
blood volume led to decreased MSNA during two-legged 
cycling. Ogoh et al. [62] revealed that increasing the central 
blood volume, which loads the cardiopulmonary barorecep-
tors, reduces the magnitude of the exercise-induced increase 
in arterial blood pressure with the arterial baroreflex reset-
ting. Importantly, the effect of the cardiopulmonary barore-
flex on MSNA would be overcome by the skeletal muscle 
metaboreflex during high-intensity exercise [2, 50]. Overall, 
the cardiopulmonary baroreflex contributes to the regulation 
of MSNA during dynamic exercise at light or mild intensity.

Respiratory modulation

The respiratory modulation of MSNA is very clear in 
humans [63], and MSNA declines during inspiration, reach-
ing its nadir at peak inspiration (when the lung volume is 
the highest and central respiratory motor output is at its 
peak) and then rises, reaching its peak at end expiration 
(when respiratory motor output and lung volume are the 
lowest) [64–67]. Potential mediators of the fluctuations in 
MSNA during respiration include coincident small changes 
in systemic blood pressure and lung volume. It seems, 
most likely, that the greatest influence of afferent input 
from pulmonary stretch receptors is in modulating sympa-
thetic responsiveness to baroreceptor influences, although 
the respiratory modulation of MSNA remains complex 
and incompletely understood [63]. In addition, it has been 
assumed that carotid chemoreceptors are related to exercise-
induced increases in MSNA [68]. To test this assumption, 
Stickland et al. [69] applied hyperoxic gas (inspired oxy-
gen fraction [FIO2] = 1.00) to inhibit carotid chemoreceptor 
activity at rest and during rhythmic handgrip exercise with 
MSNA measurement. Transient hyperoxia had no signifi-
cant effect on MSNA at rest, while MSNA decreased with 
hyperoxia during exercise. These results support the assump-
tion that carotid chemoreceptors contribute to sympathetic 
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vasoconstrictor outflow during exercise in humans. It is well 
known that high-intensity whole-body exercise leads to res-
piratory muscle fatigue [70, 71]. Fatiguing respiratory mus-
cle work and the accumulation of metabolites are associated 
with neural and cardiovascular consequences, resulting in a 
redistribution of blood flow during exercise [68, 72]. Indeed, 
Dempsey and colleagues [35, 73–75] have reported that 
imposing a high work of breathing modulates MSNA at rest 
and during mild leg cycling with corresponding increases 
in arterial blood pressure and leg vascular resistance. This 
sympathoexcitation occurs through an inspiratory muscle-
induced metaboreflex [76–78]. Dominelli et al. [79] recently 
confirmed a decrease in MSNA during two-legged cycling 
at moderate and high intensity when the work of breathing 
was reduced by a proportional assist ventilator. Based on 
these results, the respiratory muscle-induced metaboreflex 
contributes to the regulation of MSNA during dynamic leg 
exercise above moderate intensity.

MSNA responses to exercise

Static exercise

Upper limb exercise

Numerous studies have confirmed increased MSNA dur-
ing sustained handgrip exercise [14, 19, 21, 40, 50, 80–83]. 
The change in MSNA during sustained handgrip exercise 
increases in proportion to exercise intensity [6, 15, 17, 21, 
40, 80] (Fig. 1a). The main mechanism of the increased 
MSNA during sustained exercise is associated with the accu-
mulation of metabolites in active muscle, i.e., the muscle 
metaboreflex.

Lower limb exercise

Some researchers have reported increased MSNA during 
sustained foot plantar flexion or dorsiflexion [81, 84] and 
isometric knee extension [85, 86]. Interestingly, when the 
static exercise performed in lower limb (knee extension) and 
exercise intensity is below 30% of maximal voluntary con-
traction (MVC), a temporal decrease in MSNA appears rela-
tive to that at rest (Fig. 1b). Then a time-dependent increase 
in MSNA appeared during static leg exercise [85].

Generally, MSNA does not increase during sustained 
exercise in the upper or lower limb if the exercise inten-
sity is below 15% MVC and if the exercise duration lasts 
several minutes [17, 21, 40]. At the same relative exercise 
intensity and same duration, the magnitude (percentage) of 
the increased MSNA from baseline appears larger during 
upper limb than lower limb exercise. There are some cases in 
which MSNA decreased slightly over the first minutes dur-
ing static light leg exercise when exercise was performed in 
a sitting, but not supine, position [85, 86]. Therefore, stimu-
lating cardiopulmonary baroreceptors by increasing venous 
return may be related to decreased MSNA during static light 
leg exercise, although the mechanisms are unclear.

Dynamic exercise

Upper limb exercise

MSNA does not increase during dynamic (rhythmic) exer-
cise with small muscle mass (handgrip) for a brief duration 
(~ 2 min) when the exercise intensity is less than 50% MVC 
(Fig. 2) [13, 18, 41, 69, 87–89]. When rhythmic handgrip 
exercise at 25% MVC is prolonged (~ 30 min), a progres-
sive increase in MSNA appears [90] (Fig. 2). Regarding 
arm cycling, MSNA does not increase up to 30% maximal 

Fig. 1   Changes in MSNA dur-
ing static exercise in the upper 
(a) and lower limb (b) (iso-
metric handgrip exercise and 
isometric foot planter flexion 
or dorsiflexion and isometric 
knee extension, respectively). 
Percent changes in MSNA 
from baseline were calculated 
by MSNA data (bursts/min) in 
published articles. a [14, 17, 19, 
21, 40, 50, 80, 81, 83, 86], b 
[81, 84, 86]
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workload or ~ 30 watts over the first several minutes [13, 18], 
while MSNA does increase above 40 watts and 50% peak 
oxygen uptake (VO2peak) [13, 23, 24] (Fig. 3).

Lower limb exercise

Several research groups have attempted to record MSNA 
during dynamic leg exercise (Fig. 4). In 1993, Saito et al. 
[30] recorded MSNA from the median nerve during two-
legged cycling at different intensities; MSNA decreased at 
a light intensity (20% VO2peak) relative to that at rest and 
returned to the resting level at mild intensity (40% VO2peak). 
These results were consistent with those obtained during 
one-legged cycling in their previous study [91]. This result 
indicates an inhibition of sympathetic vasomotor outflow 

during leg cycling at light and mild intensities. Above mod-
erate intensity, MSNA during two-legged exercise gradually 
rose in proportion to the increase in workload [30]. This 
interesting phenomenon confirmed later studies that utilized 
one-legged [27, 28] and two-legged cycling [29, 35, 61, 74, 
75, 92, 93]. The mechanism of the inhibition of MSNA dur-
ing dynamic leg exercise at light and mild intensity is due 
to loading of the cardiopulmonary baroreceptors, which 
is induced by a muscle pump-induced increase in venous 
return and central blood volume [2, 25, 55, 59, 60]. The 
above-mentioned studies recorded MSNA less than 7 min 
at each intensity, and the changes in MSNA were strongly 
influenced by exercise duration. Ray et al. [26] reported 
changes in MSNA during prolonged dynamic exercise. 
The subjects performed dynamic one-legged knee exten-
sion exercise at 30 watts in an upright posture for 40 min. 
MSNA decreased during exercise during the first 10 min 
and returned to resting levels by 20 min and remained by 
40 min (heart rate [HR] = 110 beats/min at 40 min) (Fig. 5). 
Moreover, Saito et  al. [31] revealed changes in MSNA 
during two-legged cycling at 40% VO2peak for 30 min in a 
semirecumbent position; MSNA decreased during the first 
10 min of cycling and then gradually increased above base-
line by 30 min (HR = 113 beats/min at 30 min) (Fig. 5). The 
gradual increase in MSNA during prolonged leg cycling at 
mild intensity could be related to cardiovascular drift. Car-
diovascular drift is defined as a continuous time-dependent 
change in some cardiovascular variables after ~ 10 min of 
prolonged moderate-intensity exercise [94–96]. General 
responses include reductions in stroke volume and arterial 
blood pressure and a parallel increase in HR, which are due 
to progressive increases in cutaneous blood flow and cuta-
neous vasodilation, as the body temperature rises. Thus, it 
is likely that a reduction of arterial blood pressure elicits 
an increase in MSNA during prolonged two-legged cycling 
[94]. In addition, central command and/or exercise pressor 
reflex may also contribute to a gradual increase in MSNA 
during prolonged exercise. 

Environment

Heat stress induces increases in MSNA with raises in body 
temperature. Niimi et al. [97] measured resting MSNA with 
ambient temperatures of 29, 34, and 40 °C in an artificial cli-
mate chamber. They found progressive increases in MSNA 
during heat stress with rises in tympanic temperature. The 
increases in MSNA in response to acute heat stress could 
cause the redistribution of the circulatory blood flow from 
the muscles to the skin. Recently, Cui et al. [98] examined 
whether neural and cardiovascular response to stimulation 
of muscle metaboreceptors and mechanoreceptors are mod-
ified if body temperature is elevated before exercise. The 
magnitude increase in MSNA during handgrip exercise and 
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post-exercise ischemia did not alter under whole body heat 
stress. However, MSNA response to exercise depends on 
the duration and intensity of the activity. Even if under nor-
mothermic conditions (21–25 °C), body temperature rises 
when dynamic leg cycling is prolonged, eliciting progressive 
increases in MSNA [31]. Thus, an increase in MSNA dur-
ing whole-body exercise may potentiate in hot environment.

Sympathetic vasomotor outflow regulating arterial blood 
pressure changes with exposure to a cold environment. A 
representative maneuver is the cold pressure test whereby 
one hand is immersed in cold water for several minutes [99], 
and immersion evokes an increase in MSNA [100]. Fagius 

et al. [101] examined the effect of whole-body exposure to 
a cold environment (22.7–10.5 °C) on MSNA at rest, and a 
significant increase in MSNA appeared at a low environmen-
tal temperature, with simultaneous increase in arterial blood 
pressure. The increase in MSNA may play a role in body 
temperature regulation by preserving heat within the cen-
tral core [101]. To our knowledge, little is known about the 
possible modulatory effects of cold environment on MSNA 
during exercise in humans. Further investigations are needed 
to clarify the MSNA responses during whole-body exercise 
in hot and cold environments.

Hypoxia produces a significant increase in sympathetic 
tone, to redistribute the blood to supply oxygen to vital 
organs. It is well known that acute hypoxia at rest induces 
an increase in MSNA in humans [102–104], and the magni-
tude of the MSNA response to brief hypoxia depends on the 
level and duration of hypoxic exposure. In healthy humans, a 
significant increase in MSNA appears when arterial oxygen 
saturation (SaO2) levels are below 80% [105] (FIO2 is below 
0.125 or the altitude is above 4000 m), although there are 
wide individual differences. There are a lot of situations in 
which people perform exercise under hypoxic conditions, 
e.g., at high altitude or with pathophysiological conditions. 
Seals et al. [106] found a significant increase in MSNA dur-
ing rhythmic handgrip exercise in hypoxia (FIO2 = 0.10). 
The magnitude of the increase in MSNA during hypoxic 
exercise was greater than the sum of the separate MSNA 
responses to the same exercise in normoxia and at resting 
level in hypoxia, suggesting an interaction between hypoxia 
and exercise effects. However, when rhythmic exercise 
was performed with blood flow occlusion, the extent of 
the MSNA response in normoxia did not differ from that 
in hypoxia [6, 106]. The latter results are consistent with 

Fig. 4   Changes in MSNA 
during dynamic exercise in the 
lower limb (two-legged or one-
legged cycling). Exercise dura-
tion is within 6 min. Percent 
changes in MSNA from base-
line were calculated by MSNA 
data (bursts/min) in published 
articles. a [27, 30, 31, 35, 61, 
74, 75, 79, 93], b [51, 91]
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those by Saito et al. [107] who showed that the magnitude of 
the MSNA response to static exercise was not altered under 
hypoxic conditions relative to normoxic conditions. These 
data indicate that the mechanism for the potentiation of the 
response to dynamic exercise with small muscle mass under 
hypoxic conditions originates in the contracting muscle [6, 
106]. It would be interesting to evaluate the MSNA during 
dynamic leg exercise under hypoxic conditions. We [33] 
attempted to record MSNA during mild and moderate two-
legged cycling under normoxic (FIO2 = 0.209) and hypoxic 
conditions (FIO2 = 0.127). Consequently, MSNA increased 
at 40% VO2peak exercise in hypoxia, but not in normoxia. 
These results suggest that acute hypoxia potentiates the 
MSNA response during dynamic exercise with large mus-
cle mass and that hypoxia-induced heightened sympathetic 
nerve activity during dynamic leg exercise attenuates the 
cardiopulmonary baroreflex control of sympathetic vasomo-
tor outflow.

Relationship between MSNA and plasma 
norepinephrine concentrations

Changes in sympathetic nerve activity during exercise have 
been estimated from alterations in plasma norepineph-
rine concentrations [108–111]. A significant relationship 
between plasma norepinephrine concentration and MSNA 
during arm cycling and static handgrip exercise were 
reported under normoxic conditions [22, 112], although the 
relative (%) increase in above baseline levels was larger in 
MSNA than in plasma norepinephrine concentrations. How-
ever, the changes in plasma norepinephrine concentrations 
during dynamic leg cycling at light and mild exercise dif-
fered from that in MSNA [33], suggesting that plasma nor-
epinephrine concentrations during hypoxic exercise could 
be an imprecise and even misleading index of sympathetic 
nerve activity [103, 113, 114]. This reason may be attributed 
to increased norepinephrine concentration reuptake [115] 
and the inhibited neuronal release of norepinephrine during 
acute hypoxemia [103].

Conclusions

In this review, we provide an updated comprehensive over-
view on the MSNA response to exercise. Several groups 
have revealed changes in MSNA during large-muscle, 
dynamic leg exercise, e.g., two-legged cycling. MSNA 
decreases or is unchanged during two-legged cycling at light 
or mild intensity, suggesting the inhibition of sympathetic 
vasomotor outflow. This phenomenon is due to a muscle 
pump-induced increase in venous return and central blood 
volume, which loads cardiopulmonary baroreceptors. It is 
clear that the cardiopulmonary baroreflex plays a significant 

role in the regulation of sympathetic vasomotor outflow dur-
ing dynamic exercise at light or mild intensity. During higher 
intensity dynamic exercise, it is plausible that the exercise 
pressor reflex from the active limb muscle in conjunction 
with the respiratory muscle-induced metaboreflex domi-
nates to regulate sympathetic vasomotor outflow. Addition-
ally, during high-intensity two-leg cycling, the respiratory 
muscle metaboreflex contributes to regulate sympathetic 
vasomotor outflow. Future studies are necessary to clarify 
1) the interactions between central command, the exercise 
pressor reflex, the arterial baroreflex, the cardiopulmonary 
baroreflex, and the respiratory muscle metaboreflex, and 2) 
the MSNA responses during whole-body exercise in hot and 
cold environments or hypoxia.
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