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Abstract

ORFanage is a system designed to assign open reading frames (ORFs) to known and novel 

gene transcripts while maximizing similarity to annotated proteins. The primary intended use of 

ORFanage is the identification of ORFs in the assembled results of RNA sequencing experiments, 

a capability that most transcriptome assembly methods do not have. Our experiments demonstrate 

how ORFanage can be used to find novel protein variants in RNA-seq datasets, and to improve the 

annotations of ORFs in tens of thousands of transcript models in the human annotation databases. 

Through its implementation of a highly accurate and efficient pseudo-alignment algorithm, 

ORFanage is substantially faster than other ORF annotation methods, enabling its application 

to very large datasets. When used to analyze transcriptome assemblies, ORFanage can aid in the 

separation of signal from transcriptional noise and the identification of likely functional transcript 

variants, ultimately advancing our understanding of biology and medicine.

Introduction

Approximately 20,000 protein-coding genes have been annotated for the human genome1–5. 

While a single isoform is often the source of the dominant protein6–8, many human gene 

loci express isoforms that encode different protein sequences, some of which may be 

tissue-specific9–12. The NCBI RefSeq database, for example, contains an average of 6.9 

isoforms for each human protein coding gene, which encode an average of 4.4 distinct 
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protein sequences. The RefSeq annotation of the model organism Arabidopsis thaliana has 

on average 1.8 isoforms with 1.5 unique protein variants respectively.

RNA sequencing technology has allowed an unprecedented look at the transcriptome in 

a wide variety of species, with multiple studies reporting large numbers of previously 

unknown transcripts for protein coding genes3, 13–16. Consistent with previous reports about 

alternative splicing events17, most of the novel transcripts reported in RNA-seq studies are 

observed in protein-coding regions18, 19. Alternative splicing events can alter the translated 

protein through exon skipping, frame-shifting, and other changes20. These events and their 

effects on translated proteins are an essential component of genome biology9.

Changes in protein sequences may also be characteristic of disease states10, 21–24 or 

of specific tissues9, 25, 26. For example, splicing-induced changes in protein sequences 

have been associated with cancer development and progression, from activation of proto-

oncogenes27 to genome-wide splicing alteration in certain cancer types28, 29. One example 

of why it is important to annotate all protein isoforms in the human genome is the 

widespread usage of exome sequencing in clinical settings. Exome capture methods have 

been extensively used to interrogate genetic variants and their associations with diseases, 

such as finding the genetic cause of a rare form of pediatric epilepsy30, or identifying driver 

mutations in cancer31. The technology is heavily dependent on the correct annotation of 

coding regions, and any exons that are unannotated will simply be missed by exome studies.

However, many observed novel transcripts are likely to represent transcriptional noise32; 

e.g., the original CHESS database assembled ~29 million transcript variants from 10,000 

RNA sequencing experiments, of which fewer than 2% were kept in the final annotation3, 4. 

The ability to accurately identify non-functional isoforms can be a valuable tool in 

differentiating signal from noise in RNA-seq data, which is currently complicated by 

artifacts from computational methods, such as alignment and assembly errors, as well as 

the amount of noise inherently present in the data32.

Although many methods have been implemented for searching and assembling transcripts 

from RNA-seq data33, 34, none of them identifies open reading frames (ORFs) based 

on similarity to the original protein at the locus. A number of methods including 

TransDecoder34 and GeneMarkS-T35, 36 have been developed for ab initio ORF annotation 

(Methods, Table 2), but these methods were designed to find ORFs without the use of 

reference annotation as a guide. Other previous approaches only identified the longest ORF, 

sometimes requiring it to have the same start or stop codon positions as a reference35, 37–39. 

None of these approaches consider the similarity of the resulting protein to previously-

known translations of the transcript.

In this study, we present ORFanage, a highly efficient and sensitive method to search 

for open reading frames in protein-coding transcripts, guided by reference annotation to 

maximize protein similarity within genes.
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Results

Accuracy of Reference ORF reconstruction

ORFanage utilizes protein-coding gene annotation by identifying ORFs in query transcripts 

that have the maximal sequence identity with a user-provided set of reference ORFs. This 

approach presumes that proteins produced by different transcripts at the same locus should 

be as similar as possible8, 40. In our first set of experiments, we tested ORFanage’s ability to 

reconstruct the GENCODE and RefSeq protein-coding annotation given an annotation that 

includes one canonical ORF at each protein-coding gene locus. For these experiments, we 

used the MANE database to define the canonical ORFs, because MANE was created by the 

developers of GENCODE and RefSeq to be a “universal standard”6 of human protein-coding 

genes, and because both GENCODE and RefSeq contain every gene in MANE. These 

experiments illustrate how ORFanage can produce a set of ORFs at a locus that better agree 

with a chosen reference annotation, conserving the protein sequences and making annotation 

more internally consistent.

As shown in Figure 1a, many gene transcripts in both RefSeq and GENCODE are annotated 

with ORFs that differ from the canonical variant; e.g., 65% of ORFs in the RefSeq human 

annotation and 36% in GENCODE differ from the MANE ORF (Figure 1a). In principle, 

the presence of an ORF that differs from MANE does not imply an error; however, if 

another ORF can be found in the same transcript that has closer identity to MANE, then 

an error seems possible. Furthermore, 8% of RefSeq and 43% of GENCODE transcripts in 

protein-coding loci have no ORFs annotated at all. By re-annotating each of the reference 

datasets using ORFanage, we identified numerous cases where a different ORF was more 

similar to the canonical protein. One example, from the ZNF180 gene, is shown in Figure 1f.

While we found that ORFs in a large majority of transcripts in the RefSeq human annotation 

were in agreement with those predicted by ORFanage (117,212 out of 135,694) there were 

some striking differences, as illustrated in Table 1 and Supplementary Table 2. For example, 

we identified 2,122 transcripts in which an ORF annotated by RefSeq could be replaced by 

the canonical version from MANE without alterations. Similarly, 786 of the ORFs in the 

GENCODE human annotation could be replaced by their canonical variants from MANE. 

Even though alternative translations may be present at those transcripts, because GENCODE 

and RefSeq both recognize MANE as a standard6, it seems appropriate to choose the MANE 

ORFs over the alternative variants in accordance with established curation guidelines41.

In our analysis we purposefully refrained from filtering candidate ORFs, opting to report one 

best candidate ORF for every transcript where some sequence similarity was observed to the 

reference annotation. This allowed us to investigate all cases where analyzed annotations 

were inconsistent with the MANE reference at the cost of potential false discoveries. 

However, our software provides users with the ability to fine-tune the results through 

parameter settings such as the percent identity (PI) score, matching translation initiation site 

(TIS), and other customizable criteria. These options enable users to refine the identification 

of valid ORFs and limit the number of false positives.
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As a result, we also found thousands of transcripts for which no ORF was listed, even 

though they were annotated under protein-coding genes and even though a candidate ORF 

was identified by ORFanage, such as examples illustrated in Supplementary Figures 3–4. In 

GENCODE, we found an ORF that at least partially overlapped the MANE ORF in 35,540 

out of 55,328 of these transcripts, including 147 transcripts that contained a perfect match 

to the MANE ORF. Although the RefSeq database had fewer protein-coding transcripts with 

no ORF listed, we still found 10,434 transcripts for which our method predicted an ORF, 

including 1,194 with a perfect match to MANE (Table 1, Supplementary Table 2).

We also looked at transcripts where both ORFanage and the reference annotation differed 

from MANE (5,301 in RefSeq and 7,957 in GENCODE). For these transcripts we computed 

the percentage of in-frame positions shared between the annotated proteins and the MANE 

protein and observed that in 613 RefSeq and 7,005 GENCODE transcripts, ORFanage 

produced a protein that was closer to MANE (Figure 1c,d). In many cases the differences 

were minor, affecting only start coordinates or conserving different segments of the 

reference protein. In some cases, though, such as ZNF180 as shown in Figure 1f, ORFanage 

identified an ORF that conserved nearly all of the MANE protein sequence, while the 

protein encoded by the GENCODE ORF had no overlap with MANE. However, higher 

similarity of ORFs is not the only criterion for assessing ORF validity and other methods 

may be necessary to validate any novel sequences. Yet, in the absence of additional data, the 

similarity criterion can be successfully applied, as shown in our evaluation.

When ORFanage found an ORF that differed from the one chosen by RefSeq or GENCODE, 

the ORFanage sequence had an equal or higher proportion of codons that matched MANE 

(Figure 1c,d), a property that is guaranteed by the algorithm. We confirmed these results 

by performing global alignments of the proteins to the MANE variants using EMBOSS 

Stretcher42. The higher percent identity is a consequence of the metric that ORFanage 

maximizes, which we term In-frame Length Percent Identity (ILPI). Following ORF 

identification via the algorithm described in Figure 2, to compute ILPI, our method first 

computes the total number of positions in an ORF that are in the same frame as the 

reference, thus coding for the same codons, which determines the In-frame Length (IL). 

Then ILPI is computed as the fraction of IL of the total length of the reference coding 

sequence. As illustrated in Figure 1e, the correlation between ILPI and percent identity 

computed via the Smith-Waterman algorithm is very high.

We then took a closer look at the 44,532 GENCODE transcripts where ORFanage found 

a different ORF. We found that ORFs identified by ORFanage often contained many novel 

positions (i.e., not matching MANE). More specifically, nearly 22% of positions in these 

novel ORFs are marked as potentially coding only by our method, and while many of 

these positions could be artifacts of partial transcript models included in the GENCODE 

annotation, some are likely to represent new functional variants of known proteins14, 23.

It is also worth noting here that when guided by protein-coding annotation such as MANE, 

ORFanage can reconstruct the ORFs present in GENCODE or RefSeq faster and more 

accurately than ab initio ORF finders like TransDecoder or GeneMarkS-T (see Table 2 and 

Methods).
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The large number of missing annotations and overall observed improvements demonstrate 

the potential use of ORFanage at finding consistent ORFs in novel transcripts at protein-

coding loci.

Impact of Reference Transcripts on Accuracy

In the next set of experiments, we set out to investigate how well our method can reconstruct 

a full set of protein sequences from subsets of reference data. We wanted to establish 1) how 

accuracy improves with an increase in the number of annotated ORFs at a locus and 2) the 

effects of choosing different subsets of known ORF variants on the accuracy of prediction. 

To answer the first question, we incrementally increased the number of ORFs provided to 

ORFanage as a reference. To address the second question, we repeated the experiment but 

randomly chose different sets of reference ORFs.

We repeated the iterative selection of reference transcripts 10 times, providing 25%, 50% 

and 75% of the reference ORFs as a guide each time. We ran our analysis on the human 

genome annotation as well as Arabidopsis thaliana and Caenorhabditis elegans using the 

same protocol. For the human genome, we evaluated both RefSeq and GENCODE, because 

the two databases differ substantially in their ORF annotations. For each test run, we ensured 

that at least one transcript remained unannotated at each locus and that any non-coding 

transcripts were removed prior to the evaluation.

The diversity of transcripts annotated for A. thaliana and C. elegans is much lower compared 

to human reference annotations, with 1.8 and 1.4 transcripts per coding gene respectively, 

compared to 6 and 8 for RefSeq and GENCODE human annotations. Worth noting is that for 

C. elegans, only 4,440 suitable loci were identified based on the aforementioned criteria.

As expected, we observed an increase in accuracy as more reference annotation was 

provided. For the human genome, if we provided just a single reference ORF per locus 

(equivalent to 11% of all ORFs in RefSeq and 18% of all ORFs in GENCODE), ORFanage 

was able to correctly re-create 85% of the RefSeq ORFs and 81% of GENCODE ORFs. 

When we provided 75% of the reference ORFs, ORFanage correctly re-created close to 99% 

of RefSeq and 95% of GENCODE ORFs (Figure 1g–h).

Even when ORFs were not identical to the original sources, the predictions produced by 

ORFanage were highly similar, averaging 81% for the non-identical predictions in the 

RefSeq dataset and 77% in GENCODE respectively.

Because A. thaliana and C. elegans have fewer annotated reference ORFs per locus, 

our random permutations had smaller effects on the results. Nevertheless, in A. thaliana 
ORFanage was able to correctly identify 91–97% of reference ORFs. For C. elegans the 

values were lower, ranging from 77% when a single random reference ORF was provided to 

90% when guided by more complete annotations.

Finding novel ORFs in assembled RNA-seq data

One of the main applications of ORFanage is to search for ORFs in datasets containing 

large numbers of transcripts that have not been assigned open reading frames. ORFanage can 
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annotate transcriptome assemblies from RNA-seq experiments, which often contain many 

novel splice variants, even for well-annotated genomes3, 4, 43. In these cases, ORFanage 

can identify candidate ORFs for protein-coding transcripts based on conservation of known 

protein sequences at the locus using reference annotation as a guide.

We next applied ORFanage to search for novel ORFs in experimental data, using data from 

the GTEx project44, a high-quality collection of poly-A selected RNA-seq samples across 

multiple human tissue types. We focused our experiments on 1,448 samples from brain 

tissue because these represented the most diverse collection of samples in the dataset. We 

ran ORFanage on the complete, unfiltered set of assemblies containing 6,674,316 isoforms 

that were assembled originally for the CHESS human annotation database3, 4.

We computed ORFs for all transcripts using the MANE annotation as the guide. For 

every MANE gene, we first identified all assembled transcripts overlapping that gene 

using gffcompare45 (similarity codes “=“, “c”, “k”, “m”, “n”, “j”, “e”), yielding 4,256,346 

transcripts. We then computed the total gene expression for each transcript using the sum of 

transcripts per million (TPM) values for that transcript across all samples.

In our search for novel ORFs, we took a conservative approach: if a transcript could 

accommodate an ORF from either RefSeq or GENCODE, we assigned that ORF to the 

transcript. Additionally, we removed ORFanage predictions for all transcripts marked as 

non-coding by either RefSeq or GENCODE. Because multiple distinct transcripts can 

contain the same novel ORF, we simplified our analysis by computing the total TPM 

aggregated across transcripts sharing the same ORF. In transcripts for which no ORF was 

assigned, we computed the total TPM as the sum of TPMs for that transcript across all 

samples. This selection left us with a total of 3,046,286 novel transcripts representing 

1,006,547 ORF variants.

Next to focus on highly expressed cases, we considered 4,190 loci where more than 50% 

of expression came from novel transcripts and ORFs (Figure 3a). Many of the transcripts 

at these loci either had no valid ORF or else contained an ORF that was highly dissimilar 

from the canonical MANE protein. We therefore narrowed our focus to 462 loci where over 

50% of expression was due to a single novel ORF. Of those, only 24 loci (Supplementary 

Table 1) were at least 70% identical to the MANE protein and had cumulative expression 

greater than 1000 TPM across all samples (Figure 3b–d, Supplementary Figure 1,3). For 

instance, in the PLGLB gene, an exon skipping event via a novel intron leads to the loss 

of the original start codon and a different, slightly longer N-terminal amino acid sequence. 

Interestingly, we observed very similar exon skipping events in two different paralogs of this 

gene, PLGLB1 and PLGLB2, shown in Figure 3c–d. In both cases, the alternative protein 

contains a different initial coding exon that replaces exon 1 of the MANE isoform, and in 

both cases, the majority of the expression comes from the alternative (non-MANE) isoform, 

suggesting that the MANE isoforms are not the dominant ones.

Another striking example of a novel ORF among these 24 loci occurs in the ANXA13 

gene (Figure 3b,e), which is a member of the family of annexin genes responsible for 

the production of calcium-dependent membrane-binding protein variants46. Proteins in this 
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family contain two major domains, one at the C-terminus for the Ca2+ binding effect, 

and the other at the N-terminus responsible for the membrane interactions. While the core 

domain at the C-terminus is highly conserved across the gene family, the N-terminus is 

variable47, allowing for tissue-specific regulation48, 49 and localization50.The two known 

forms of the gene differ only in the length of the last helical structure, where the 

incorporation of additional peptides allows for an extension of the first helix.

In our results, most of the expression of ANXA13 came from a novel variant of the 

gene characterized by a mutually exclusively alternative splicing event which results in the 

switching of the start-codon-harboring exon for another one downstream, as shown in Figure 

3b. The novel variant has an alternative methionine, followed by a glycine, which serves 

as its start codon, preserving much of the protein sequence with a new N-terminus. We 

also observed that this isoform was dominant in brain tissue, while the MANE isoform was 

dominant in testis (and other tissues).

We investigate how the change would impact the protein’s structure by folding it with 

AlphaFold2 via ColabFold51, 52. We observed an increase in the pLDDT score from 94 to 

97, suggesting an even more stable structure for the new isoform, due to the removal of an 

unstructured segment at the N-terminus of the MANE isoform (Figure 3e). The alternative 

protein identified here matches a variant that was previously annotated as the third isoform 

of AXNA13 in Pan troglodytes53 and Papio anubis54.

Discussion

Our understanding of the transcriptional complexity of eukaryotic genomes has expanded 

dramatically over the years, yet the full extent and functional implications of alternative 

splicing are not yet entirely understood. A comprehensive evaluation of the proteome 

generated by alternative splicing is critical not only for identifying anomalies in disease 

states but also for identifying novel protein variants with distinct functions.

Our experiments demonstrate the effectiveness of ORFanage for identifying open reading 

frames in a set of transcripts by using reference annotation as a guide. ORFanage can 

recover most of the original annotation of the human genome using any of several widely 

used annotation databases, and it can also identify inconsistencies in those databases. More 

specifically, we showed that it can identify likely novel translations of transcripts with no 

previously assigned ORFs and find cases where an annotated ORF can be adjusted to match 

a canonical protein sequence. While increased similarity of ORFs to the reference is not a 

proof of correctness, our experiments demonstrate multiple examples where annotations can 

be improved via our method.

However, despite demonstrating the accuracy of our approach within the scope of this study, 

some important challenges remain. First, as previously discussed, ORFanage is designed to 

identify ORFs in a set of transcripts by using reference annotation as a guide. Therefore, it 

is incapable of finding translations at loci with no prior protein-coding annotations in the 

reference. While few protein-coding genes likely remain to be discovered in well-studied 

model organisms, signs of translation are being routinely reported at non-reference loci, 
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and our method would not be suitable for protein discovery at such loci. This raises 

another important consideration, namely that non-model organisms may have fewer proteins 

annotated. While our experiments do demonstrate high accuracy of ORF reconstruction even 

in the presence of limited reference data, the low quality or absence of reference protein 

annotation in non-model organisms can present additional challenges. While not explicitly 

tested here, future research could combine our protocol with programs like Liftoff55 to 

facilitate comprehensive annotations of genomes of various ancestries that include not only 

transcripts but coding regions as well.

ORFanage can be used in conjunction with RNA-seq alignment and assembly to identify 

ORFs in novel transcripts, and to guarantee that those ORFs match the reference annotation 

as closely as possible. Whether using long-read alignments directly or assembled transcripts, 

this approach can uncover valuable insights into isoforms within protein-coding regions, 

leading to a better understanding of their effects on biological systems. And because RNA-

seq datasets often produce large numbers of novel transcripts, the efficiency and scalability 

of ORFanage make it suitable for datasets of any size. We have recently applied our method 

to annotate ORFs in novel transcripts for the revised CHESS 34 catalog, and to help identify 

novel structurally stable isoforms that were then confirmed using AlphaFold256.

ORFanage can also be a valuable aid to isolating true signal from noisy transcriptome data. 

Assuming that proteins produced from alternative transcripts need to remain similar for 

genes to function correctly56, the ORF structures in the observed isoforms should be similar 

as well. Our approach can identify transcripts that cannot accommodate a similar ORF to the 

reference, serving as a noise filtering step in RNA-seq analysis.

Methods

ORFanage is based on the direct comparison of intervals that make up the exonic structures 

of query and reference transcripts. This optimization technique does not require sequence 

alignment or pre-computed genome indices, greatly reducing the computational burden 

of running the tool and making the analysis far more efficient than an alignment-based 

approach. We have tested ORFanage on datasets comprising tens of millions of transcripts 

assembled from thousands of RNA-seq experiments3, 4 and found that it runs robustly on 

these data.

Creating Bundles of Transcripts.

ORFanage operates on “bundles” of data, defined as the union of a set of overlapping 

reference ORFs with a set of query transcripts that overlap 1 or more of the reference ORFs. 

To reduce the impact of annotation errors such as readthrough transcription, ORFanage 

only loads coding sequence (CDS) coordinates for each reference transcript, discarding 

non-coding exonic coordinates.

Once both the reference and query datasets are loaded into memory and sorted internally, 

bundling is done in linear time by iterating over transcripts and collecting groups of all 

overlapping transcripts. This technique is insensitive to any information on gene boundaries, 

and readthrough transcription, commonly present in RNA-seq assemblies, may lead to 
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several genes being combined into a single locus. In some cases, genes may genuinely 

overlap, and in such instances ORFanage might compare the ORFs of unrelated genes, 

possibly leading to incorrect inferences. To combat this problem, ORFanage gives users the 

option to group transcripts by gene IDs.

Interval Comparison.

For each query transcript in a bundle, ORFanage performs a comparison to each reference 

CDS. For each pair being compared, an intersection is computed to identify all intervals 

that belong to both the query and the reference. The process is performed for all reference 

transcripts and duplicate intervals are removed.

After a set of candidate overlaps is identified, ORFanage continues to search for the optimal 

start and end coordinates for each interval, discarding any incomplete ORFs in the process. 

We define a valid open reading frame as an uninterrupted sequence of 3-base codons that 

begins with a start codon (usually ATG in humans), ends with a stop codon (TAA, TAG, and 

TGA in humans), and does not contain any other stop codons other than the final one. While 

only one valid stop codon can be found by extending any given ORF, multiple start (ATG) 

codons may be present in a single ORF. In ORFanage, an optimal start codon is the one that 

maximizes the number of bases which are in the same frame as the reference ORF while 

minimizing the number of coordinates that do not match or that match out-of-frame (Figure 

2).

After all intervals have been examined, if multiple distinct ORFs are plausible, ORFanage 

performs a heuristic selection of the optimal ORF based on a series of configurable steps. 

Internally, for every unique ORF, the software computes three scores which are applied 

successively to each set of candidate ORFs to find the best result:

1. the Inframe Length (IL), defined as the number of positions that are shared with 

the reference in the same coding frame,

2. ILPI, defined as the fraction of IL with respect to the length of the reference 

ORF, and

3. the length of the ORF.

When maximizing ILPI, ORFanage will prioritize ORFs that have as little novel sequence 

present as possible, where “novel” is defined as sequence that is not present in the reference 

ORF. When maximizing IL instead, ORFanage might select longer ORFs with more novel 

sequence if that choice increases the number of matches with the reference. Alternatively, 

users may specify via optional parameters that conserving the position of the start codon 

takes priority over conservation of the remaining protein sequence, forcing the algorithm 

to select ORFs whose start codon matches the reference protein whenever possible. Worth 

noting here is that 568 out of 19,058 ORFs in the MANE database use a start codon that is 

not the longest ORF.

Additional parameters.

As shown in our analysis, the ILPI metric is an effective function to assess which ORF 

to pick for a given isoform and corresponds closely to percent identity. It is not identical 
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to the familiar percent identity measure, which would be more expensive to compute. 

For applications that might require it, ORFanage includes support for computing a Smith-

Waterman alignment between the reference ORF and the ORFs identified by ORFanage, as 

part of the final validation of the open reading frames. ORFanage also includes an option to 

measure evolutionary conservation of any ORF by computing PhyloCSF scores. This option 

is implemented via an integrated PhyloCSF++ module57, 58. Finally, ORFanage contains a 

multi-threading option, under which it can process each bundle in parallel, further speeding 

its runtime. In our tests, ORFanage was able to process 4,256,346 collected from 1,448 

brain samples of the GTEx dataset, using the MANE annotation as a reference, in 7 minutes 

using 24 cores of an Intel Xeon 6248R 3GHz processor, with all other parameters set to 

defaults. A random individual sample from the same dataset (SRR598396) was processed in 

8 seconds.

Datasets

Studies of the human genome account for a large proportion of transcriptomic data being 

generated today, and several annotation databases are available for these studies. For our 

evaluation of ORFanage on the human genome, we used both the RefSeq (release 110) and 

GENCODE (release 41) annotations1, 2.

To investigate the utility of ORFanage on other organisms, we focused on the well-studied 

A. thaliana and C. elegans genomes, both of which have highly curated annotations of the 

transcriptome and proteome. Since for each of these two genomes only a single reference 

annotation was available, we chose to investigate how well ORFanage could reconstruct the 

ORFs using a bootstrapping technique, which allowed us to evaluate the concordance of 

annotated ORFs with the ones inferred by ORFanage.

For our evaluations on GTEx data, we used 1,448 poly-A selected RNA-seq samples 

representing 13 brain regions (age ≥ 20) from GTEx release 744. Samples were aligned 

with HISAT259, assembled with StringTie 233, and merged with gffcompare. Coverage and 

splice junction summaries were extracted using the TieBrush suite60.

Data preparation.

While ORFanage can handle several types of exceptions to the normal rules governing 

ORFs, such as alternative (non-ATG) start codons, selenoproteins, and otherwise 

overlapping genes, for our evaluations we removed these exceptions in order to measure 

accuracy on genes that conform to standard rules.

We began by choosing a set of genes to be used as a reference for human annotation. The 

MANE database6 was created by the developers of RefSeq and GENCODE as a resource 

of human genes where both databases agree precisely on the complete exon-intron structure 

as well as on the coding sequence of every gene in the database. MANE contains one 

canonical transcript for nearly every protein coding gene, plus a small number (62 in 

release 1.0) of medically-relevant transcripts that differ from the canonical ones. In our 

reference set, we included all genes in MANE except for 1) genes with non-ATG start 
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codons, 2) selenoproteins, and 3) polycistronic genes. For our evaluations of both RefSeq 

and GENCODE, we retained only transcripts corresponding to the remaining MANE genes.

In some cases, manual curation might have altered RefSeq or GENCODE to create unusual 

ORFs. For instance, some partial transcripts have been manually curated to show usage 

of an alternative start codon, despite other ORFs at the locus containing a canonical start 

codon. Because we do not know whether such exceptions are intentional, we decided to 

avoid penalizing RefSeq or GENCODE and filter out such cases, as follows. First, we 

used gffread45 to identify and remove all transcripts that did not contain valid start and 

stop codons. Second, we searched for all pairs of overlapping ORFs that were labeled with 

different gene IDs and removed all such occurrences. In addition, for the RefSeq dataset we 

also removed 846 genes that had transcripts with known exceptions as annotated by NCBI. 

In the end, our filtering resulted in the removal of 1,423 genes out of 20,442 genes from 

RefSeq (release 110) and 1,869 genes out of 20,427 from GENCODE (version 41).

For the A. thaliana and C. elegans annotation datasets61, 62, we used the primary model 

organism annotation as the reference, after filtering out genes with non-ATG start codons, 

selenoproteins, and polycistronic genes.

Comparison of ORF-Finding Methods

To evaluate various ORF annotation methods against ORFanage, we generated two transcript 

sets from the GENCODE and RefSeq datasets using the process outlined in the “Data 

Preparation” section. For each set, we created two files: one with original ORFs preserved, 

and another with only transcript models, devoid of any CDS records. The first file served as 

our control, while the second was used as input for all ORF annotation methods. Detailed 

results of this comparison are provided in Table 2.

Worth noting here is that both TransDecoder and GeneMarkS-T ORF finding methods 

used in our comparison are designed for finding ORFs de novo, without a need for 

guide annotation, and as such serve a different niche of applications than ORFanage; e.g., 

annotation of species for which no previous annotation is available.

TransDecoder—TransDecoder, part of the Trinity package63 , can also find open reading 

frames in a set of transcripts. Although originally intended as an ab initio method for 

finding ORFs in de-novo transcriptome assemblies, the results can be improved by using 

homology searching against a protein database of choice. Since its original release, the 

software has been adapted for use with transcript models that are assembled by programs 

such as StringTie64 or Cufflinks65.

Since all transcripts in our analysis had confident strand assignment, we made sure to use the 

“-S” option to ensure the software did not consider ORFs on the opposite strand to the one 

annotated. Secondly, we built a protein database using the MANE dataset for blastp search 

against the candidate ORFs predicted by TransDecoder. These protein alignments were used 

to select the best candidate ORF during the second stage of the TransDecoder execution.
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GeneMarkS-T—GeneMarkS-T36 is another ab initio ORF finding method included in 

several prominent pipelines for annotating ORFs in transcriptome assemblies. Contrary to 

the TransDecoder, the method relies less on the longest ORFs to initiate search and more on 

other features, refining it’s choice the 5’ AUG as the translation initiation site (TIS).

We applied GeneMarkS-T to both RefSeq and GENCODE datasets, similarly ensuring the 

strand information is kept true to the reference via the “--strand direct” option.

Execution Time

Some methods include multiple separate steps and commands that need to be executed 

to annotate ORFs. When measuring runtime we recorded the total time it took to run 

all commands specified by each method. However, since GeneMarkS-T reports CDS 

coordinates relative to the transcript in which they were found, we developed our own 

custom script to convert transcriptomic coordinates to genomic ones. While we did not add 

the conversion time to the total runtime of the method, depending on the implementation, 

this step could considerably increase the runtime.

Both ORFanage and the costly blastp alignment step in TransDecoder can make proper 

use of multithreading, yet GeneMarkS-T can not. Nonetheless, primarily because of how 

slow TransDecoder was without multithreading enabled, we allowed both ORFanage and 

TransDecoder to use 30 threads concurrently. For ORFanage we provide both single and 

multi-threaded performance measurements (Table 2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Source data for Figs. 1 and 2 are provided with this manuscript where possible. All 

code required to reproduce the data generated within the study from public sources 

is provided at https://github.com/alevar/ORFanage_tests. No new sequencing data were 

created for this study. Sequencing data used in this study is available through the GTEx 

project (phs000424.v7.p2). GTEx data was first analyzed as part of the CHESS project 

and the details can be found in the corresponding resources and publications (http://

ccb.jhu.edu/chess/). The datasets analyzed in this study are 1. GENCODE annotation build 

version 41 (https://www.gencodegenes.org/human/release_41.html); 2. RefSeq annotation 

build 110 (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Homo_sapiens/110/); 3. 

MANE joint annotation build version 1.0 (https://ftp.ncbi.nlm.nih.gov/refseq/MANE/
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MANE_human/); 4. A. thaliana annotation https://ftp.ncbi.nlm.nih.gov/genomes/refseq/

plant/Arabidopsis_thaliana/all_assembly_versions/GCF_000001735.3_TAIR10/) and 5. 
C. elegans genome annotion (https://ftp.ncbi.nlm.nih.gov/genomes/refseq/invertebrate/

Caenorhabditis_elegans/all_assembly_versions/GCF_000002985.6_WBcel235/).
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Figure 1. 
Overview of irregularities in reference database ORF annotation. a-b) Differences in ORFs 

at MANE loci as currently annotated for a) RefSeq and b) GENCODE annotations. Circular 

charts show, for each dataset, the proportions of transcripts annotated with the same ORF as 

MANE (grey), those with an alternative ORF not matching MANE (yellow), and transcripts 

in MANE loci that lack an annotated ORF (blue). c) Percent identity computed between 

the MANE protein and alternative ORFs as predicted by GENCODE (dark green) and 

ORFanage (light green). d) Histogram of the change in percent identity when replacing the 

GENCODE ORF with the ORFanage ORF. e) Pearson correlation coefficient (r) and p-value 

(two-sided, t-distribution) between percent identity computed via traditional alignment and 

In-Frame Length Percent Identity computed by ORFanage, illustrating the close similarity 

between the two metrics (10,000 random samples). f) A detailed look at alternative ORFs 

annotated by GENCODE and ORFanage for the ZNF180 gene. At top is the MANE 

isoform, shaded in pink, with its ORF shown in blue. Below it are two versions of 

an alternative isoform, with the ORFs annotated by ORFanage (middle) and GENCODE 

(bottom). Blue regions show where the protein sequence matches the MANE isoform, while 

green and orange show regions that are additional (green) or out of frame (orange) compared 

to MANE. At bottom is a zoomed-in view of the first intron and flanking ORF regions. g-h) 

Overview of the impact that completeness of reference annotation has on the accuracy of 

ORFanage. g) The percent of correctly inferred ORFs given different fractions of known 

reference ORFs for 4 organisms. h) Percentage of known ORFs that ORFanage failed to 

identify for different levels of reference completeness.
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Figure 2. 
Diagram illustrating the algorithm implemented in ORFanage. ORFanage begins by 

computing overlaps between a reference ORF and query transcript. In the figure, dashed 

lines are used to connect matching intervals. For each overlap it extends coordinates towards 

the 3’ and 5’ ends based on suitable parameters. During extension, any changes to the exon 

structure may introduce shifting of the original frame (as indicated by red arrows). Once 

all intervals have been evaluated, ORFanage compares the results and reports the one with 

the highest score. In the figure, matching residues to the reference are highlighted in blue, 

and mismatching residues are highlighted in yellow. In this example, ORFanage selects the 

longer ORF on the lower right, which has 10 out of 14 matching residues, compared to the 

ORF on the lower left with only 3 out of 14 matching residues.
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Figure 3. 
Novel ORFs in the GTEx dataset inferred using ORFanage. a) Overall distribution of loci 

by percent gene expression (y-axis) that comes from novel (orange) and known (blue) 

transcripts and a zoomed-in view of the region containing 4,190 loci where >=50% of the 

total expression comes from transcripts with novel ORFs or novel transcripts without an 

ORF. b,c,d) Sashimi plots illustrating selected examples of novel ORFs that were identified 

by ORFanage, each depicting a different type of variation. In each plot, coverage and splice 

junction values are cumulative across all samples60. The uppermost transcript, highlighted 

with a pink background, shows the MANE annotation. Expression levels measured in TPM 

are shown for each transcript. b) An alternative 5’ exon in ANXA13 that changes the start 

codon and shortens the ORF. e) The 3D alignment of the MANE protein (pink) to the novel 

ORF (green) computed by Alphafold2 and visualized via PyMOL70 is shown below with 

the N-termini labeled for each. c,d) Two plots show similar novel ORFs for two paralogous 

genes PLGLB1 and PLGB2, where skipping of the 1st reference coding exon is effectively 

offset by the introduction of an upstream novel exon with an alternative start codon.
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Table 1.

Summary of differences between ORFs found by ORFanage and the originally annotated ORFs for all 

transcripts in RefSeq and GENCODE protein-coding genes. Comparisons to the MANE annotation refer to the 

ORFs from the MANE gene set, which is fully contained within both RefSeq and GENCODE.

Reference annotation RefSeq GENCODE

ORFanage finds the same ORF as reference 117,212 63,966

ORFanage finds a different ORF that matches MANE perfectly 2,212 786

No ORF annotated on reference transcript, ORFanage finds an ORF that matches MANE 1,194 147

No ORF annotated on reference transcript, ORFanage finds an ORF that is different from MANE 9,240 35,393

Other combinations 5,836 27,994

Total number of protein-coding transcripts 135,694 128,286
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Table 2.

Comparison of the True Positive Rate (TPR) of ORF annotation methods based on concordance with the 

GENCODE and RefSeq datasets. TPR was computed as the percentage of all ORFs in each dataset which 

were reconstracted identically by the method.

GENCODE RefSeq

Execution Time (minutes) TPR Execution Time (minutes) TPR

Multi-threaded Single-threaded Multi-threaded Single-threaded

ORFanage 0.28 0.6 0.88 0.33 1.1 0.94

TransDecoder 115 - 0.65 175 - 0.82

GeneMarkS-T 100 100 0.58 85 85 0.71

*
GeneMarkS-T times do not include conversion from reported format to genomic GTF style.
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