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Abstract
The effects of a combination of the antioxidant astaxanthin (AX) and electrical stimulation (ES) on muscle mass and mito-
chondrial oxidative capacity were investigated in the soleus muscle of hindlimb unloaded rats. Five groups of male Sprague-
Dawley rats were used; control, 1-week hindlimb unloading (HU), HU + AX, HU + ES, and HU + AX + ES. Respective rats 
in the AX groups received 50-mg/kg AX twice daily during HU. Calf muscles of rats in the ES groups were electrically 
stimulated for 240 s/day during HU. One-week HU decreased muscle mass along with decreased FoxO3a phosphoryla-
tion and increased ubiquitinated proteins expressions, decreased oxidative enzymatic activity accompanied with decline in 
PGC-1α protein expression, and increased reactive oxygen species production. However, the combination treatment could 
synergistically attenuate/suppress all HU-related changes, suggesting protective effects on muscle atrophy and decreased 
muscle oxidative capacity due to chronic neuromuscular inactivity.
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Introduction

Chronic neuromuscular inactivity induces quantitative 
and qualitative changes in skeletal muscles. Muscle disuse 
results in morphological and functional alterations such as 
muscle atrophy [1], slow-to-fast fiber switching [2, 3], cap-
illary regression [4–6], and mitochondrial dysfunction [7] 
within the muscles, particularly in muscles predominantly 
comprising slow oxidative fibers such as the soleus muscle. 

All of these changes in the unloaded muscles impair the 
contractile force [8] and oxidative capacity [2], resulting 
in muscle weakness and exercise intolerance. Therefore, 
therapeutic strategies targeting both quantitative and quali-
tative alterations are required to treat disuse-induced muscle 
fragility.

Oxidative stress results from the muscle disuse includ-
ing hindlimb unloading (HU) [9, 10]. Reportedly, disuse-
induced activation of oxidative stress signaling is associated 
with the progression of muscle fragility resulting from con-
ditions such as proteolysis [11], cell apoptosis [12], capil-
lary regression [6], and decreased oxidative capacity [13]. 
Thus, various strategies such as antioxidant supplementation 
have been formulated for treating oxidative stress. Emerging 
studies suggest that providing antioxidant supplementation 
during HU counteracts qualitative alterations such as fiber-
type transition and reduced mitochondrial activity [5, 14, 
15]. However, the positive effect of antioxidant treatment on 
muscle fiber size is still controversial. Some studies [16–18] 
showed its efficacy in preventing muscle atrophy whereas 
others [14, 15, 19–21] failed to demonstrate similar results. 
These inconsistent findings necessitate the investigation 
of the effect of antioxidant treatment along with another 
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countermeasure to effectively prevent muscle atrophy due 
to muscle disuse.

Electrical stimulation (ES) is a therapeutic method 
that induces contractile activity in skeletal muscles with-
out voluntary exercise. In addition, it is a well-established 
method for treating muscle atrophy due to unloading [22, 
23]. Reportedly, ES during HU can attenuate muscle mass 
and fiber size reduction by counteracting disuse-induced 
activation of proteolytic signaling [24]. Although numer-
ous studies report the efficacy of ES for preventing muscle 
atrophy [22–26], little is known about its effects on oxida-
tive capacity, such as mitochondrial enzymatic activity, in 
the atrophying muscle. A successful prevention of muscle 
atrophy requires the application of ES with high-intensity 
training such as resistance training [22–26]. Conversely, for 
restoring muscle oxidative capacity, low-intensity and long-
duration muscle contractile activity such as endurance train-
ing is classically recommended [27–29]. Therefore, resist-
ance training with ES that targets muscle atrophy alone may 
minimally affect the muscle mitochondrial oxidative activity.

Considering these reported findings, we hypothesized 
that a combination therapy involving antioxidant astaxanthin 
(AX) and ES may be able to positively influence the oxida-
tive capacity and prevent muscle atrophy in an unloaded 
muscle. Therefore, we investigated the effect of this combi-
nation treatment on muscle fiber size and oxidative capacity 
in the soleus muscle during HU in rats.

Materials and methods

Animals and protocol

Ten-week-old male Sprague-Dawley (SD) rats (Japan SLC, 
Shizuoka, Japan) weighing 400–444 g were used. The rats 
were randomly divided into five groups as follows: control 
(Con; n = 6), HU (n = 6), HU + AX (n = 6), HU + ES (n = 6), 
HU + AX + ES (n = 6) groups. All rats were housed at 
22 °C ± 2 °C with a 12 h light/dark cycle and were provided 
standard rodent chow and water ad libitum. This study was 
approved by the Institutional Animal Care and Use Com-
mittee and was performed according to the Kobe Univer-
sity Animal Experimentation Regulations. All experiments 
were conducted in accordance with the National Institute of 
Health Guide for the Care and Use of Laboratory Animals 
(National Research Council, 1996).

HU

Rats in the HU, HU + AX, HU + ES, and HU + AX + ES 
groups subjected to HU for a week via tail suspension as 
previously described [1, 30]. Briefly, by avoiding any weight 
on the hindlimbs, these rats were suspended by the tail to 

prevent hindlimb contact with the floor or side of the cage. 
Rats were allowed to move freely in the cage using their 
forearms and access food and water ad libitum.

AX supplementation

Rats in the HU + AX and HU + AX + ES groups were orally 
administered AX oil (Fuji Chemical Industry Co. Ltd, Toy-
ama, Japan) using a feeding needle twice daily (50 mg/kg) 
with a 9-h interval between two doses (total of 100 mg/kg/
day) during 1 week of unloading. Rats in the Con, HU, and 
HU + ES groups were similarly administered oil without AX 
[15, 20].

ES protocol

Rats in the HU + ES and HU + AX + ES groups were sub-
jected to ES twice daily during 1 week of unloading. These 
animals were anesthetized before ES with pentobarbi-
tal sodium (40 mg/kg body weight, intraperitoneally). To 
exclude the influences of repeated periods of anesthesia and 
changing posture, the rats in the Con, HU, and HU + AX 
groups were subjected to an anesthetic and postural chang-
ing protocol identical to those in the electrical stimulated 
groups. For transcutaneously treating the soleus muscle, an 
electrical stimulator (ES-360, Ito, Tokyo, Japan) was used 
as previously described [22]. One surface electrode (1-cm 
diameter) was mounted on the medial and lateral calf mus-
cles each. ES was achieved through a sinusoidally modulated 
waveform, and the current was delivered at a frequency of 
100 Hz. Stimulation at this frequency reportedly results in 
a forceful contraction of the soleus muscle [22]. Current 
intensity was set daily to generate a supramaximal contrac-
tion. One burst of ES was performed every 3 s (time on: 
1 s; time off 2 s) for 1 min, followed by 5 min of rest. Six 
consecutive stimulation sessions were conducted twice daily, 
resulting in a total daily ES time of 240 s, which is reported 
to be partly effective for attenuating disuse-induced soleus 
atrophy [22, 24].

Sample extraction

At the end of the 1-week experimental period, the animals 
were euthanized by administering an overdose of sodium 
pentobarbital. The soleus muscle was removed, weighed, 
and immediately frozen in an isopentane/dry ice bath and 
stored at − 80 °C until subsequent histological and biochemi-
cal analyses.

Histochemical analysis

Soleus muscles were sliced into 12-μm thick transverse 
sections using a cryostat microtome (CM-1510S, Leica 
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Microsystems, Mannheim, Germany). Sections were stained 
using succinate dehydrogenase (SDH) to assess the fiber 
cross-sectional area (FCSA) and skeletal muscle oxida-
tive capacity as previously described [2, 15, 31]. Briefly, 
the sections were incubated in 0.1-M phosphate buffer 
(pH 7.6) containing 0.9-mM NaN3, 0.9-mM 1-methoxy-
phenazine methylsulfate, 1.5-mM nitroblue tetrazolium, 
5.6-mM EDTA-disodium salt, and 48-mM succinate diso-
dium salt for 45 min at 37 °C. Densitometric analysis was 
performed to determine SDH activity in each group. Mean 
FCSA and SDH activity were determined for 400–500 fib-
ers per muscle using microscopic images of SDH staining. 
The other sections were stained with alkaline phosphatase 
(AP) as previously described to observe the capillarity of 
the soleus muscles [15]. Briefly, the sections were incubated 
in 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazo-
lium for 45 min at 37 °C and fixed with 4% paraformalde-
hyde. The capillary-to-fiber (C/F) ratio was determined by 
counting capillaries and myofibers on each cryosection using 
the microscopic images. For the measurement of C/F ratio, 
more than 240 muscle fibers were measured per muscle. 
All measurements were performed using the NIH ImageJ 
software program (NIH, Bethesda, MD, USA).

Dihydroethidium staining

Oxidative fluorescent dihydroethidium (DHE) probe was 
used for measuring reactive oxygen species (ROS) pro-
duction within the soleus muscle as previously described 
[15, 20, 32–34]. Briefly, soleus muscles were sliced into 
10-μm thick transverse sections using a cryostat microtome. 
Subsequently, the sections were air-dried, incubated with 
5-μM DHE probe (Wako Pure Chemicals, Osaka, Japan) for 
30 min at 37 °C in a dark box, rinsed with 37 °C PBS and 
then mounted with VECTASHIELD mounting medium with 
DAPI (H-1200, Vector Laboratories, Burlingame, CA). DHE 
emits red fluorescence when oxidized to ethidium bromide, 
which intercalates within the nuclear DNA. Stained slides 
were quickly imaged with fluorescence microscope (BZ-
X710, Keyence, Osaka, Japan) keeping the same exposure 
for every section with appropriate filters for DHE (excitation 
490; emission 590 nm) and DAPI [15, 20, 32–34]. Densito-
metric analysis for DHE and DAPI staining was performed 
with the BZ-X Analyzer (BZ-H3C, Keyence, Japan) using 
4–6 images per muscle. DHE fluorescence intensity was 
normalized as fold of the corresponding DAPI fluorescence 
intensity [35].

Western blotting

A portion (approximately 20 mg) of each soleus muscle was 
homogenized in RIPA lysis buffer containing 1% (v/v) phos-
phatase inhibitor cocktail and 1% (v/v) protease inhibitor 

cocktail to determinate the SOD-1, PGC-1α, and FoxO3a 
protein expressions. Additionally, another portion (approxi-
mately 10 mg) of each soleus muscle was homogenized in 
5-M urea, 2-M thiourea, 10-mM sodium diphosphate dec-
ahydrate, and 0.1% (v/v) 2-mercaptoethanol containing 1% 
protease inhibitor cocktail to determine ubiquitinated pro-
teins expression. Total protein concentration in supernatants 
was determined using the Bradford analysis using the pro-
tein assay kit (Bio-Rad Laboratories, Hercules, CA, USA). 
Briefly, proteins were loaded and separated using 12.5% 
(for SOD-1, 20 µg/lane), 10% (for ubiquitinated proteins, 
40 µg/lane), and 7.5% (for PGC-1α and FoxO3a, 40 µg/
lane) SDS–polyacrylamide gels. The proteins were blotted 
on polyvinylidene difluoride membranes and blocked for 1 h 
with Tris-buffered saline containing Tween 20 (TBST) in 3% 
bovine serum albumin. The membranes were incubated with 
primary antibodies against goat anti-SOD-1 (diluted 1:200 
in TBST; Santa Cruz Biotechnology), mouse anti-polyubiq-
uitin protein conjugates (diluted 1:100 in TBST; Enzo Life 
Sciences), rabbit anti-PGC-1α (1:200 in TBST; Santa Cruz 
Biotechnology), rabbit anti-phosphorylated Ser253-FoxO3a 
(diluted 1:1000 in TBST; Cell Signaling Technology), and 
rabbit anti-FoxO3a (diluted 1:1000 in TBST; Cell Signal-
ing Technology) overnight at 4 °C and then incubated in a 
solution with either anti-rabbit, -mouse, or -goat IgG con-
jugated to horseradish peroxidase (1:1000 in TBST) for 1 h. 
The proteins were detected using EzWestLumi One (ATTO, 
Tokyo, Japan). Finally, images were captured using the 
LAS-1000 imaging system (Fujifilm, Tokyo, Japan) with 
a chemiluminescent image analyzer, and the proteins were 
quantified using the Multi-Gauge Image Analysis Software 
program (Fujifilm) against the relative concentration of 
β-actin (diluted 1:1000; Santa Cruz Biotechnology) as an 
internal control.

Statistical analysis

All values were expressed as mean and standard error of 
mean. Significant differences between groups were deter-
mined using one-way ANOVA followed by the Tukey’s 
post hoc test to determine specific differences between 
groups. Values of p < 0.05 were considered to be statisti-
cally significant.

Results

Body weight and soleus muscle weight

Body weights in all HU groups were significantly lower than 
that in the Con group (Table 1). The absolute soleus mus-
cle mass in all HU groups was significantly lower than that 
in the Con group. Additionally, the absolute soleus mass in 
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the HU + AX + ES group was significantly higher than that 
in the HU group. The relative soleus muscle mass in all HU 
groups was significantly lower than that in the Con group. 
Furthermore, the relative soleus mass in the HU + ES and 
HU + AX + ES groups was significantly higher than that in 
the HU group (Table 1).

FCSA

FCSAs were measured using the microscopic images of speci-
mens following SDH staining in each group. FCSA in all HU 
groups was significantly lower than that in the Con group. In 
addition, FCSA in the HU + AX + ES group was significantly 
higher than that in the HU group (Fig. 1).

Ratio of phosphorylated to total FoxO3a protein 
expression

The ratio of phosphorylated to total FoxO3a protein 
expression in the HU group was significantly lower 
than that in the Con group. This ratio in HU + ES and 
HU + AX + ES groups was significantly higher than that 
in HU and HU + AX groups and was similar to that in the 
Con group (Fig. 2a).

Ubiquitinated proteins expression

Ubiquitinated proteins were measured as a marker of the 
activation of the ubiquitin–proteasome pathway that plays a 
key role in protein degradation due to muscle disuse such as 
HU [11]. Ubiquitinated proteins expression level in the HU 
group was significantly higher than that in the Con group; 
moreover, this level in the HU + AX group was significantly 
higher than that in the Con group but was significantly lower 
than that in the HU group. Ubiquitinated proteins expres-
sion level in the HU + ES and HU + AX + ES groups were 
significantly lower than that in the HU and HU + AX groups 
(Fig. 2b).

SDH activity

The representative images of SDH staining in each group 
are shown in Fig. 3a–e. SDH activity in the HU + AX and 
HU + AX + ES groups were significantly higher than those in 
the Con, HU, and HU + ES groups (Fig. 3f). Integrated SDH 
activity, reflecting the total volume of mitochondria [36], 
was significantly lower in the HU and HU + ES groups than 
in the Con group. Integrated SDH activity in the HU + AX 
and HU + AX + ES groups was significantly higher than that 
in the HU group, whereas integrated SDH activity in the 
HU + AX + ES group was significantly higher than that in 
the HU + ES group (Fig. 3g).

Table 1   Body weight and 
soleus muscle mass

Values indicate mean ± SEM
Con control group, HU hindlimb unloading group, HU + AX hindlimb unloading plus astaxanthin treatment 
group, HU + ES hindlimb unloading plus electrical stimulation group, HU + AX + ES hindlimb unloading 
plus astaxanthin treatment with electrical stimulation group, SEM standard error of mean
The symbols * and † significant differences from the Con and HU groups, respectively, at p < 0.05

Initial body 
weight (g)

Final body 
weight (g)

Absolute soleus mus-
cle mass (mg)

Relative soleus muscle 
mass (mg/100 g BW)

Con 427 ± 7 459 ± 7 193 ± 8 42.1 ± 1.5
HU 414 ± 3 404 ± 3* 120 ± 4* 29.6 ± 1.2*
HU + AX 420 ± 4 404 ± 5* 132 ± 3* 32.7 ± 0.5*
HU + ES 424 ± 2 382 ± 7* 139 ± 4* 36.4 ± 1.1*†

HU + AX + ES 419 ± 4 385 ± 4* 140 ± 3*† 36.4 ± 0.7*†

Fig. 1   Fiber cross-sectional area in each group measured from the 
images of SDH staining. Values indicate mean ± SEM. The sym-
bols * and † significant differences from the Con and HU groups, 
respectively, at p < 0.05. Con control group, HU hindlimb unload-
ing group, HU + AX hindlimb unloading plus astaxanthin treatment 
group, HU + ES hindlimb unloading plus electrical stimulation group, 
HU + AX + ES hindlimb unloading plus astaxanthin treatment with 
electrical stimulation group, SEM standard error of mean
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Capillary‑to‑fiber ratio

The representative images of AP staining in each group 
are shown in Fig. 4a–e. C/F ratio in the HU group was sig-
nificantly lower than that in the Con group. This level was 
significantly higher in the AX group than that in the HU 
group. Furthermore, C/F ratio in the HU + AX + ES group 
was significantly higher than that in the HU and HU + ES 
groups (Fig. 4f).

PGC‑1α protein expression

PGC-1α protein expression level in the HU group was 
significantly lower than that in the Con group. This level 
was significantly higher in the AX group than that in the 
HU group. Furthermore, PGC-1α protein expression in the 
HU + AX + ES group was significantly higher than that in 
the HU and HU + ES groups (Fig. 5).

ROS production and SOD‑1 protein expression

We measured DHE fluorescence intensity and SOD-1 pro-
tein expression as an indicator of oxidative stress as previ-
ously described [15, 18, 20, 21, 34]. ROS production was 
assessed by measuring the DHE fluorescence intensity in 
the nucleus. DHE fluorescence intensity was normalized 
as fold of the corresponding DAPI fluorescence intensity. 
From the representative images of muscle cross sections 
stained with DHE, DHE fluorescence intensities of the HU 
and HU + ES groups appeared to be higher than those of the 
other groups (Fig. 6a). Indeed, DHE fluorescence intensities 
of the HU and HU + ES groups were significantly higher 
than those of the Con, HU + AX, and HU + AX + ES groups. 
In addition, DHE fluorescence intensity in the HU + AX and 
HU + AX + ES groups was similar to that in the Con group 
(Fig. 6b). The SOD-1 protein expression level in the HU 
group was significantly higher than that in the Con group. 
However, this level in the HU + AX and HU + AX + ES 
groups was significantly lower than that in the HU and 
HU + ES groups and was similar to that in the Con group. 
These results indicated a weaker effect of ES on oxidative 
stress caused by HU (Fig. 6c).

Discussion

The novel findings of the present study are as follows: (1) 
ES has a minimal impact on oxidative stress and decreased 
muscle oxidative capacity caused by HU; (2) the combi-
nation of AX supplementation and ES was effective for 
preventing both atrophy and decreased oxidative capacity 
within the unloaded soleus muscle. These results suggest 
that the combination therapy involving ES and AX is an 

Fig. 2   Phosphorylated/total FoxO3a protein expression (a) and 
ubiquitinated proteins expression (b) in each group. Values indi-
cate mean ± SEM. The symbols *, †, ‡, and §significant differences 
from the Con, HU, HU + AX, and HU + ES groups, respectively, at 
p < 0.05. Con control group, HU hindlimb unloading group, HU + AX 
hindlimb unloading plus astaxanthin treatment group, HU + ES 
hindlimb unloading plus electrical stimulation group, HU + AX + ES 
hindlimb unloading plus astaxanthin treatment with electrical stimu-
lation group, SEM standard error of mean
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effective countermeasure for reversing both muscle atrophy 
and decreased oxidative capacity caused by muscle disuse.

In the present study, HU resulted in reduced muscle mass, 
FCSA, and phosphorylated FoxO3a protein expression 
and elevated ubiquitinated proteins expression within the 
unloaded soleus muscle. A chronic decrease in muscle activ-
ity induces muscle atrophy in oxidative slow-twitch muscles 
such as the soleus muscle [8, 15, 20, 34]. HU, which is a 
well-established in vivo model for hypokinesia and hypo-
dynamia, causes decreased muscle mass and FCSA within 
the unloaded soleus muscle. It has been reported that protein 
degradation during muscle disuse is associated with the acti-
vation of the ubiquitin–proteasome pathway [11], resulting 
in increased ubiquitinated proteins expression. In addition, 
the activation (decreased phosphorylation) of FoxO3a, a 
key regulator of atrogene transcription, is involved in the 

ubiquitin–proteasome pathway [37]. Consistent with previ-
ous studies, our study demonstrated that HU induces mus-
cle atrophy within the unloaded soleus muscle accompanied 
with the activation of the ubiquitin–proteasome pathway. 
Moreover, decreased oxidative capacity occurs in atrophied 
muscles and results in a decreased activity of mitochon-
drial rate-limiting enzymes involved in the TCA cycle [2]. 
Disuse-induced changes in muscle oxidative capacity result 
from the downregulation of PGC-1α [2, 7], a key factor in 
the biogenesis and maintenance of mitochondria [38–40]. 
Decreased muscle oxidative capacity results in excessive 
ROS production, leading to oxidative stress [41]. Report-
edly, oxidative stress damages mitochondria [42], suggesting 
that oxidative stress in disused muscle may result in further 
reduction of oxidative capacity. In addition, PGC-1α plays a 
role in the mitochondrial antioxidant defense system of the 

Fig. 3   Representative images of SDH staining of the soleus muscle 
in Con (a), HU (b), HU + AX (c), HU + ES (d), and HU + AX + ES 
(e) groups. SDH activity (f) and integrated SDH activity (g) in each 
group. Scale bar represents 100  μm. Values indicate mean ± SEM. 
The symbols *, †, ‡, and §significant differences from the Con, HU, 
HU + AX, and HU + ES groups, respectively, at p < 0.05. Con control 

group, HU hindlimb unloading group, HU + AX hindlimb unloading 
plus astaxanthin treatment group, HU + ES hindlimb unloading plus 
electrical stimulation group, HU + AX + ES hindlimb unloading plus 
astaxanthin treatment with electrical stimulation group, SEM standard 
error of mean
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vascular endothelial cells; therefore, the downregulation of 
PGC-1α under oxidative stress conditions results in further 
decline in mitochondrial function [43]. In the present study, 
HU reduced the activity of SDH, a mitochondrial rate-lim-
iting enzyme in the TCA cycle, and decreased PGC-1α pro-
tein expression; however, it also increased ROS production 
as observed in DHE staining and increased SOD-1 protein 
expression within the unloaded soleus muscle. Our find-
ings suggest an association between HU-induced decreased 
oxidative capacity and PGC-1α downregulation, leading to 
oxidative stress in the unloaded soleus muscle.

AX exhibits a powerful antioxidant effect and prevents 
oxidative stress caused by disuse in the soleus muscle of 
rats [20, 21]. In addition, our previous study revealed that 
AX suppresses disuse-associated reduction in the activity of 
mitochondrial rate-limiting enzymes such as SDH by restor-
ing PGC-1α protein expression [15]. Consistent with the 

aforementioned previous findings, the present study dem-
onstrated that AX treatment alone during HU had a strong 
positive effect on SDH activity and PGC-1α protein expres-
sion, which appear to enhance oxidative capacity within the 
soleus muscle. Furthermore, as support for this observation, 
AX treatment during HU maintained muscle capillariza-
tion, which has a close relationship with muscle oxidative 
capacity [44], as expressed in C/F ratio in the AX-treated 
soleus muscle, and these observations are correspond to our 
previous reports [15, 20]. In contrast, AX treatment alone 
minimally affected muscle atrophy in the soleus muscle 
mass and FCSA in the present study; this finding is also 
consistent with that of previous studies [15, 20, 21]. How-
ever, ubiquitinated proteins expression was significantly 
lower in rats in the HU + AX groups than that in those in 
the HU group. In addition, FoxO3a phosphorylation in the 
HU + AX group was maintained at the same level as that in 

Fig. 4   Representative images of AP staining of the soleus muscle 
in Con (a), HU (b), HU + AX (c), HU + ES (d), and HU + AX + ES 
(e) groups. C/F ratio (f) in each group. Scale bar represents 100 μm. 
Values indicate mean ± SEM. The symbols *, †, ‡, and §significant 
differences from the Con, HU, HU + AX, and HU + ES groups, 

respectively, at p < 0.05. Con control group, HU hindlimb unload-
ing group, HU + AX hindlimb unloading plus astaxanthin treatment 
group, HU + ES hindlimb unloading plus electrical stimulation group, 
HU + AX + ES hindlimb unloading plus astaxanthin treatment with 
electrical stimulation group, SEM standard error of mean
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the Con group. Reportedly, PGC-1α inhibits FoxO3a sign-
aling, thus suppressing atrophy-specific gene transcription 
[45]. Thus, the observed reduction of ubiquitinated proteins 
expression may be associated with the suppressive effect 
of PGC-1α on FoxO3a signaling. Furthermore, decreased 
muscle oxidative capacity results in AMPK activation [46], 
which upregulates proteolysis via the activation of FoxO3a 
and resultant ubiquitin–proteasome pathway [41, 46, 47]. 
In contrast, a previous study using PGC-1α transgenic mice 
demonstrates that enhancing oxidative capacity in skeletal 
muscle during HU prevents the increased atrogene expres-
sion and thus attenuates muscle atrophy [7]. These results 
suggest that mitochondrial oxidative capacity modulates pro-
teolysis during HU. Therefore, our findings suggest that AX 
treatment attenuates the activation of ubiquitin proteasome 
pathway during HU via its positive effect on mitochondrial 
oxidative capacity.

ES attenuates muscle atrophy caused by HU [22–26]. 
The underlying mechanism is partially associated with the 
suppression of the ubiquitin–proteasome pathway through 
mechanical stress evoked by ES. It was previously reported 
that ES during HU results in increased FoxO3a phosphoryla-
tion via mechanical stress-induced activation of Akt signal-
ing, and thus decreased ubiquitinated proteins expression 
within the soleus muscles of HU rats [24]. Consistent with 
this finding, our results demonstrated the attenuating effect 
of ES on ubiquitin–proteasome pathway. Conversely, our 
findings showed that ES failed to attenuate HU-induced 
increase in DHE intensity, reflecting little impact of ES 

on HU-induced oxidative stress. Furthermore, ES did not 
restore integrated SDH activity, an indicator for mitochon-
drial total volume, reflecting the minimal effect of ES on 
decreased oxidative capacity. Increased ROS production 
has been reported to reduce muscle oxidative capacity [42], 
which may be associated with our findings. In all, our find-
ings suggest that ES attenuates muscle atrophy by decreas-
ing protein ubiquitination but does not suppress oxidative 
stress or HU-induced decline in muscle oxidative capac-
ity. Although ES fully suppressed upregulation of ubiqui-
tin–proteasome pathway, ES treatment had a minimal effect 
on FCSA in the HU + ES group in the present study. In the 
previous study, it was demonstrated that ES treatment could 
attenuate HU-induced decrease in FCSA via modulating 
ubiquitin–proteasome pathway [22–26]. The difference in 
the effect of ES on FCSA may be related to the different 
duration of HU exposure, i.e. 2 weeks of HU in the previous 
studies [22–26] versus a week of HU in the present study. It 
has been reported that in addition to ubiquitin–proteasome 
pathway-related proteolysis, myonuclear apoptosis also asso-
ciates with unloading-induced decline in FCSA. HU-induced 
protein degradation reaches its peak at about 2 weeks after 
initiating unloading [11, 48, 49]. Conversely, it has been 
reported that in the early stages of HU, increased apoptosis-
related protein and gene expression [50, 51] and myonuclear 
apoptosis [52] were observed within the unloaded muscle. 
Numerous studies suggested that oxidative stress has close 
relationship with myonuclear apoptosis [10, 18, 41]. In 
the present study, ES treatment alone exerted no suppres-
sive effect on oxidative stress within the ES-treated soleus 
muscle. Therefore, it was probable that ES treatment was 
insufficient to normalize myonuclear apoptosis in the early 
stages of HU, which might associate with a minimal effect 
on FCSA in the HU + ES group despite the suppression of 
protein ubiquitination. Nonetheless, we did not investigate 
myonuclear apoptosis within the muscles in the present 
study, further studies will be required to clarify the specific 
effects of ES on myonucleus within unloaded muscle.

It has been reported that HU is associated with muscle 
atrophy [11] and decreased oxidative capacity [7] and the 
mechanisms underlying these changes are different. Con-
sistent with these reports, we showed that antioxidant AX 
treatment had a positive effect on oxidative stress while 
it failed to attenuate increased protein ubiquitination due 
to HU, while ES treatment exhibited the opposite trend. 
These findings suggest that intervention with AX or ES 
alone is insufficient for reversing the alterations caused 
by HU such as muscle atrophy, decreased oxidative capac-
ity and capillary regression. However, the combination of 
AX and ES treatments significantly attenuated the HU-
induced decline in FCSA. With the combinational treat-
ment, both protein ubiquitination and oxidative stress were 
significantly suppressed within the unloaded soleus muscle 

Fig. 5   PGC-1α protein expression level in each group. Values indi-
cate mean ± SEM. The symbols *, †, ‡, and §significant differences 
from the Con, HU, HU + AX, and HU + ES groups, respectively, at 
p < 0.05. Con control group, HU hindlimb unloading group, HU + AX 
hindlimb unloading plus astaxanthin treatment group, HU + ES 
hindlimb unloading plus electrical stimulation group, HU + AX + ES 
hindlimb unloading plus astaxanthin treatment with electrical stimu-
lation group, SEM standard error of mean
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in the present study. It has been reported that oxidative 
stress decreases protein synthesis signaling [9]. Moreo-
ver, oxidative stress associates with apoptotic signaling as 
well. Yoshihara et al. [18] reported that antioxidative AX 
treatment ameliorated HU-related myonuclear apoptosis 
and resultant muscle atrophy. Therefore, there might be 
possibility that AX treatment contributed to optimization 
of protein synthesis signaling activated by ES and attenu-
ation of myonuclear apoptosis due to HU by suppress-
ing oxidative stress in the unloaded muscle, which helped 
to reduce atrophy in the soleus muscle treated with the 
combinational interventions. Although there was almost 
completely prevention of increased oxidative stress and 
ubiquitin proteasome pathway, full recovery of FCSA was 
not obtained by the cotreatment. Because multiple factors 

are involved in muscle atrophy [53, 54], in the future study 
further investigation will be required to clarify the effects 
of the combination of AX and ES treatment on each factor 
causing atrophy. Consequently, we suggest that combina-
tion of AX supplementation and ES could attenuate both 
muscle atrophy and decreased oxidative enzymatic activ-
ity due to HU and restore key regulators such as FoxO3a 
phosphorylation, oxidative stress, and PGC-1α to near or 
above control levels. These results strongly suggest that 
the combination treatment involving AX and ES is effec-
tive for preventing unloading-induced decreased oxidative 
capacity and muscle atrophy, respectively, via different 
pathways. Furthermore, these findings suggest that the 
combination treatment is an effective therapeutic strategy 
for preventing various muscle dysfunctions associated 

Fig. 6   Representative images of dihydroethidium (DHE; red) and 
DAPI (blue) staining and merged images of the soleus muscle in 
each group (a). The graph for DHE fluorescence intensity (b) depicts 
ratio of DHE and corresponding DAPI fluorescence intensity, which 
was measured with BZ-X Analyzer. Protein expression level of 
SOD-1 (c) in each group. Scale bar represents 100 μm. Values indi-
cate mean ± SEM. The symbols *, †, ‡, and §significant differences 

from the Con, HU, HU + AX, and HU + ES groups, respectively, at 
p < 0.05. Con control group, HU hindlimb unloading group, HU + AX 
hindlimb unloading plus astaxanthin treatment group, HU + ES 
hindlimb unloading plus electrical stimulation group, HU + AX + ES 
hindlimb unloading plus astaxanthin treatment with electrical stimu-
lation group, SEM standard error of mean (colour figure online)
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with protein degradation and decreased oxidative capac-
ity including cancer cachexia, diabetes, and denervation.

In conclusion, the current study demonstrates that the 
combination treatment involving ES and AX is effective for 
attenuating both muscle atrophy and oxidative capacity via 
different mechanisms. The findings of this study also suggest 
a potential use for this combination treatment along with 
mechanical loading and nutritional support for preventing 
various muscle dysfunctions caused by muscle disuse.
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