Input (cochleagram) |
(1,211,390) |
BatchNorm2d_1 [1] |
(1,211,390) |
Conv2d_1(1, 96, kernel_size = [7, 14], stride = [3, 3], padding = ’same’) |
[96, 71, 130] |
ReLU_1
|
[96, 71, 130] |
MaxPool2d_1(kernel_size = [2,5], stride = [2,2], padding = ’same’)
|
[96, 36, 65] |
BatchNorm2d_2 [96] |
[96, 36, 65] |
Conv2d_2(96, 256, kernel_size = [4,8], stride = [2,2], padding = ’same’) |
(256, 18, 33) |
ReLU_2
|
(256, 18, 33)
|
MaxPool2d_2(kernel_size = [2,5], stride = [2,2], padding = ’same’)
|
(256, 9, 17)
|
BatchNorm2d_3 (256) |
(256, 9, 17) |
Conv2d_3 (512, kernel_size = [2,5], stride = [1,1], padding = ’same’) |
(512, 9, 17) |
ReLU_3
|
(512, 9, 17)
|
Conv2d_4 (1024, kernel_size = [2,5], stride = [1,1], padding = ’same’) |
(1,024, 9, 17) |
ReLU_4
|
(1,024, 9, 17)
|
Conv2d_5 (512, kernel_size = [2,5], stride = [1,1], padding = ’same’) |
(512, 9, 17) |
ReLU_5
|
(512, 9, 17)
|
AvgPool_1 (kernel_size = [2,5], stride = [2,2], padding = ’same’)
|
(512, 5, 9)
|
Linear_1 |
(4,096) |
ReLU_6
|
(4,096)
|
Dropout_1 (p = 0.5)
|
(4,096)
|
Linear_2 |
(num_classes) |