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Background: Use of endotracheal tubes (ETTs) with appropriate size and depth can help 
minimize intubation-related complications in pediatric patients. Existing age-based for-
mulae for selecting the optimal ETT size present several inaccuracies. We developed a ma-
chine learning model that predicts the optimal size and depth of ETTs in pediatric patients 
using demographic data, enabling clinical applications. 
Methods: Data from 37,057 patients younger than 12 years who underwent general anes-
thesia with endotracheal intubation were retrospectively analyzed. Gradient boosted re-
gression tree (GBRT) model was developed and compared with traditional age-based for-
mulae. 
Results: The GBRT model demonstrated the highest macro-averaged F1 scores of 0.502 
(95% CI [0.486, 0.568]) and 0.669 (95% CI [0.640, 0.694]) for predicting the uncuffed and 
cuffed ETT size (internal diameter), outperforming the age-based formulae that yielded 
0.163 (95% CI [0.140, 0.196], P < 0.001) and 0.392 (95% CI [0.378, 0.406], P < 0.001), re-
spectively. In predicting the ETT depth (distance from tip to lip corner), the GBRT model 
showed the lowest mean absolute error of 0.71 cm (95% CI [0.69, 0.72]) and 0.72 cm (95% 
CI [0.70, 0.74]) compared to the age-based formulae that showed an error of 1.18 cm (95% 
CI [1.16, 1.20], P < 0.001) and 1.34 cm (95% CI [1.31, 1.38], P < 0.001) for uncuffed and 
cuffed ETT, respectively. 
Conclusions: The GBRT model using only demographic data accurately predicted the 
ETT size and depth. If these results are validated, the model may be practical for predict-
ing optimal ETT size and depth for pediatric patients. 

Keywords: Airway management; Demography; General anesthesia; Intratracheal intuba-
tion; Machine learning; Pediatrics.
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Introduction 

Selecting an appropriate size and depth of the endotracheal tube (ETT) is essential to 
minimize intubation-related complications in pediatric patients. An improper ETT size 
may require reintubation, increasing the risk of airway injury and prolonged apnea [1–3]. 
Moreover, inaccurate estimation of tube depth can cause bronchial intubation that can 
result in pneumothorax or atelectasis. By contrast, shallow insertion of an ETT can lead 
to an unsecured airway or inadequate ventilation [4]. 
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Several methods have been proposed to select the optimal ETT 
size. Among those, Cole’s age-based formula is typically used in 
clinical practice to estimate the internal diameter (ID) of un-
cuffed ETTs [5]. Other age-based formulae, such as those pro-
posed by Khine et al. [6] and Duracher et al. [7], have been sug-
gested for cuffed ETTs. The age-based formulae have also been 
used to estimate the optimal depth of ETT insertion [8]. Howev-
er, several inaccuracies have been reported in these age-based 
formulae [9–11]. These inaccuracies might be because of the 
nonlinearity of tracheal growth with age. Another possible rea-
son is inter-individual discrepancies in ETT size among individ-
uals of the same age [12–14]. 

Machine learning algorithms handling complex nonlinear rela-
tionships have shown excellent performance in various medical 
fields [15]. However, few studies have integrated machine learning 
models to suggest the optimal ETT size and depth for pediatric 
patients [16]. Zhou et al. [16] implemented machine learning 
techniques with image-based features such as tracheal diameter at 
the C6, C7, and T2 levels or the distance from C6 to the tracheal 
carina. However, their model requires manual measurements by 
clinicians using X-ray images that are not usually available for pe-
diatric surgical patients. By contrast, basic demographic data, 
such as age, sex, weight, and height, can be easily acquired from 
the most recent electronic health record system. 

In this study, we aimed to develop and validate an explainable 
machine learning model to predict the optimal ETT size and 
depth for pediatric patients using only demographic data. Our 
hypothesis was that the machine learning model would outper-
form traditional age-based formulae in predicting the optimal 
ETT size and depth. A favorable model developed through this 
approach may be beneficial in routine anesthesia practice. 

Materials and Methods 

The Institutional Review Board of Seoul National University 
Hospital (Approval number: 2304-012-1418) approved this study 
and waived the requirement for informed consent owing to the 
retrospective nature of the study design. We followed the recom-
mendations of the ‘Strengthening the Reporting of Observational 
Studies in Epidemiology’ guidelines [17]. 

Study population 

Data were collected from 151,651 pediatric surgical patients 
who underwent general anesthesia with endotracheal intubation 
at Seoul National University Hospital from October 2004 to No-
vember 2022. Cases with the following characteristics were ex-

cluded: (1) age >  12 years; (2) specialized ETT type, such as right 
angle endotracheal, double lumen, and electromyogram tubes; 
(3) missing values for ETT type and size in the anesthesia note; 
and (4) surgical cases of second or subsequent surgeries for a sin-
gle patient. 

Data collection 

Nursing and anesthesia notes were extracted from the hospital’s 
clinical data warehouse. The most recent values of sex, height, and 
weight before surgery were extracted from the nursing notes. The 
ETTs utilized throughout the study period were ShileyTM Oral/
Nasal Endotracheal Tube Cuffless Murphy Eye (Medtronic, Ire-
land) or ShileyTM Hi-Lo Oral/Nasal Tracheal Tube (Medtronic, 
Ireland). The type, size (ID), and fixed depth (distance from tip to 
lip corner) of the ETT were identified from the anesthesia notes.  

A routine practice during the study at our hospital was selecting 
the ETT size based on Cole’s formula, as decided by the attending 
anesthetists. If ventilation was inadequate owing to a leak, the pa-
tient was reintubated with a larger ETT. By contrast, if the tube 
size was large and did not advance within the trachea, a smaller 
size was retried. The optimal tube depth was determined by aus-
cultation. After tracheal intubation, the ETT was introduced until 
the right upper lobe breath sounds disappeared. Subsequently, the 
tube was withdrawn until the upper lobe breath sounds reap-
peared. An additional length (1–2 cm) was retracted to prevent 
bronchial intubation by position change. Once fixed, the presence 
of breath sounds from both lung fields was reconfirmed, and the 
depth marker at the lip corner was recorded in the anesthesia 
note. The ID and depth of the ETT were recorded as 0.5 mm and 
0.5 cm, respectively. 

Model development 

We developed regression models using gradient boosted regres-
sion tree (GBRT) and linear regression (LR) to predict the size 
and depth of the ETT separately. Due to the distinct rationale be-
hind tube selection, we trained separate models to predict the size 
and depth of uncuffed and cuffed ETTs. Statistical outliers ( ±  
2SD [standard deviation]) for height, weight, tube size, and depth 
within one-year intervals were considered as missing values. We 
performed multiple imputations to substitute the missing height 
and weight values. 

The most recent 20% of the data was designated as the test 
dataset. The remaining data were assigned as the training dataset, 
separately for uncuffed and cuffed ETT types, to train the models. 
The test dataset was used to evaluate and compare the perfor-
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mances with that of the traditional formulae. Subsequently, we 
used the BorutaSHAP method to select the necessary input vari-
ables from demographic data (age, sex, height, and weight) in the 
GBRT model. This method combines the Boruta feature selection 
algorithm with the Shapley value calculations [18]. After selecting 
the most relevant variables, they were incorporated into the final 
input of the machine learning models to predict the ID and fixed 
depth of the ETT. The hyperparameters for the GBRT model were 
determined using ten-fold cross-validation, and a grid search was 
performed for each combination of the hyperparameters. Supple-
mentary Table 1 lists the hyperparameter combinations. 

Outcome variables 

The ETT size predicted by the models was rounded to the near-
est 0.5 mm. The primary outcome for the size model was the 
macro-averaged F1 score that comprehensively evaluates the 
model’s performance across all classes by calculating the un-
weighted mean value of the F1 score for each class. Additionally, 
we computed the accuracy of predicting the exact size and the size 
within 0.5 mm of the tube, given that clinicians typically prepare 
three sizes of ETTs in case of failure. 

To compare the performance of our model in predicting the 
size of an ETT, we selected Cole’s formula [5] for an uncuffed 
ETT (ID [mm] =  age in years / 4 + 4.0) and Duracher’s formula 
[7] for a cuffed ETT (ID [mm] =  age in years / 4 + 3.5) as tradi-
tional age-based formulae. For below one year of age, an ID of 3.5 
mm was used, and for between one and two years of age, 4.0 mm 
was used for the uncuffed ETT, as Cole’s formula applies over the 
age of two. A size smaller by one was used for cuffed ETTs for 
ages less than two years. The Penlington’s formula (ID [mm] =  
age in years / 4 + 4.5) was also used to estimate the uncuffed ETT 
size [19]. 

The primary outcome of the depth model was measured in 
terms of the mean absolute error (MAE). Additionally, root mean 
squared error (RMSE) and R-squared were calculated to evaluate 
the performance of the depth model. To calculate the depth of the 
ETT, we selected traditional age-based formulae based on the Pe-
diatric Advanced Life Support (PALS) guidelines (recommended 
depth of insertion [cm] =  age in years / 2 + 12) [8]. We compared 
the performance of the GBRT models with that of traditional age-
based formulae and LR models.  

The linearity assumptions in the relationships between ETT 
size and depth with age were tested by verifying the normality of 
the residual distributions at a significance level of 0.05. The scatter 
plots of these variables and those of the residuals and fitted values 
were depicted to verify the linear relationship. 

We adopted the Shapley additive explanation (SHAP) method 
to enhance the interpretability of the machine learning model. 
This method calculates the contribution of the input variables to 
the prediction and quantifies how each variable affects the output 
of the machine learning model [20].  

To enhance the limited intuitive understanding of machine 
learning outcomes, we constructed a table presenting predictions 
for tube size using the GBRT model. This table was created by ref-
erencing the pediatric growth chart offered by the Korea Disease 
Control and Prevention Agency [21]. We incorporated weight 
and height data corresponding to the 5th, 15th, 25th, 50th, 75th, 
85th, and 95th percentiles for each age from the pediatric growth 
chart. 

We have released our data, model parameters, and code in a 
public repository (https://github.com/Hyeonsik/ endotracheal_
tube.git) and developed a web-based calculator (https://tubesize.
net) to validate and apply the results. 

Subgroup analysis 

We performed a subgroup analysis of our predictive model for 
ETT size according to age. The patient population was stratified 
into three distinct age groups: neonates (<  1 month), infants (<  1 
year), and others (≥  1 year). Subsequently, we assessed and com-
pared the predictive performance with the trained GBRT model 
within these subgroups without retraining. 

Statistical analysis 

Continuous variables, such as age, weight, and height, are pre-
sented as means (standard deviation) or medians (Q1, Q3), de-
pending on the results of the Shapiro–Wilk test. Categorical vari-
ables, such as sex and ETT type, are presented numerically (per-
centages). Model performances were computed with a 95% CI 
through bootstrapping methods, and ml-stat-util (https://github.
com/mateuszbuda/ml-stat-util) was employed for conducting sta-
tistical tests. The Mood’s median test was performed for model 
comparisons in the subgroup analysis. The Mann-Whitney U test 
or two-sample t-test was performed to compare continuous vari-
ables depending on the Shapiro–Wilk test results. For the com-
parison of categorical variables, the chi-square test was performed. 
Considering the two outcomes (size and depth) and two tube 
types (cuffed and uncuffed), a P value <  0.0125 was considered 
statistically significant after the Bonferroni correction. 

A custom program was developed using Python® (Python Soft-
ware Foundation, USA) with scikit-learn 1.0.2, XGBoost 1.7.3, 
Keras 2.7.0, SHAP 0.41.0, BorutaSHAP 1.1, and stat-util libraries, 
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to develop and validate the model. 

Results 

After excluding 114,594 patients, the final analysis included 
37,057 surgical procedures (Fig. 1). The general characteristics of 
the data are summarized in Table 1. There were differences in age, 
height, weight, and the distribution of tube depth between train-
ing and test sets for both cuffed and uncuffed ETT data. The 

BorutaSHAP method was employed to identify significant input 
variables for the size and depth models, and the variable ‘sex’ was 
removed, except for the model predicting the depth of uncuffed 
ETTs, as they did not significantly affect the output (P <  0.05, Fig. 
2). The results showed that age, weight, and height are critical fac-
tors in predicting ETT size and cuffed ETT depth. By contrast, 
age, sex, weight, and height are critical factors in predicting un-
cuffed ETT depth. Scatter plots depicting ETT size and depth by 
age and scatter plots depicting the residuals and fitted values are 

Fig. 1. Study flowchart. ETT: endotracheal tube.

Table 1. Comparison of Demographic and Tube Data between Training and Test Datasets for Cuffed and Uncuffed ETTs in This Study

Variable Missing (%) Training dataset Test dataset P value
Uncuffed ETT 18,934 (80.0) 4,733 (20.0)
 Age (yr) 0 3.32 (0.88, 5.41) 2.94 (0.91, 4.75) <  0.001
 Sex (M) 0 11,122 (58.7) 2,735 (57.8) 0.239
 Height (cm) 6.6 92.2 (74.2, 111.0) 90.1 (75.0, 107.0) <  0.001
 Weight (kg) 2.7 14.6 (9.0, 19.0) 13.7 (9.2, 17.7) <  0.001
 ID of ETT (mm) 0 4.8 (4.0, 5.5) 4.8 (4.0, 5.5) 0.867
 Fixed depth (cm)  10.9 13.6 (12.0, 15.5) 13.2 (11.5, 15.0) <  0.001
Cuffed ETT 10,712 (80.0) 2,678 (20.0)
 Age (yr) 0 7.28 (3.22, 10.9) 4.36 (0.539, 7.56) <  0.001
 Sex (M) 0 6,403 (59.8) 1,528 (57.1) 0.011
 Height (cm) 3.9 120.0 (96.0, 144.1) 97.6 (67.0, 125.4) <  0.001
 Weight (kg) 2.9 28.4 (14.5, 39.5) 18.6 (7.5, 25.4) <  0.001
 ID of ETT (mm) 0 5.3 (4.5, 6.0) 4.5 (3.5, 5.5) <  0.001
 Fixed depth (cm) 9.6 16.2 (14.0, 19.0) 14.1 (11.0, 17.0) <  0.001
Values are presented as mean ± SD, median (Q1, Q3), or number (proportion). ETT: endotracheal tube, ID: internal diameter.

Assessed for eligibility at participant level (n = 151,651)

Excluded (n = 114,594)
• Age > 12 years (n = 21,262)
•  Specialized ETT, such as right angle ETT, 

double lumen tube, and electromyogram tube 
(n = 62,590)

•  Missing values for ETT type and size (n = 
19,328)

•  Surgical cases of the second or subsequent 
surgeries for a single patient (n = 11,414)

Analyzed (n = 37,057)
• Cuffed ETT (n = 13,390) 
• Uncuffed ETT (n = 23,667)

Cuffed ETT (n = 13,390)
• Training set (n = 10,712) 
• Test set (n = 2,678)

Uncuffed ETT (n = 23,667)
• Training set (n = 18,934) 
• Test set (n = 4,733)
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Fig. 2. Boxplot of the feature importance from input candidates using the BorutaSHAP method. (A) Boxplot of the feature importance from input 
candidates (age, sex, weight, height, and existence of cuff) for predicting uncuffed ETT size using the BorutaSHAP method. (B) Boxplot of the 
feature importance from input candidates (age, sex, weight, height, and existence of cuff) for predicting cuffed ETT size using the BorutaSHAP 
method. (C) Boxplot of the feature importance from input candidates (age, sex, weight, height, and existence of cuff) for predicting uncuffed ETT 
depth using the BorutaSHAP method. (D) Boxplot of the feature importance from input candidates (age, sex, weight, height, and existence of cuff) 
for predicting cuffed ETT depth using the BorutaSHAP method. X-axis presents the input features and Y-axis shows the Z-score of whether each 
feature has an importance significantly lower than the threshold. Features confirmed important are presented in green (P < 0.05) and blue colors, 
while red color represents unimportant features (P < 0.05). The term ‘Shadow’ on the X-axis refers to shadow features generated by randomly 
permuting the dataset of each original feature. Then, the feature importance are computed in the original and the generated shadow features. ETT: 
endotracheal tube.

shown in Fig. 3. The linearity assumption between ETT size and 
age was not achieved (P <  0.001).  

The GBRT model showed the highest macro-averaged F1 score 
of 0.502 (95% CI [0.486, 0.568]) in predicting the size of uncuffed 
ETTs and 0.669 (95% CI [0.640, 0.694]) for cuffed ETTs. This per-
formance was superior to that of traditional age-based formulae 
that achieved a macro-averaged F1 score of 0.163 (95% CI [0.140, 

0.196], P <  0.001) for uncuffed ETTs and 0.392 (95% CI [0.378, 
0.406], P <  0.001) for cuffed ETTs (Table 2). 

The GBRT model achieved the best performance in predicting 
the ETT depth, with an MAE of 0.71 cm (95% CI [0.69, 0.72]) for 
uncuffed ETTs and 0.72 cm (95% CI [0.70, 0.75]) for cuffed ETTs. 
The GBRT model outperformed the traditional age-based formu-
la (MAE for uncuffed ETTs =  1.18 cm [95% CI 1.16, 1.20], MAE 
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Fig. 3. Scatter plots and residuals analysis for ETT size and depth by age. (A) Scatter plot of uncuffed ETT size by age. (B) Scatter plot of residuals 
for LR analysis between uncuffed ETT size and age. X-axis presents residuals that indicate the difference between the observed and predicted ETT 
sizes. Y-axis presents the fitted values generated using a LR model. (C) Scatter plot of cuffed ETT size according to age. (D) Scatter plot of residuals 
and fitted values for uncuffed ETT size by age. (E) Scatter plot of ETT depth by age. (F) Scatter plot of residuals and fitted values for ETT depth 
according to age. The black line refers to the LR trend between two axes, and red line refers to a locally weighted scatterplot smoother fitted to the 
residual scatter plot. ETT: endotracheal tube, LR: linear regression.
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Table 2. Performance of GBRT Model, MLR Model, and Age-based Formulae for Predicting the Size of ETT

Model Macro-averaged F1 P value Accuracy within 
0.5 mm (%) P value Accuracy (%) P value

Uncuffed ETT
 GBRT 0.502 (0.486, 0.568) Reference 98.1 (97.8, 98.4) Reference 58.2 (57.0, 59.4) Reference
 MLR 0.407 (0.395, 0.424) <  0.001 97.2 (96.8, 97.6) <  0.001 53.8 (52.5, 55.0) <  0.001
 Penlington’s* 0.203 (0.196, 0.211) <  0.001 82.6 (81.7, 83.5) <  0.001 41.3 (40.2, 42.5) <  0.001
 Cole’s† 0.163 (0.140, 0.196) <  0.001 78.1 (77.1, 79.1) <  0.001 20.3 (19.3, 21.2) <  0.001
Cuffed ETT
 GBRT 0.669 (0.640, 0.694) Reference 99.5 (99.3, 99.7) Reference 70.1 (68.6, 71.5) Reference
 MLR 0.576 (0.551, 0.600) <  0.001 99.4 (99.1, 99.6) 0.589 58.4 (56.8, 59.9) <  0.001
 Duracher’s‡ 0.392 (0.378, 0.406) <  0.001 96.6 (96.0, 97.2) <  0.001 46.9 (45.3, 48.5) <  0.001
Values are presented as numbers (95% CI). GBRT: gradient boosted regression tree, MLR: multiple linear regression, ETT: endotracheal tube, ID: 
internal diameter. *Penlington’s formula (ID of the uncuffed ETT [mm] = age in years / 4 + 4.5), †Cole’s formula (ID of the uncuffed ETT [mm] = 
age in years / 4 + 4.0), ‡Duracher’s formula (ID of the cuffed ETT [mm] = age in years / 4 + 3.5).

Table 3. Performance of GBRT, MLR Models, and Age-based Formula for Predicting the Depth of ETT

Model MAE (cm) P value RMSE (cm) P value R-squared P value
Uncuffed ETT
 GBRT 0.71 (0.69, 0.72) Reference 0.88 (0.87, 0.90) Reference 0.831 (0.823, 0.839) Reference
 MLR 0.74 (0.73, 0.76) <  0.001 0.94 (0.92, 0.96) <  0.001 0.803 (0.793, 0.812) <  0.001
 PALS* 1.18 (1.16, 1.20) <  0.001 1.46 (1.44, 1.49) <  0.001 0.572 (0.554, 0.589) <  0.001
Cuffed ETT
 GBRT 0.72 (0.70, 0.74) Reference 1.00 (0.91, 1.14) Reference 0.904 (0.875, 0.921) Reference
 MLR 0.77 (0.75, 0.80) <  0.001 1.05 (0.97, 1.20) <  0.001 0.884 (0.852, 0.903) <  0.001
 PALS 1.34 (1.31, 1.38) <  0.001 1.67 (1.61, 1.75) <  0.001 0.720 (0.693, 0.740) <  0.001
Values are presented as numbers (95% CI). GBRT: gradient boosted regression tree, MLR: multiple linear regression, ETT: endotracheal tube, 
MAE: mean absolute error, RMSE: root mean squared error, PALS: pediatric advanced life support. *PALS guideline (depth of insertion [cm] = 
age in years / 2 + 12).

for cuffed ETTs =  1.34 cm [95% CI 1.31, 1.38]). There was a sig-
nificant performance difference between the GBRT model and 
the traditional age-based formula (P <  0.001) (Table 3). 

In the subgroup analysis, the size model showed the highest 
macro-averaged F1 score in the infant group for uncuffed ETTs 
and the other groups for cuffed ETTs, while the other groups 
showed the lowest accuracy for both uncuffed and cuffed ETT 
sizing (Table 4). 

The tube sizes and depths predicted by the GBRT model for the 
representative demographic values are presented in Supplementa-
ry Table 2. 

The SHAP summary plot in Supplementary Fig. 1 illustrates the 
contribution of each input variable to the output of the GBRT 
model. Older age, uncuffed ETT, heavier weight, and taller height 
contributed to larger ETT size. Older age, heavier weight, taller 
height, and male sex were associated with deeper ETT depth. The 
SHAP dependence plots presented in Supplementary Fig. 2 and 
Supplementary Fig. 3 illustrate the effect of each input variable on 

the prediction. 

Discussion 

In this study, we developed and validated machine learning 
models to predict the optimal ETT size and depth in pediatric pa-
tients. Our models used only demographic variables and consid-
ered the GBRT algorithm. The developed models outperformed 
the traditional age-based formulae. 

Previous studies on optimal ETT size using age-based formu-
lae have reported an accuracy in the range of 15%–50% in pre-
dicting the exact uncuffed or cuffed ETT size [9,10,14,16]. How-
ever, our model exhibited an accuracy of 58.2% and 70.1% for 
exact matching and 98.1% and 99.5% for an accuracy within 0.5 
mm for uncuffed and cuffed ETTs, respectively. The differences 
in performance might be attributable to the use of machine 
learning algorithms that can model nonlinear relationships. The 
linearity test results and SHAP dependency plot in our study 
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confirmed the nonlinear relationship between the size or depth 
of the ETT and age. 

Other demographic variables, such as height and weight, also 
contributed significantly to improving the prediction of ETT size 
and depth. In the analysis based on the BorutaSHAP method, all 
variables, except for sex, were included in the GBRT model for 
predicting the ETT size. Therefore, adding these variables signifi-
cantly improves model performance. These results are consistent 
with previous findings stating that there was no difference in 
terms of sex in developing the trachea throughout childhood [22]. 
Moreover, sex was only included in the GBRT model for predict-
ing the depth of uncuffed ETTs. The uncuffed tube depth may be 
affected by sex owing to the difference in tongue size, as the ETT 
depth was measured at the lip corner. 

In a previous study, Zhou et al. [16] developed machine learn-
ing models using demographic data and extracted features from 
the chest X-ray images of 990 patients to estimate the ETT size. 
The accuracies of their models were 57.5% and 52.3% for cuffed 
and uncuffed ETTs, respectively, whereas our model using only 
demographic data yielded accuracies of 70.1% and 58.2%, respec-
tively. This difference can be attributed to the massive volume of 
data we used that was 25 times more than that used by Zhou et al.  

Although Cole’s formula has been used in clinical practice for 
several decades, several studies have reported that Penlington’s 
formula is more accurate for predicting uncuffed ETT size 
[10,16]. Our study also found that Penlington’s formula that sug-
gests a larger ETT size was more accurate than Cole’s formula in 
predicting uncuffed ETTs in pediatric patients. This difference in 
accuracy may be attributed to variations in the growth curve in 
pediatric populations over time and race since Cole’s formula was 
first introduced in a North American pediatric population in 1957 
[5]. Nevertheless, all age-based formulae investigated in this study 
were highly inaccurate compared to the machine learning models. 

In our subgroup analysis, the accuracy of the ‘others’ group, 

consisting of individuals aged one year or older, in predicting the 
ETT size was the lowest among the three age groups. This may be 
because the trachea size in the neonate and infant groups was rel-
atively uniform compared to those in the other age groups. The 
difference in performance among the age groups also indicated a 
nonlinear relationship between age and tube size. 

The strength of our model is its readiness in clinical situations 
because it is available as a web calculator, and its code is available 
online. In most electronic medical record systems, height and 
weight information is obtained before surgery. Additionally, ac-
cording to the BorutaSHAP results obtained in this study, this ad-
ditional information is significant. Therefore, a system imple-
mented with the proposed model to provide automated sugges-
tions could be practical for determining a more accurate ETT size 
and fixation depth in pediatric patients. 

Our study has a few limitations. First, because our study was 
retrospective, there may be inevitable biases, and the excluded or 
missing data could have affected the results. Therefore, future pro-
spective validation is needed to address these issues with minimal 
data loss. Second, the generalizability of our study may be limited 
because it was conducted for an Asian population at a single insti-
tute. The different patterns in clinical practices may influence the 
machine learning model’s performance and limit its real-world 
applicability. Therefore, conducting external validation studies 
across multiple centers, encompassing diverse patient populations 
and clinical practices, is crucial to assess the robustness and reli-
ability of the model’s performance before the application. Third, 
we might have missed some important input variables, such as 
congenital diseases that may further affect airway anatomy and re-
sult in size depth variations of the ETT [23,24]. Fourth, different 
cuff designs, such as Hi-Contour or TaperGuardTM (Medtronic, 
Ireland), could result in variations in the optimal tube size and 
depth. Therefore, the models may require retraining before apply-
ing them to different tube types using the corresponding data for 

Table 4. Subgroup Analyses based on Age for Predicting ETT Size using GBRT Model

Macro-averaged F1 P value Accuracy within 
0.5 mm (%) P value Accuracy (%) P value

Uncuffed ETT
 Neonate 0.371 (0.300, 0.467) <  0.001 98.2 (96.3, 99.4) <  0.001 65.0 (58.9, 71.2) <  0.001
 Infant 0.521 (0.500, 0.543) <  0.001 98.6 (98.0, 99.2) <  0.001 65.7 (63.3, 67.9) <  0.001
 Others 0.426 (0.389, 0.480) Reference 97.9 (97.5, 98.3) Reference 55.5 (54.1, 56.9) Reference
Cuffed ETT
 Neonate 0.541 (0.459, 0.674) <  0.001 100.0 (100.0, 100.0) <  0.001 88.3 (83.0, 93.6) <  0.001
 Infant 0.510 (0.429, 0.632) <  0.001 99.6 (99.3, 99.9) <  0.001 82.4 (80.2, 84.6) <  0.001
 Others 0.626 (0.591, 0.657) Reference 99.4 (99.0, 99.7) Reference 63.1 (61.2, 65.0) Reference
Values are presented as numbers (95% CI). ETT: endotracheal tube, GBRT: gradient boosted regression tree.
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each specific tube type. Fifth, although we utilized the minimal set 
of readily collectible demographic variables, additional input pa-
rameters, such as Mallampati classification or imaging data like 
X-rays and ultrasound images, can improve model performance. 
Sixth, the labeled ETT size and depth may not be optimal because 
there could be some tolerance for improper tube size and depth by 
the attending anesthetist based on auscultation. Additionally, there 
may be inaccuracies in the recorded tube depth because the fixed 
depth difference may be changed by the patient’s position, espe-
cially in neonates and infants. 

In conclusion, we developed and validated an explainable ma-
chine learning model to precisely estimate the size and depth of 
an ETT in pediatric patients using only basic demographic data. 
Prospective validation is warranted to validate our results before 
integration into clinical practice. 
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Supplementary Materials 

Supplementary Table 1. Combinations of hyperparameters for the 
gradient boosted regression tree (GBRT) model predicting size 
and depth of endotracheal tube (ETT). 
Supplementary Table 2. The predicted internal diameter (ID) and 
depth of the endotracheal tubes (ETTs) using the gradient boost-
ed regression tree (GBRT) models based on the representative de-
mographic values. 
Supplementary Fig. 1. Shapley additive explanation summary plot 
for endotracheal tube (ETT) size and depth prediction by gradient 
boosted regression tree (GBRT) models. (A) Shapley additive ex-
planation summary plot for input variables in the GBRT model 
for predicting the size of uncuffed ETTs. (B) Shapley additive ex-
planation summary plot for input variables in the GBRT model 
for predicting the size of cuffed ETTs. (C) Shapley additive expla-
nation summary plot for input variables in the GBRT model for 
predicting the depth of uncuffed ETTs. (D) Shapley additive ex-
planation summary plot for input variables in the GBRT model 
for predicting the depth of cuffed ETTs. The red and blue dots 
represent the higher and lower values of the variables, respective-
ly. Large Shapley values indicate a high contribution to output re-
gardless of positive or negative. Older age, heavier weight, and 
taller height contribute to a larger size of the ETT. Older age, 
heavier weight, taller height, and male sex were associated with 
deeper ETT depth. 
Supplementary Fig. 2. Shapley additive explanation dependence 
plot for each input variable in the gradient boosted regression tree 
(GBRT) model for predicting the size of uncuffed endotracheal 
tubes (ETTs): (A) age, (B) weight, and (C) height. Shapley additive 
explanation dependence plot for each input variable in the GBRT 
model for predicting the size of cuffed ETTs: (D) age, (E) weight, 
and (F) height. Effect of a feature on the model’s output and the 
distribution of the feature’s value is visualized as a scatter plot in 
the Shapley dependence plot. Horizontal axis represents the value 
of each feature, and the vertical axis represents the Shapley values 
of a feature. The light grey area at the base of the plot represents a 
histogram displaying the distribution of data values.  
Supplementary Fig. 3. Shapley additive explanation dependence 
plot for each input variable in the gradient boosted regression tree 
(GBRT) model for predicting the depth of uncuffed ETTs: (A) 
age, (B) sex, (C) weight, and (D) height. Shapley additive explana-
tion dependence plot for each input variable in the GBRT model 
for predicting the depth of cuffed ETTs: (E) age, (F) weight, and 
(G) height. Effect of a feature on the model’s output and the distri-
bution of the feature’s value is visualized as a scatter plot in the 
Shapley dependence plot. The horizontal axis represents the value 
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of each feature, and the vertical axis represents the Shapley values 
of a feature. The light grey area at the base of the plot represents a 
histogram displaying the distribution of data values. 
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