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Abstract

Brazil was one of the countries most affected during the first year of the COVID-19 pan-

demic, in a pre-vaccine era, and mathematical and statistical models were used in decision-

making and public policies to mitigate and suppress SARS-CoV-2 dispersion. In this article,

we intend to overview the modeling for COVID-19 in Brazil, focusing on the first 18 months

of the pandemic. We conducted a scoping review and searched for studies on infectious dis-

ease modeling methods in peer-reviewed journals and gray literature, published between

January 01, 2020, and June 2, 2021, reporting real-world or scenario-based COVID-19

modeling for Brazil. We included 81 studies, most corresponding to published articles pro-

duced in Brazilian institutions. The models were dynamic and deterministic in the majority.

The predominant model type was compartmental, but other models were also found. The

main modeling objectives were to analyze epidemiological scenarios (testing interventions’

effectiveness) and to project short and long-term predictions, while few articles performed

economic impact analysis. Estimations of the R0 and transmission rates or projections

regarding the course of the epidemic figured as major, especially at the beginning of the cri-

sis. However, several other outputs were forecasted, such as the isolation/quarantine effect

on transmission, hospital facilities required, secondary cases caused by infected children,

and the economic effects of the pandemic. This study reveals numerous articles with shared

objectives and similar methods and data sources. We observed a deficiency in addressing

social inequities in the Brazilian context within the utilized models, which may also be
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expected in several low- and middle-income countries with significant social disparities. We

conclude that the models were of great relevance in the pandemic scenario of COVID-19.

Nevertheless, efforts could be better planned and executed with improved institutional orga-

nization, dialogue among research groups, increased interaction between modelers and

epidemiologists, and establishment of a sustainable cooperation network.

Introduction

Mathematical and statistical modeling are essential tools for studying infectious diseases [1, 2].

From significant problems of nosocomial infection and transmission of pathogens between

patients or even hospitals, passing through evaluation of the introduction of new vaccines for

centuries-old diseases, to predictions and describing the dynamic transmission of new epi-

demics and pandemics, such as the HIV emergency, those models have proven it selves valu-

able [3–6].

Models are considered a scientific and transparent way to analyze increasingly complex

issues and are well applied when data gaps are identified. Since the emergence of SARS-CoV-2

in early 2020, international entities and governments have developed and used various models

in public response [7]. Short- and long-term predictions, analysis of epidemiological scenarios,

and evaluation of non-pharmacological intervention measures, for example, were subjects

assessed [8].

In addition, mathematical and statistical models were essential to understanding the princi-

ples of SARS-CoV-2 transmission dynamics and numerically estimating fundamental concep-

tions of the new virus. Data on the first 425 cases in Wuhan, China, were analyzed to

determine epidemiologic characteristics of the novel coronavirus pneumonia [9]. The incuba-

tion period was estimated by fitting a log-normal distribution, while the serial interval was esti-

mated by fitting a gamma distribution. A transmission model derived the epidemic growth

rate and doubling time. Using a different methodology, combining a stochastic model with

real data on cases of COVID-19 between December 2019 and February 2020 from Wuhan and

outside Wuhan, for example, Kucharski et al. simulated how transmission from human to

human varied over time and estimated the basic reproductive number [10]. Many other

authors, using various methodologies, estimated the essential parameters [11–13].

Furthermore, straight at the beginning of the novel coronavirus pandemic, the Imperial

College of London, for example, developed compartmental-based modeling capable of predict-

ing, from publicly available data, the evolution of the number of cases, hospitalizations, and

deaths from the USA and U.K. [14]. This fact was crucial as it made the U.K. government

rethink strategies against SARS-CoV-2. Before the publication of the models, the government

was planning a herd immunity strategy. Forewarned of the overload of the health system and

the predicted excess of deaths, a change to mitigation and viral suppression strategies was car-

ried out [15].

International organizations aiming to expand the reach of mathematical and statistical

modeling and provide information to decision-makers have spearheaded global initiatives. For

example, the COVID-19 International Modeling Consortium (CoMo Consortium) brought

together infectious disease modelers and public health experts from over 40 countries to

develop an age-structured compartmental model to estimate the trajectory of COVID-19

based on different scenarios [16]. A user-friendly platform with a web-based interface has

been created, allowing researchers and policymakers to utilize the tool for real-time impact
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prediction. Another noteworthy initiative is the CMCC (COVID-19 Multi-Model Comparison

Collaboration), a group composed of governments, foundations, and development partners

that support actions for the COVID-19 response, primarily in low- and middle-income coun-

tries (LMICs). The group aimed to study and provide information regarding several models

for COVID-19, their main objectives, capabilities, and limitations [17].

However, as modeling needs to be developed for a specific scenario, we must incorporate

many parameters to mimic reality. The availability and quality of the data can directly affect

the results. Decision-making in public policies also may affect the results. For example, mass

testing public policies or choosing to test only severe cases can also introduce bias when cali-

brating the parameters. The behavior of the local population can likewise significantly affect

the predictions. Thus, it is not always simple to transpose a generic model to a specific sce-

nario. In addition, it is visible that international models, however complex they may be, do not

always represent the reality of a developing country.

Brazil was one of the countries most affected during the first year of the pandemic, in a pre-

vaccine era. As of December 2020, it presented the second-highest absolute number of

COVID-19 cases in the world (7,213,155 confirmed cases) and the second-highest absolute

number of deaths from the disease (186,356 confirmed deaths) [18]. In a country with an enor-

mous territory with continental dimensions and multiple local disparities, including eco-

nomic, social, and demographic differences, modeling could play an essential role in decision-

making and public policies to mitigate and suppress SARS-CoV-2 dispersion.

Although there are a few reviews about mathematical modeling and COVID-19, there is a

lack of reviews on models addressing SARS-CoV-2 pandemic impacts in Brazil. Gnanvi et al.

[19] conducted a global systematic review of the literature from January 01, 2020, to November

30, 2020, to summarize trends in the modeling techniques used for COVID-19. However, of

all 242 papers reviewed, none focused on Brazil, while 18 included Brazil in a general analysis.

Kimani et al. [20] thoroughly review infectious disease modeling for SARS-CoV-2 in Africa,

which is very enriching to understand the mathematical model’s role in guiding local policy.

There are no reviews on Brazil’s mathematical and statistical model approach guiding the

pandemic.

Therefore, we ask: What modeling was harbored for COVID-19 in Brazil? What types of

models were developed? Which parameters were used? What assumptions were made? What

were the questions these models tried to answer? In this article, we intend to overview all the

existing published modeling for COVID-19 in Brazil, focusing on the first 18 months of the

pandemic. In a scenario of the absence of vaccines and known treatments and the possibility

of virus dissemination, we describe the role of mathematical and statistical modeling in guid-

ing public health authorities in Brazil and to what extent this is reflected in the scientific and

gray literature.

Objective

This study aims to review the mathematical and statistical modeling used to evaluate any

aspect of the COVID-19 pandemic in Brazil, with emphasis on the first 18 months (between

January 01, 2020, and June 2, 2021) when no effective drugs or vaccination were available.

Research questions

Research questions were defined to reflect the mapping of modeling works and studies devel-

oped in Brazil during the COVID-19 pandemic and were the following:
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• Which were the studying groups working on COVID-19 modeling during the pandemic in

Brazil?

• What were the models being used, considering their structure, type, main outputs, parame-

ters, and programming methods?

• Which were the data sources used in the modeling process?

Methods

Protocol and registration

This scoping review was developed in five stages that consisted of the (i) definition of the

research question, (ii) elaboration of search strategies, (iii) assessment of study eligibility, (iv)

data extraction, and (v) summary of findings. This methodological framework was proposed

by Levac et al. [21] (and the methodology of the Joanna Briggs Institute (JBI) [22]. The study

report was structured to adhere to the PRISMA extension for scoping reviews (PRISMA-ScR)

[23]. A protocol describing the review methods was developed a priori and made available at

Open Science Framework [24].

Eligibility criteria

To be included in this review, studies needed to present COVID-19 or SARS-CoV-2 modeling

in Brazil, including infectious disease modeling methods. Peer-reviewed journals papers, gray

literature, or database repositories files were included if they were: published between January

01, 2020, and June 2, 2021, written in any language, involved COVID-19 analyses and model-

ing methodology (including analytical decision models, cohort and Markov models, compart-

mental models, and individual agent-based modeling), reporting real-world or scenario-based

COVID-19 modeling, for Brazil. Papers were excluded if they did not fit the study’s conceptual

framework (modeling of non-COVID outcomes) or were not fully available (works not fully

retrieved or poster abstracts). Case reports, case series, guidelines/recommendations, letters/

perspective/editorials/comments pieces, reviews, and descriptive epidemiological publications

were excluded. Studies presenting only mathematical models or software tools but not model-

ing outputs, projections, results, or works using projections only as examples of the models’

application were excluded. Studies modeling vaccine outputs were also excluded. S1 Table

shows all the inclusion and exclusion criteria.

Information sources

In order to identify the potentially relevant studies, search strategies were applied in MED-

LINE (via PubMed) and adjusted for the other databases (Embase and LILACS). Gray litera-

ture (papers published but not peer-reviewed) was searched in ArXiv, Medrxiv, Biorxiv, and

Open Gray. Repositories accessed were Figshare, Github, Zenodo, and Dryad. Additionally,

reference lists of included studies were hand-searched to identify potentially eligible studies.

The searches were carried out from May 31 to June 2, 2021. S2 Table shows all the bases

accessed and the search strategies applied.

Search strategy

The search strategy was developed and refined with the help of epidemiologists with experi-

ence in systematic review and modelers working jointly with our research team. The search

strategies are presented in S2 Table.
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Selection of sources of evidence

The studies were selected per the methodological guidelines of scoping reviews to meet the

study’s aims and objectives. References identified were screened in Rayyan [25]. Titles,

abstracts, and data repository descriptions identified were read and selected by four indepen-

dent reviewers (three epidemiologists and one modeler), in pairs, in parallel, who were not

blind to the journal titles or the study authors or institutions. Inconsistencies and disagree-

ments were solved by consensus or in discussion with other reviewers. After this first screen-

ing, full-text readings of the published and unpublished documents included in the review

were conducted. This process was iterative, and the criteria could be updated throughout the

selection.

Data charting process

Two investigators extracted the data independently—one epidemiologist and one modeler.

The two reviewers discussed the results and solved disagreements by consensus. The data

charting and discussion of results was an iterative process.

Data items

The framework for data extraction was a priori defined to reflect the research questions men-

tioned, comprising the studies’ characterization. We gathered information regarding authors,

geographic location modeled, modeling period, institutional affiliation of authors, publication

timeline, modeling objectives, modeling methods, and main results. The following modeling

objectives were considered: analysis of the epidemiological scenario, short- and long-term pro-

jections without interventions, and economic analysis. Regarding modeling methods, we

focused on (I) Model type (Compartmental, Statistical/Probabilistic, Machine-Learning,

Agent-Based/Individual, Mixed; Deterministic or stochastic; Dynamic or static) and structure

(number and class of compartments, if applicable); (II) Main objective (specific interventions,

short- and long-term future projections, or economic analysis); (III) Source of data inputs

used in the model; (IV) Spatial scale for which the estimations have been done; (V) Time

frame and time horizon; (VI) Model parameters and data sources for each parameter; (VII)

Model output(s); (XIII) Model fitting and calibration approaches; (IX) Sensitivity analysis; (X)

Model code availability.

Critical appraisal of individual sources of evidence

No quality assessment of the studies was applied.

Synthesis of the results

The results will be presented systematically. Firstly, we will present the results of the searches,

screening, and inclusion of studies. Then, a general descriptive analysis will be conducted on

the incorporated studies, including publication year and type, country of origin, and types of

models used.

The included studies were also classified according to the modeling objective and will be

presented according to their scope: analysis of specific interventions, short- and long-term

future projections, and economic analysis. A Venn diagram will be presented as each study

may belong to more than one category.

Next, a more detailed descriptive analysis will be performed regarding the types of studies

and models found. For didactic purposes, we separated compartmental models from all other

types of models, and two tables were generated to organize the information.
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We will also focus on the parameters found in the articles included in this review and used

to run the evaluated models, a descriptive analysis of the presence or absence of fitting and cal-

ibration procedures of the models, and the public availability of the used codes.

Results

Electronic and additional searches retrieved 1061 references. After removing duplicates (127),

titles and abstracts of 934 references were screened, leading to a selection of 156 full texts. Of

those (156) studies that were fully assessed for eligibility, seventy-five (75) were excluded for

various reasons, comprising finally 81 studies included in this review (Fig 1). The list of

excluded studies at the full-text reading stage and the reasons for exclusion are presented in

S3 Table.

Of all the references evaluated, 79.3% (65) correspond to published articles, and 20.7% (17)

were publications without a peer-review process (gray literature). For the published articles,

the average time between submission and publication was approximately 114 days, with a

median of 98 days. The minimum time between submission and publication was seven days,

and the maximum time found was 395 days.

Table 1 shows the summary of findings with the date of publication, the origin of the stud-

ies, and the types of models used. As for the main institutional affiliation of investigators of the

studies, most are Brazilian. The authors of 45 (54.9%) studies were affiliated with Brazilian

institutions. Authors from foreign institutions produced sixteen (19.5%) studies without the

participation of Brazilian institutions. Twenty-one (25.6%) studies resulted from a collabora-

tion between Brazilian and international institutions. Regarding modeling approach and

model type, most were classified as dynamic (71; 87.6%) and deterministic (57; 70.3%). The

predominant type of model was compartmental (51; 62.9%). Other types of models found

were statistical/probabilistic (18; 22.2%), mixed (8; 9.9%), machine learning (3; 3.7%), and

agent-based/individual (1; 1.2%). Mixed models refer to a mixture of two different models

combined.

When studies were classified according to the main modeling objectives, most of them ana-

lyzed specific interventions (mainly testing interventions such as lockdown, vertical isolation,

and closure of commerce and schools), projected short- and long-term epidemiological sce-

narios with real data, but not testing interventions (future projections), or both. Only a few

articles performed economic impact analysis (Fig 2).

When analyzing the reviewed models, as depicted in Table 2, we have identified three

compartmentalization patterns based on the disease’s natural history. The majority of the arti-

cles differ in whether or not they include a compartment referring to the population exposed

to the virus, considered infected but not infectious. Therefore, we have classified compartmen-

tal models into two categories: SIR–Susceptible-Infectious-Recovered (15, 29.5%) and SEIR–

Susceptible-Exposed-Infectious-Recovered (34, 66.7%). Only two articles (2, 3.8%) also consid-

ered the possibility of reinfection, introducing a new compartment for new susceptibles, and

were categorized as SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible).

While many articles vary in the number of compartments presented, ranging from 3 to 9

compartments, we have chosen not to consider the original compartmentalization of each arti-

cle. This decision is based on the recognition that many of the compartments presented do not

represent a differentiation in the dynamics of the disease’s natural history but are compart-

ments created to facilitate the modeling process and the presentation of results. Consequently,

works incorporating additional compartments, such as symptomatic, asymptomatic, quaran-

tined, hospitalized, or deceased individuals, have had their specific characteristics addressed in

the "assumptions" column.
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The studied models significantly differed in the considered assumptions, highlighting their

substantial diversity. Many of these models (21, 41.2%) accounted for the possibilities of vary-

ing degrees of disease with different specific transmissibilities and mortalities (asymptomatic,

symptomatic, mild, moderate, or severe disease). Furthermore, many considered governmen-

tal non-pharmacological interventions (7, 13.7%) and healthcare service capacity (15, 29.5%).

Fig 1. Prisma flow-chart for studies identification, screening, and inclusion.

https://doi.org/10.1371/journal.pgph.0002679.g001
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Table 1. Summary of findings: Date of publication, the origin of the studies, and types of models.

Works included 81 (100%)

Year of publication

2020 59 (72.8%)

2021 22 (27.2%)

Location of institutions to which authors were affiliated

Brazil 45 (55.5%)

Foreign 15 (18.5%)

Collaborations 21 (26%)

Type of model

Compartmental 51 (62.9%)

Statistical/Probabilistic 18 (22.2%)

Machine-Learning 3 (3.7%)

Agent-Based/Individual 1 (1.2%)

Mixed 8 (9.9%)

https://doi.org/10.1371/journal.pgph.0002679.t001

Fig 2. Venn diagram (modeling objectives). The works were classified according to the main objective of the modeling: analysis of specific interventions (with

the evaluation of possible intervention measures), short- and long-term predictions (future projections), and economic analyses.

https://doi.org/10.1371/journal.pgph.0002679.g002
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In contrast, only a few models took into account underreporting (4, 7.8%) or testing capacity

(3, 5.9%) during the modeling process.

Regarding the stratifications or modeled subpopulations, we identified only three

approaches adopted by the studies. Among those utilizing this methodology, age-structured

models were the most commonly employed (29.5%). Additionally, we found a few studies that

modeled specific populations, such as schools and universities (5.9%), along with a solitary

study that focused its modeling on the populations residing in favelas (1.9%).

The compartmental models were mainly used to predict the epidemic behavior for larger

spatial scales, such as countries (22, 43.1%) and states (16, 31.4%), albeit a few articles also

made predictions for more minor spatial scales, such as cities (10, 19.6%) and regions (3,

5.9%).

Among the outputs, estimations of the R0 (21, 41.2%) and transmission rates (5, 9.8%) or

projections regarding the course of the epidemic (43, 84.3%) and anticipation of the transmis-

sion peak (5, 9.8%) figured as major, especially at the beginning of the crisis. However, consid-

ering that many articles made more than a unique prediction, several other outputs were

forecasted through the period, such as the isolation/quarantine effect on epidemic transmis-

sion (8, 15.7%), symptomatic and asymptomatic persons (10, 19.6%), ICU hospital facilities

required (7, 13.7%) and hospitalizations (9, 17.6%), secondary cases caused by infected chil-

dren (1, 1,9%), and the economic effects of the pandemic (4, 7.8%).

The other models identified were agent-based/individual (1, 3.3%), machine learning (3,

10%), statistical/probabilistic (18, 60%), and mixed (8, 26.7%), and they are listed in Table 3,

also stratified by type of modeling, spatial scale, time horizon, and main outputs. Here, one

can see the various models applied to different modeling objectives and the investigation of

desired outputs. Most studies used stochastic models to predict epidemics on a country scale,

although some works also modeled states and cities. A range of statistical and probabilistic

models was utilized (Bayesian, ARIMA, and many others), but agent-based/individual and

Table 2. Studies on compartmental modeling, stratified by the natural history of the disease and type of modeling, with details referring to the assumptions, strati-

fications and subpopulations modeled, geographic area studied, time horizon and the main outputs investigated.

Model Natural History Model type Assumptions Stratification/

subpopulations

Spatial scale Time Horizon Purpose Main outputs

SIR Do not include

exposed/latent

compartment;

Do not consider

reinfections;

Deterministic Asymptomatic, mild,

moderate and severe

disease [26];

Asymptomatic and

symptomatic [27–31];

Government

interventions [30, 32];

Mobility [33];

Healthcare capacity

[26, 29, 33]; Natural

birth and death rates

[34]; Delays in state

and control variables

[28]; Considered a

population response

parameter [29, 31];

Underreporting [31];

Age structured

[33]; Favelas’

population [26];

School and

university

population [33];

Country [28–

36]; City [37,

38]; State [27,

39]; Assumed

[26];

Various [35];

200 days [36];

80 days [34,

37] 2 years

[26]; 50 days

[32] 100 days

[28, 33]; 150

days [27]; 10

days [38];

2000 days

[39]; 400 days

[29]; 3

months [30];

360 days [31];

Future projections

[30, 35–38]

Specific

interventions [26–

34, 39] Economic

analyses [28];

R0 [33, 35, 37, 39];

Prediction of the

epidemic [27–38];

Transmission rate

[32, 37]; Peak of the

epidemics [36]; ICU

availability [26, 33]

Symptomatic and

asymptomatic [27, 28,

30, 31] Isolation effect

[29, 39];

Hospitalizations [28];

Economic evaluation

[28];

Stochastic Government

interventions [40];

Mobility [40];

Healthcare capacity

[40];

School

population [40];

City [40]; 720 days [40]; Specific

interventions [40];

Prediction of the

epidemic [40];

(Continued)
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machine-learning models were restricted to a few. Concerning mixed models, they all repre-

sented a mixture of a compartmental and a different type of model (Bayesian, Markov chain,

Agent-based/individual, e.g.).

Table 2. (Continued)

Model Natural History Model type Assumptions Stratification/

subpopulations

Spatial scale Time Horizon Purpose Main outputs

SEIR Exposed

compartment

included; Do not

consider

reinfections;

Deterministic Asymptomatic and

symptomatic [41–50]

Mild, moderate and

critical disease [46–

52] Healthcare

capacity [45, 48, 51–

57]; Different case-

fatality rates [51, 53]

Vertical social

distance policies [46,

55, 58];

Underreporting [42,

56]; Environmental

resevoir [59]; Natural

birth and death rates

[46, 47, 49, 50, 59, 60];

Mobility [44, 51, 52,

59, 61]; Government

interventions [43, 44,

61, 62]; Distinct

incubation rates for

variants [63]; Distinct

asymptomatic/

symptomatic rates

for variants [47];

Considered limited

resources [45];

Considered tested

and untested

population [50, 64];

Age structured

[46, 47, 49, 51, 55,

56, 58, 60, 65–67];

School

population [41];

Country [42,

45, 51, 53, 54,

56, 57, 63, 65–

69]; State

[46–50, 52,

58, 59, 61, 64,

70–72]; City

[41, 43, 55,

60]; Regional

[44];

120 days [65,

69]; 480 days

[71]; 365 days

[54] [47]; 150

days [58] [42];

250 days [55]

[45]; 300 days

[56] [59]; 500

days [51, 64,

67]; 30 days

[41]; 180 days

[43, 46]; 60

days [60, 66];

3 weeks [63];

5 months

[50]; 6

months [48,

49, 72]; 7

months [56,

72]; 2 years

[52, 53];

Future projections

[42, 43, 46, 51, 54,

56, 60, 62, 65, 71,

72] Specific

interventions [41,

42, 44–50, 52–59,

61, 63, 64, 65–67,

69]; Economic

analyses [50, 66];

R0 [41–45, 48–52, 59,

62, 65, 71]; Prediction

of the epidemic [41–

43, 46–55, 57–66, 69,

71, 72];

Hospitalizations [48,

51, 55, 60, 66, 67];

Peak of epidemics [52,

56, 65]; Isolation

effect [45, 49, 65, 66];

Symptomatic and

asymptomatic [42, 43,

45, 50, 62, 67];

Secondary cases

caused by infected

children [41];

Transmission rate

[44, 45]; Economic

evaluation [50, 66];

ICU availability [48,

56, 57]

Stochastic Natural birth and

death rates [63];

Mild, severe and

critical disease [73];

Asymptomatic and

symptomatic [74];

Considered a

population response

parameter [73];

Mobility [73];

Healthcare capacity

[73]; Underreporting

[74];

Age structured

[75];

City [75];

Regional

[73];

Assumed

[74];

60 days [75];

365 days [73];

120 days [74];

Future projections

[74]; Specific

interventions [73–

75];

Prediction of the

epidemic [73–75];

Isolation effect [73,

75]; R0 [73] [74]; Peak

of epidemics [70];

Hospitalizations [73];

ICU availability [73];

SEIRS Exposed

compartment

included;

Considers

reinfections;

Deterministic Healthcare capacity

[76]; Mobility [76];

Asymptomatic,

symptomatic and

hospitalized [75];

Considered

reinfection by

gamma (P1) variant

[77]; Distinct

transmissibility rates

for variants [77];

Age structured

[77];

City [77];

State [76];

365 days [76];

3 months

[77];

Future projections

[77]; Economic

analyses [76];

Prediction of the

epidemic [76];

Hospitalizations [76,

77]; ICU availability

[76]; Transmission

rate [77]; Economic

evaluation [76];

https://doi.org/10.1371/journal.pgph.0002679.t002
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Considering that parameters directly influence the performance of the models and the

obtained outputs, an assessment of the parameter sources was conducted. Parameters were cat-

egorized as follows: extracted from literary sources, obtained from government and non-gov-

ernmental data sources, and directly used in the model without any new adjustments

Table 3. Studies on COVID-19 models other than compartmental models, stratified by the type of modeling, spatial scale, time horizon, and main outputs.

Models Model

type

Spatial Scale Time Horizon Main outputs References

Agent-based/Individual Stochastic Assumed 365 days R0; Prediction of epidemic; Symptomatic and

asymptomatic; Hospitalizations; Isolations

effects; Herd immunity; Case-fatality rate; ICU

availability; Economic evaluation

[78]

Machine Learning

Long Short-Term Memory for Data Training

(LSTM) with Deep Learning

Stochastic Country 5 months [88]; 8

months [89];

Prediction of epidemic [79, 80]

Long Short-Term Memory (LSTM), Gated

Recurrent Unit (GRU), Convolutional Neural

Network (CNN), Multivariate Convolutional

Neural Network (MCNN);

Stochastic Country 40 days Prediction of epidemic [81]

Statistical/Probabilistic

Bayesian Model Stochastic Country 4 months [91];

NA [92];

Prediction of epidemics, Peak of epidemics, ICU

availability [91]; Mortality risks and infection risk

[92];

[82, 83]

Boltzmann Function Regression Analysis Stochastic State 3 months [93];

150 days [94];

Prediction of epidemic [84, 85]

Generalized Linear Model (GLM) Prospective

Space–time Scan Statistic

Stochastic City [95]; State

[96];

6 months [95];

NA [96];

Geographical analyses and relative risks for

COVID-19

[86, 87]

Autoregressive Integrated Moving Average

(ARIMA)

Stochastic State 6 days Prediction of the epidemic [88]

Weibull Distribution Stochastic Country 200 days Prediction of the epidemic [89]

Skew-normal Distributions Stochastic Country 50 days Transmission rate; Prediction of the epidemic;

Peak of the epidemic; Mortality rate.

[90]

Logistic Growth Model Stochastic State 250 days Prediction of the epidemic [91]

Discrete-time Model Stochastic Country 14 days Prediction of the epidemic [92]

Richards Growth Model (RGM) Stochastic Country 100 days Prediction of the epidemic [93]

Holt-Winters Exponential Model Stochastic Country 7 days Prediction of the epidemic [94]

Gompertz Exponential Model Stochastic Country 7 days Prediction of the epidemic; R0. [95]

Lifshitz Scaling Diffusion Equation Stochastic Country 200 days Prediction of the epidemic [96]

Finite Chains of Recurrent Sequences Stochastic Country 365 days Prediction of the epidemic [97]

Probabilistic Stochastic Country NA Isolation effects; Probability of outbreak; Social

vulnerability.

[98]

Various Stochastic Country 30 days Prediction of the epidemic; R0. [99]

Mixed

Compartmental and Agent-Based/Individual Stochastic Assumed [39];

Country [76,

78];

60 days [39];

300 days [76];

3000 days [78];

Prediction of the epidemic [39, 76, 78];

Hospitalizations [39, 76]; Economic evaluation

[39]; ICU beds availability [76, 78]; R0 [78];

[70, 100,

101]

Compartmental and Non-Linear Model

Predictive Control (NMPC)

Stochastic Country Various Prediction of epidemic, symptomatic and

asymptomatic; R0.

[102]

Compartmental and Markov chain Stochastic Country 4 months Prediction of the epidemic; Symptomatic and

asymptomatic; Hospitalizations; ICU bed

availability.

[103]

Compartmental and Bayesian model Stochastic Country 10 months Prediction of the epidemic; R0. [104]

Compartmental and Neural Network Module

(Machine Learning)

Stochastic Country 60 days Prediction of the epidemic; Isolation effects. [105]

Compartmental and Metapopulation models Stochastic State 30 days Prediction of epidemic [106]

https://doi.org/10.1371/journal.pgph.0002679.t003
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(assumed); calculated and adjusted from secondary data sources (estimated from secondary

data); or estimated from the evaluated model itself (modeled). The main parameters evaluated,

their sources, and the references used are listed in Table 4. All data sources used by the evalu-

ated articles were assessed and are listed in S4 Table.

Table 4. Models’ parameters, their primary sources, and references.

Parameters Definition Number of studies

utilizing the

parameter in the

model

Source

Estimated from secondary data Modeled Assumed

R0 The average number of

secondarily infected persons

infected by one primary infected

patient during the infectious

period.

48 7 (15%) 30 (62%) 11 (23%)

[30, 46, 47, 49, 51, 62, 75] [27, 28, 33, 35–39, 41–45,

48, 51, 54, 59, 61, 65, 67,

74, 78, 95, 99, 101, 102,

104, 105, 107–109]

[55, 59, 60, 64, 69, 71, 76, 82,

96, 106]

Re The effective reproduction

number

29 3 (10%) 25 (86%) 1 (4%)

[49, 63, 75] [36, 38, 41, 43, 44, 46–48,

51, 52, 59, 61–64, 71, 73,

78, 99, 101–103, 107–

109]

[76]

Serial Interval The time from the onset of

symptoms in the primary case to

the onset of symptoms in the

secondary case

3 1 (50%) 1 (50%)

[63] [82]

Incubation

Period

The time between infection and

onset of symptoms

43 4 (9%) 2 (5%) 37 (86%)

[42, 54, 56, 73] [72, 108] [26, 28, 40, 43, 44–49, 51–

53, 55, 58–63, 64–66, 70, 74,

76–78, 82, 92, 100–103, 106,

107, 109]

Infectious

Period

The time interval during which

the infected individuals could

transmit the disease to any

susceptible contacts

41 5 (12%) 5 (12%) 31 (76%)

[28, 29, 42, 56, 73] [31, 36, 48, 104, 108] [26, 27, 30, 33, 41, 43, 46, 47,

49, 51, 52, 55, 58–61, 64, 65,

69, 70, 72, 74, 75, 77, 82, 92,

98, 100, 101, 103, 109]

Case fatality

rate

The proportion of people who die

among all individuals who have

been diagnosed.

54 15 (28%) 26 (48%) 13 (24%)

[28, 30, 32–34, 45, 46, 56, 57, 59,

64, 66, 73, 75, 107]

[27, 29, 31, 37, 38, 44, 47,

49, 51–54, 61–63, 71, 72,

77, 83, 89, 90, 93, 99, 102,

104, 109]

[26, 41, 48, 55, 60, 67, 71, 76,

78, 82, 92, 100, 103]

Proportion of

suceptible

The proportion of a population

that is susceptible to COVID

72 53 (74%) 9 (12%) 10 (14%)

[27–34, 36, 37, 39, 40, 43–49, 51,

52, 54–58, 60–63, 64–67, 69, 71,

73, 75–77, 82, 83, 85, 86, 90, 91,

93, 99, 101, 104, 105–107]

[35, 38, 41, 51, 53, 72, 74,

107, 108]

[26, 42, 59, 70, 78, 89, 92, 98,

102, 103]

Mobility The movement of people within a

population.

14 5 (36%) 9 (64%)

[43, 59, 61, 73, 106] [33, 40, 42, 52, 76, 78, 98,

100, 102]

Contact rate The average number of

appropriate contacts through

which disease transmission occurs

per individual per unit of time

37 6 (16%) 17 (46%) 14 (38%)

[27, 29–31, 41, 54] [33, 38, 47, 51, 57, 63,

69–71, 74, 100, 102, 103,

105, 107–109]

[26, 36, 40, 48, 49, 55, 58–60,

66, 75–77, 107]

Birth/death

rate

Birth and natural death 10 1 (10%) 9 (90%)

[59] [28, 34, 41, 46, 47, 60, 75,

101, 107]

Healthcare

capacity

Amount of healthcare facilities

available at the time of modeling

24 4 (17%) 1 (4%) 19 (79%)

[26, 52, 55, 73] [45] [29, 33, 40, 48, 51, 53, 54, 56,

57, 70, 76, 78, 82, 83, 90, 98,

101–103]

https://doi.org/10.1371/journal.pgph.0002679.t004
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Regarding the model fitting approach, sixty-one (61; 74,4%) studies reported having some

form of calibration or adjustment using real data, while only 10 (12,1%) explicitly stated not

using any specific method for this purpose, and in 11 (13,5%) cases, fitting methods were not

possible or not reported. As calibration plays a pivotal role in the modeling process, particu-

larly with the level of reliability required for COVID-19 decision-making, approximately 70%

of the articles provided details of their calibration parameters and the data employed in the

process. Notably, about 30% of the reviewed articles omitted any reference to their fitting step.

Among the articles that did discuss model calibration, we compiled in S5 Table the key param-

eters that were adjusted, as well as a comprehensive list of the primary data sources used for

calibration.

Sensitivity analyses were conducted in only 16 (19.7%) studies; in 66 (81.5%) studies, they

were either not performed or not reported. Model codes were publicly available in only 30

(37%) of the evaluated studies, whereas in 52 (64.1%) studies, it was impossible to access the

codes.

Discussion

The substantial number of mathematical and statistical modeling studies in this review may

suggest models played an important role in supporting decision-making in Brazil’s first year of

the COVID-19 pandemic. Like in other countries, research groups in statistics and predictive

modeling directed their efforts toward studying SARS-CoV-2. Additionally, new groups were

formed, bringing together modelers, epidemiologists, and infectious disease experts to work

collaboratively [110–112].

Our results are a reflection of this scenario. In a search limited to the first 18 months of the

pandemic, we included 81 articles (published in scientific journals or available in non-peer-

reviewed databases) that analyze any aspect of COVID-19 using a modeling approach. The

studies were predominantly Brazilian or conducted in collaboration between Brazilian and for-

eign entities. This fact demonstrates a clear interest among Brazilian researchers in generating

scientific evidence to strengthen the fight against the epidemic within the country. Also, Brazil

was a considered topic for international institutions without the involvement of Brazilian uni-

versities or researchers, reflecting an interest in Brazil as a subject of study: an enormous coun-

try with a continental dimension, local disparities, social inequities, heterogeneous population,

and diverse public health management regarding the pandemic.

An important aspect to highlight is the elapsed time between article submission and its pub-

lication, with an average of 114 days and a median of 98 days, but with articles taking up to a

year to be published. All the difficulties encountered in reviewing an original manuscript are

justifiable, and the elapsed time is understandable; however, this does not apply to a situation

like a pandemic. Thus, several studies were published in gray literature without peer review in

this emergency to make the results publicly available and provide a basis for public health deci-

sion-making. It should be noted that several articles were excluded from the final selection due

to duplicates, meaning that they were published as preprints and were also already published

in scientific journals with appropriate peer review at the time of this review.

Our results demonstrate that the majority of models utilized were dynamic, deterministic,

and compartmental. These models are the most commonly employed in infectious diseases

and enable the simulation of transmission dynamics in a fully susceptible population, as was

the case with the introduction of SARS-CoV-2 in Brazil [113]. These models were so crucial

worldwide that early in the pandemic, several authors and institutions published guidelines on

how to structure a model, providing instructions on basic frameworks, differences between

models, and characteristics that can be implemented to enhance their performance. For
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instance, Lu Tang et al. [114] published a review in 2020 that specifically focused on guiding

SARS-CoV-2 modeling, highlighting these types of models, and providing guidance on the uti-

lization of key parameters, along with supplying code for implementation in software

packages.

Other types of models are equally important and were also found. These included statistical,

probabilistic, machine learning, and agent-based/individual models. Generally, these types of

models often require more robust databases to yield better results. However, this may not be

feasible at the beginning of a pandemic due to the inherent nature of the natural history of

infection spread and the laborious process of collecting, making publicly available, and ensur-

ing the robustness and accessibility of the databases. Another significant point is that these

models rely on historical data series, generating outputs heavily based on past events. As a

result, they may lose sensitivity to population behavior changes, the implementation of non-

pharmaceutical interventions over time, or the occurrence of new waves that could not be

detected prior to an initial decline.

This was the case in the only study that employed a purely agent-based/individual-based

approach. Staffini et al. [78] developed a model to assess different political approaches for con-

taining COVID-19 in four selected countries (Brazil, Sweden, Italy, and Germany). Brazil was

chosen precisely because it did not adopt nationwide control measures, despite having one of

the highest death tolls in the world. The model examined virus spread through the interaction

between healthy and infected agents over time, considering the government actions docu-

mented in each country’s official documents. However, the simulations were conducted with a

fixed population of 1000 agents and a time span of 365 days, indicating that this type of study

serves primarily for a theoretical evaluation of epidemic dynamics and is less suitable for guid-

ing short- and medium-term public policies. Furthermore, this type of model was only capable

of predicting a single curve, with clear ascending and descending periods, without forecasting

waves of contagion and transmission.

These findings are directly related to the ultimate objective of each study and modeling

effort. Parametrized models enable us to test various situations and envision scenarios crucial

for informing public health policies. Therefore, it is unsurprising that most examined articles

were classified as specific interventions. However, dynamic and compartmental models were

also utilized to project an epidemiological scenario without interventions (future projections),
with parameters based on the epidemiological data available during model execution.

Notably, a limited number of studies are dedicated to conducting an economic analysis of

the COVID-19 situation in Brazil. The fact that Brazil possesses a comprehensive, universal,

and free public healthcare system may have discouraged research in the field of economic anal-

yses of the pandemic. However, it is also worth considering the complexity of the parameters

to be used in the economic analysis of the studied models, a condition that may have been con-

sidered in a context requiring rapid production of information for decision support.

We can observe a significant variability in the complexity of the implemented models. If we

look at compartmental models, we can see that they can exhibit more or less complex struc-

tures, not only reflected by the number of compartments ranging from 3 to 9, but primarily by

the natural history of the disease, assuming or not an exposed compartment, or even consider-

ing the existence of new susceptibles to reinfections. However, other characteristics can

increase the model’s complexity, aiming to bring it closer to reality. These include population

stratification by age, parameter variation using the gamma and log-normal distributions, or

incorporating social, demographic, and geographical data, translating real-world aspects into a

more sensitive parameterization with bolder assumptions. We can observe this in several stud-

ies. For example, Almeida et al. [75], despite using only five compartments, and considering

an exposed compartment, managed to bring shades of reality to the model by calculating the
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R0 for each modeled City based on real data and conducting a cluster analysis of cities using

demographic, social, and climatic characteristics of each studied unit. On the other hand, in

addition to employing a more complex model with nine compartments, Amaku et al. [50] dis-

sected numerous parameters, assumed or fitted, and performed an additional fitting procedure

for the model’s outputs.

Furthermore, the other non-compartmental models studied are naturally more complex.

As mentioned, they rely on a robust database and generally require more advanced technologi-

cal tools for implementation. We found only three studies that exclusively used machine learn-

ing techniques. Yogesh Gautam et al. [79] employed transfer learning for Long Short-Term

Memory for Data Training (LSTM) networks but had to utilize Italian and American data to

model other countries such as Brazil, India, and Nepal. Igor Gadelha Pereira et al. [80] also uti-

lized LSTM, but with Deep Learning, and initially obtained disappointing results but con-

cluded that it is a path for future studies. On the other hand, Khondoker Nazmoon Nabi et al.

[115] employed a series of automated methodologies, including LSTM, Gated Recurrent Unit

(GRU), Convolutional Neural Network (CNN), and Multivariate Convolutional Neural Net-

work (MCNN). However, they obtained unreliable results, as seasonal patterns and periodic

intervals could not be captured.

An understudied aspect that has been determinant in the evolution and spread dynamics of

COVID-19 in Brazil is the profound social, economic, and territorial inequalities existing in

the country. Translating the social determinants of the health-disease process into mathemati-

cal models is not easy; besides models often neglecting this bias, this fact is still poorly dis-

cussed, and necessary caveats are not frequently addressed.

An interesting study by Flávio C. Coelho et al. [98] employed a probabilistic model to iden-

tify areas in Brazil with higher vulnerability to COVID-19 regarding the risk of new case intro-

duction, sustained transmission, and social vulnerability. It is noteworthy that this study

provided one of the most comprehensive characterizations of social vulnerability, including

measures such as infant mortality, life expectancy, GINI index, the proportion of the popula-

tion below the poverty line, proportion of urban and rural populations, access to safe water,

sewage system, and electricity. The findings were consistent with what has been observed

throughout the pandemic regarding morbidity and mortality in vulnerable areas and deserve

recognition, as in Brazil, it is impossible to discuss infectious diseases without considering

social differences and individual and collective vulnerabilities.

Another study meritorious of attention is the one conducted by VP Rodrigues and col-

leagues [26], which provides a comprehensive analysis of the pandemic, focusing on the popu-

lation living in Brazilian favelas. The article proposes using system dynamics to assess the

effects of virus spread in the population and to test bold interventions, such as the temporary

relocation of the residents, the provision of hygiene supplies, emergency sanitation structures,

and the expansion of intensive care units. This was the only article that considered modeling

this specific type of situation. Despite the difficulty in parameterization and dependence on

assumptions, it is demonstrated that having this perspective is essential and feasible. Zelner

et al. [116] extensively review the gaps in accounting social and structural factors to infection

models and suggest various ways to include social inequities in modeling.

An important finding worth highlighting, though somewhat expected, is the scarcity of

studies considering the presence of variants of concern or interest in the proposed models.

Since these studies were conducted early in the pandemic, the presence of variants was not

well-known for a considerable period. When their presence was detected, estimating the

parameters and comprehending the reinfection process remained challenging.

Celaschi et al. [63] evaluated the impacts of the circulation of lineage B of the original virus

in 2020 without assuming reinfections but by proposing different incubation rates, fractions of
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symptomatic infected individuals, and a time-varying reproduction number. In 2021, Yang

et al. [47] and Coutinho et al. [77] modeled the impacts of the gamma variant on the popula-

tion. Yang. [47] assumed that transmissibility remained unchanged, but his model considered

that more virulent variants increase the likelihood of symptomatic illness, thus manifesting the

presence of the variant through the asymptomatic/symptomatic ratio. Similar to Celaschi [63],

he also did not allow for the possibility of reinfection. Meanwhile, Coutinho et al. [77] con-

ducted a study using actual Brazilian epidemiological surveillance data and, employing a

model that accommodates reinfections, estimated both transmissibility and reinfection rate by

Brazil’s gamma variant (P1).

When analyzing the studies in general, it can be observed that many groups worked with

similar objectives and methods, using common data sources and generating outputs that could

have been analyzed together better to understand transmission scenarios and adjustment of

predictive models. At times, complementary studies are not discussed, even though they could

complement each other. The lack of a national modeling network and a forum for modeling

groups may explain the redundant works and the low intersection of complementary studies.

The absence of a common thread in this scientific aspect is not surprising, as it is also influ-

enced by the Federal Government’s overall decentralization and lack of planning concerning

all other fronts of pandemic control. The decision-making role of the 26 Federative States and

the Federal District of Brasilia and the decentralization of local decisions at the municipal level

also reflects in the generation of scientific evidence by local technical groups, universities, and

independent researchers.

Our review stands out for conducting an extensive and detailed search of the mathematical

models used in Brazil’s global emergency caused by COVID-19. Among its strengths, we

emphasize the description of the models, their assumptions, the parameters used, their sources,

and the calibration and fitting processes carried out during the pandemic. This review looks to

the past in order to shape the future. It revisits the modeling process from the perspective of

identifying gaps and facilitating work and communication in a potential future pandemic.

However, this review has limitations, such as the difficulty in comparing the models, the

absence of a quality analysis of the evaluated works, and the inability to assess and compare

modeling results. Furthermore, there are no other reviews of mathematical models for

COVID-19 in Brazil, which makes it impossible to compare our results with different working

groups or methodologies employed.

This review demonstrates that mathematical modeling has been a valuable tool for combin-

ing efforts to combat the COVID-19 pandemic and can be a great ally in addressing future

local or global epidemics. To achieve this, it is crucial to emphasize the need for transparency

in model development, robustness in the data sources used to parameterize compartmental

models and to estimate probabilistic and automated models. Additionally, guidance should be

provided for communicating results and fostering sharing among modeling groups, society,

and public health policymakers.

Supporting information

S1 Table. Inclusion and exclusion criteria. To be included in this review, studies needed to

present COVID-19 or SARS-CoV-2 modeling in Brazil, including infectious disease modeling

methods. Peer-reviewed journals papers, gray literature, or database repositories files were

included if they were: published between January 01, 2020, and June 2, 2021, written in any

language, involved COVID-19 analyses and modeling methodology (including analytical deci-

sion models, cohort and Markov models, compartmental models, and individual agent-based

modeling), reporting real-world or scenario-based COVID-19 modeling, for Brazil. Papers
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were excluded if they did not fit the study’s conceptual framework (modeling of non-COVID

outcomes) or were not fully available (works not fully retrieved or poster abstracts). Case

reports, case series, guidelines/recommendations, letters/perspective/editorials/comments

pieces, reviews, and descriptive epidemiological publications were excluded. Studies present-

ing only mathematical models or software tools but not modeling outputs, projections, results,

or works using projections only as examples of the models’ application were excluded. Studies

modeling vaccine outputs were also excluded.
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S2 Table. Search strategy for COVID-19 models in Brazil, in a pre-vaccine era. Search per-

formed from May 31 to June 2, 2021. In order to identify the potentially relevant studies,

search strategies were applied in MEDLINE (via PubMed) and adjusted for the other databases

(Embase and LILACS). Gray literature (papers published but not peer-reviewed) was searched

in ArXiv, Medrxiv, Biorxiv, and Open Gray. Repositories accessed were Figshare, Github,

Zenodo, and Dryad. Additionally, reference lists of included studies were hand-searched to

identify potentially eligible studies. The searches were carried out from May 31 to June 2, 2021.

(DOCX)

S3 Table. Excluded studies and reasons for exclusion after full-text reading. Electronic and

additional searches retrieved 1061 references. After removing duplicates (127), titles and

abstracts of 934 references were screened, leading to a selection of (156) full texts. Of those

(156) studies that were assessed for eligibility, seventy-five (75) were excluded for various rea-

sons, comprising finally 81 studies included in this review. The list of excluded studies at the

full-text reading stage and the reasons for exclusion are presented in S3 Table.

(DOCX)

S4 Table. Data sources assessed for the models’ parameters. Considering that parameters

directly influence the performance of the models and the obtained outputs, an assessment of

the parameter sources was conducted. Parameters were categorized as follows: extracted from

literary sources, obtained from government and non-governmental data sources, and directly

used in the model without any new adjustments (assumed); calculated and adjusted from sec-

ondary data sources (estimated from secondary data); or estimated from the evaluated model

itself (modeled). The main parameters evaluated, their sources, and the references used are

listed in Table 4 (main text). All data sources used by the evaluated articles were assessed and

are listed in S4 Table.

(DOCX)

S5 Table. Reporting of calibration parameters and primary data sources. As calibration

plays a pivotal role in the modeling process, particularly with the level of reliability required

for COVID-19 decision-making, approximately 70% of the articles provided details of their

calibration parameters and the data employed in the process. Notably, about 30% of the

reviewed articles omitted any reference to their fitting step. Among the articles that did discuss

model calibration, we compiled in S5 Table the key parameters that were adjusted, as well as a

comprehensive list of the primary data sources used for calibration.

(DOCX)

S1 File.
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