
Nature | Vol 624 | 14 December 2023 | 317

Article

A high-resolution transcriptomic and spatial 
atlas of cell types in the whole mouse brain

The mammalian brain consists of millions to billions of cells that are organized  
into many cell types with specific spatial distribution patterns and structural and 
functional properties1–3. Here we report a comprehensive and high-resolution 
transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The 
cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) 
dataset of around 7 million cells profiled (approximately 4.0 million cells passing 
quality control), and a spatial transcriptomic dataset of approximately 4.3 million 
cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). 
The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 
338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, 
Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the 
single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the 
neuronal and non-neuronal cell types across the brain and identified a high degree of 
correspondence between transcriptomic identity and spatial specificity for each cell 
type. The results reveal unique features of cell-type organization in different brain 
regions—in particular, a dichotomy between the dorsal and ventral parts of the brain. 
The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas 
the ventral part contains more numerous neuronal types that are more closely related 
to each other. Our study also uncovered extraordinary diversity and heterogeneity  
in neurotransmitter and neuropeptide expression and co-expression patterns in 
different cell types. Finally, we found that transcription factors are major determinants 
of cell-type classification and identified a combinatorial transcription factor code that 
defines cell types across all parts of the brain. The whole mouse brain transcriptomic 
and spatial cell-type atlas establishes a benchmark reference atlas and a foundational 
resource for integrative investigations of cellular and circuit function, development 
and evolution of the mammalian brain.

The mammalian brain is extraordinarily complex, and controls a wide 
variety of the organism’s activities including vitality, homeostasis, 
sleep, consciousness, sensation, innate behaviour, goal-directed 
behaviour, emotion, learning, memory, reasoning and cognition. These 
activities are governed by highly specialized yet intricately integrated 
neural circuits composed of many cell types with diverse molecular, 
anatomical and physiological properties. To understand how the variety 
of brain functions emerge from this complex system, it is essential to 
gain comprehensive knowledge about the cell types and circuits that 
constitute the molecular and anatomical architecture of the brain.

The anatomical architecture of the mammalian brain has been 
defined by its developmental plan and cross-species evolutionary  
ontology4–6. The entire brain is composed of telencephalon, diencepha-
lon, mesencephalon (also known as midbrain) and rhombencephalon 
(also known as hindbrain). Telencephalon consists of five major brain 
structures: isocortex, hippocampal formation (HPF), olfactory areas 
(OLF), cortical subplate (CTXsp) and cerebral nuclei (CNU). The first 
four brain structures—isocortex, HPF, OLF and CTXsp—constitute the 
developmentally derived pallium structure and are also collectively 
called cerebral cortex, whereas CNU derives from subpallium and is 

further divided into striatum (STR) and pallidum (PAL). Diencephalon 
consists of thalamus (TH) and hypothalamus (HY). Together telenceph-
alon and diencephalon are also collectively referred to as forebrain. 
Hindbrain is divided into pons (P), medulla (MY) and cerebellum (CB). 
Within each of these major brain structures, there are multiple regions 
and subregions, each comprising many cell types.

Single-cell transcriptomics by single-cell RNA sequencing 
(scRNA-seq) or single-nucleus RNA sequencing (snRNA-seq) provides 
unprecedented profiling depth and scalability, enabling comprehen-
sive quantitative analysis and classification of cell types at scale2,3,7–9. 
Transcriptomically defined cell types have been shown to exhibit con-
cordant morphological and physiological properties10,11. Single-cell 
transcriptomics has been used to categorize cell types from many differ-
ent regions of the mouse nervous system and increasingly in human and 
non-human primate brains2,12. The BRAIN Initiative Cell Census Network 
(BICCN) and the Human Cell Atlas (HCA) are representative community 
efforts that use single-cell transcriptomics to create cell-type atlases 
for the brain and body of human and other mammals8,13–16.

An essential next step is to create a comprehensive and high- 
resolution transcriptomic cell-type atlas for the entire adult brain from 
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a single mammalian species. The mouse (Mus musculus) is the most 
widely used mammalian model organism and is therefore a natural 
first choice for a comprehensive definition of mammalian brain com-
position and architecture. To define the anatomical context for cell 
types, another critical requirement is to characterize the precise spatial 
location of each cell type using single-cell-level spatial transcriptomics 
analysis17–20 covering the entire mouse brain. In addition to describ-
ing a complete, brain-wide cell-type atlas of a mammalian brain, this 
analysis will enable us to address questions on how the brain-wide 
transcriptomic landscape of cell types relates to the anatomical and 
circuit organization and its ontology rooted in development and evolu-
tion, and how coordinated gene expression specifies cell-type identity 
and functional properties.

Creation of the mouse brain cell-type atlas
As part of the BICCN, we set out to build a comprehensive, high- 
resolution transcriptomic cell-type atlas for the entire adult mouse 
brain. We systematically generated two types of large-scale, single-cell- 
resolution transcriptomic datasets for all mouse brain regions, using 
scRNA-seq and MERFISH21. We used the scRNA-seq data to generate a 
transcriptomic cell-type taxonomy, and the MERFISH data to visualize 
and annotate the spatial location of each cluster in this taxonomy, based 
on the Allen Mouse Brain Common Coordinate Framework version 3 
(CCFv3)22 (Supplementary Table 1 provides the anatomical ontology 
with full names and acronyms of all brain regions).

We first generated 781 scRNA-seq libraries (using 10x Genomics 
Chromium v2 (referred to as 10xv2) or v3 (10xv3)) from anatomically 
defined, CCFv3-guided (Supplementary Table 1) tissue microdissec-
tions (Methods), resulting in a dataset of around 7.0 million single-cell 
transcriptomes (Supplementary Tables 2 and 3), representing approxi-
mately 5% of the cells in a mouse brain. We developed a set of stringent 
quality control (QC) metrics guided by pilot clustering results that 
informed us on characteristics of low-quality single-cell transcriptomes 
(Extended Data Fig. 1a–c, Supplementary Table 4 and Methods). We 
then conducted iterative clustering analysis on around 4.3 million 
QC-qualified cells using custom software (scrattch.bigcat package 
developed in-house). The 10xv3 and 10xv2 cells were first clustered 
separately and then integrated with methods we developed previ-
ously23, resulting in an initial joint transcriptomic cell-type taxonomy 
with 5,283 clusters (Extended Data Fig. 1a).

By performing all pairwise cluster comparisons in this initial tran-
scriptomic taxonomy, we derived 8,460 differentially expressed genes 
(DEGs) (Supplementary Table 5) differentiating all pairs of clusters. We 
then designed two gene panels for the generation of MERFISH data, 
with each gene panel containing a selected set of marker genes with 
the greatest combinatorial power to discriminate among all clusters. 
The first gene panel contained 1,147 genes and was used by the X.Z. 
laboratory to generate MERFISH datasets from several male and female 
mouse brains using a custom imaging platform24. The second gene 
panel contained 500 genes (Supplementary Table 6 and Methods) 
and was used to generate a MERFISH dataset from one male mouse 
brain at the Allen Institute for Brain Science (AIBS) using the Vizgen 
MERSCOPE platform (Extended Data Fig. 2). The AIBS MERFISH dataset 
contained 59 serial full coronal sections at 200-µm intervals spanning 
the entire mouse brain, with a total of around 4.3 million segmented 
and QC-passed cells (Extended Data Fig. 2), subsequently registered 
to the Allen CCFv3 (Methods).

To hierarchically organize the transcriptomic cell-type taxonomy 
and delineate the relationship between clusters, we first computed 
Pearson correlations of gene expression between each pair of clusters 
using all or a subset of DEGs as a measure of similarity between clusters 
(Extended Data Fig. 3). We found that clusters have different degrees 
of similarities between them and can be grouped into smaller or larger 
categories. Furthermore, transcription factor marker genes provide the 

lowest correlation values across the brain compared with functional 
marker genes, adhesion molecules and all marker genes, and can best 
resolve the global relationships among clusters. Therefore, we used 
transcription factor marker genes to computationally build a cell-type 
hierarchy, grouping the clusters into putative classes, subclasses and 
supertypes (Methods).

We used the AIBS MERFISH dataset and one of the MERFISH data-
sets from the X.Z. laboratory to annotate the spatial location of each 
subclass, supertype and cluster. To do this, we developed a hierarchi-
cal mapping approach (Methods) to map each MERFISH cell to the 
transcriptomic taxonomy and assign the best matched cluster identity 
along with a correlation score to each MERFISH cell. The spatial location 
of each cluster was subsequently obtained by the collective locations 
of majority of the cells assigned to that cluster with high correlation 
scores. We annotated each subclass with its most representative ana-
tomical regions and incorporated these annotations into subclass 
nomenclature for easier recognition of their identities. In this way, 
the high-level distribution of cell types across the entire mouse brain 
is described. As the anatomical annotations at subclass level are largely 
consistent between the X.Z. laboratory and the AIBS MERFISH datasets, 
the AIBS MERFISH dataset is used to illustrate our results and findings 
in the subsequent sections of this manuscript.

To finalize the transcriptomic cell-type taxonomy and atlas, we 
conducted detailed annotation and analysis of all the subclasses, 
supertypes and clusters on the basis of molecular and spatial rela-
tionships among these cell types. During this process, we identified 
and removed an additional set of ‘noise’ clusters (usually doublets 
or mixed debris; Methods) that had escaped the initial QC process, 
resulting in a final set of around 4.0 million high-quality single-cell 
transcriptomes (Extended Data Fig. 1a,d,e). We further refined the 
clustering (Methods) and identified cell types in midbrain and hind-
brain that were depleted in our scRNA-seq dataset. These cell types 
were supplemented with 10x Multiome snRNA-seq data (10xMulti), 
with a total of 1,687 10xMulti nuclei across 33 clusters added to the 
taxonomy (Extended Data Fig. 1a and Methods).

Thorough analysis revealed extraordinarily complex relationships 
among transcriptomic clusters and their associated regions. We further 
fine-tuned and adjusted class, subclass and supertype memberships 
of a small fraction of clusters to reach the final definition (Extended 
Data Fig. 4 and Methods). To organize the complex molecular relation-
ships, we present a high-resolution transcriptomic and spatial cell-type 
atlas for the whole mouse brain with four nested levels of classifica-
tion: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters 
or types (Fig. 1, Extended Data Fig. 5e and Extended Data Table 1). We 
also grouped the classes into seven neighbourhoods for more in-depth 
analyses of related subsets of cell types. The neighbourhoods recapitu-
late to a great extent the molecular and anatomical relatedness among 
cell types, but they are not part of the cell-type hierarchy because they 
do not strictly follow the distance relationship among cell types and 
they contain partially overlapping memberships.

Supplementary Table 7 provides the cluster annotation, including 
the neighbourhood, class, subclass and supertype assignment for 
each cluster, as well as the anatomical annotations, marker genes and 
various metadata information. We provide several representations of 
this atlas for further analysis: (1) a dendrogram at subclass resolution 
along with bar graphs displaying various metadata information (Fig. 1a 
and Extended Data Fig. 5e); (2) uniform manifold approximations and 
projections (UMAPs) at single-cell resolution coloured with different 
types of metadata information (Fig. 1b–e); and (3) a constellation dia-
gram at subclass resolution to depict multidimensional relationships 
among different subclasses (Extended Data Fig. 6).

The high quality of the scRNA-seq and snRNA-seq data included in 
the final taxonomy is indicated by the high gene counts and unique 
molecular identifier (UMI) counts across cell types (Extended Data 
Fig. 5a–d). To test the robustness of the clustering results, we first 
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Fig. 1 | Transcriptomic cell-type taxonomy of the whole mouse brain. a, Left, 
the transcriptomic taxonomy tree of 338 subclasses organized in a dendrogram 
(10xv2: n = 1,699,939 cells; 10xv3: n = 2,341,350 cells; 10x Multiome: n = 1,687 
nuclei). The neighbourhood and class levels are marked on the taxonomy tree. 
Classes marked with asterisks are included in the NN–IMN-GC neighbourhood. 
The IDs of every third subclass are shown to the right of the dendrogram.  
Full subclass names are provided in Supplementary Table 7. Following subclass 
IDs, bar plots represent (left to right): major neurotransmitter type, region 
distribution of profiled cells, number of clusters per subclass, number of 
RNA-seq cells analysed per subclass, and number of cells analysed by MERFISH 
per subclass. Subclasses marked with grey dots contain sex-dominant clusters. 
Sex-dominant clusters within a subclass are identified by calculating the odds 
and log P value for male/female distribution per cluster. Clusters with odds < 0.2 
and log10(P value) < −10 are considered to be sex-dominant. b–e, UMAP 
representation of all cell types coloured by class (b), subclass (c), brain region 
(d) and major neurotransmitter type (e). Colour schemes for a–e are shown in 

the key at the bottom right of the figure. Astro, astrocyte; CB, cerebellum;  
CGE, caudal ganglionic eminence; CNU, cerebral nuclei; CR, Cajal–Retzius;  
CT, corticothalamic; CTX, cerebral cortex; CTXsp, cortical subplate; DG, dentate 
gyrus; EA, extended amygdala; Epen, ependymal; EPI, epithalamus;  
ET, extratelencephalic; GC, granule cell; HB, hindbrain; HPF, hippocampal 
formation; HY, hypothalamus; HYa, anterior hypothalamic; IMN, immature 
neurons; IT, intratelencephalic; L6b, layer 6b; LGE, lateral ganglionic eminence; 
LH, lateral habenula; LSX, lateral septal complex; MB, midbrain; MGE, medial 
ganglionic eminence; MH, medial habenula; MM, medial mammillary nucleus; 
MY, medulla; NN, non-neuronal; NP, near-projecting; OB, olfactory bulb;  
OEC, olfactory ensheathing cells; OLF, olfactory areas; Oligo, oligodendrocytes; 
OPC, oligodendrocyte precursor cells; P, pons; PAL, pallidum; STR, striatum; 
TH, thalamus. Neurotransmitter types: Chol, cholinergic; Dopa, dopaminergic; 
GABA, GABAergic; Glut, glutamatergic; Glyc, glycinergic; Hist, histaminergic; 
Nora, noradrenergic; Sero, serotonergic; NA, not applicable (no neurotransmitter 
detected).



320 | Nature | Vol 624 | 14 December 2023

Article
performed five-fold cross-validation using all 8,460 markers as fea-
tures for classification, to assess how well the cells could be mapped 
to the cell types they were originally assigned to. The median clas-
sification accuracy was 0.87 ± 0.10 (median ± s.d.) and 0.98 ± 0.03 for 
all clusters and all subclasses, respectively. Next, we evaluated the 
integration between 10xv2, 10xv3, 10xMulti and MERFISH transcrip-
tomes (Extended Data Fig. 7a–c). The median correlation between 
10xv2 and 10xv3 is 0.89 ± 0.09 and that between 10xv3 and MERFISH 
data is 0.91 ± 0.20 (Extended Data Fig. 7d), suggesting that most marker 
genes show consistent relative expression levels at cluster level across 
platforms. The MERFISH dataset can resolve the vast majority of clus-
ters owing to strong correlation of DEG expression between 10xv3 and 
MERFISH clusters (Extended Data Fig. 7e–g).

To further integrate the transcriptomic and spatial profiles of each 
cell type and even each single cell, we computationally imputed the 
10xv3 scRNA-seq data into the MERFISH space by searching for the 
k-nearest neighbours (KNNs) among 10xv3 cells for each MERFISH 
cell, using the 500 MERFISH genes (Methods). To test the accuracy 
of MERFISH imputation, we excluded one gene from the gene panel 
at a time from the KNN computation and compared its imputed gene 
expression with its original gene expression. High correlations between 
imputed expression and the original MERFISH expression, as well as 
the reference 10xv3 expression for each gene were observed (Extended 
Data Fig. 8a). The imputed spatial expression patterns were consist-
ent with the actual expression patterns by both MERFISH and in situ 
hybridization from the Allen Brain Atlas25 for genes that are on the 500 
MERFISH gene panel (Calb2, Baiap3 and Lypd1) and those that are not 
(Foxp2) (Extended Data Fig. 8b–f). Foxp2 is expressed with log2(counts 
per million mapped reads (CPM)) > 3 in 1,340 clusters among 177 sub-
classes and 27 classes, which is exemplary of the overall accuracy of 
MERFISH gene imputation.

An interactive online platform for the atlas
To facilitate the wide dissemination of data and utilization of the com-
prehensive mouse whole-brain cell-type atlas, we have developed 
the Allen Brain Cell Atlas. This platform, accessible at https://portal.
brain-map.org/atlases-and-data/bkp/abc-atlas, is designed to visual-
ize extensive scRNA-seq, snRNA-seq and MERFISH datasets, organized 
according to the whole-brain cell-type taxonomy, along with accompa-
nying metadata. The Allen Brain Cell Atlas leverages a service-oriented 
architecture and is hosted on Amazon Web Services, ensuring efficient 
access and robust performance.

The Allen Brain Cell Atlas enables researchers to explore the land-
scape of cell types across various hierarchical levels and brain regions. 
Users can delve into specific cell types, examine their spatial distribu-
tions, study gene expression patterns, explore co-expression relation-
ships, or investigate the composition of cell types within distinct brain 
regions. Additionally, the Allen Brain Cell Atlas provides valuable links 
to related resources, including an open source project repository for 
data download, complete with comprehensive documentation and a 
Jupyter Notebook that illustrates data retrieval and analysis techniques 
(available at https://alleninstitute.github.io/abc_atlas_access/intro.
html). To foster a supportive research community, we offer a dedicated 
community forum where users can find a user guide, seek assistance and 
exchange knowledge. This forum, which is monitored by members of 
the Allen Brain Cell Atlas team, can be accessed at https://community.
brain-map.org/c/how-to/abc-atlas/19/l/top.

Furthermore, we have developed the MapMyCells tool (https://por-
tal.brain-map.org/atlases-and-data/bkp/mapmycells), which enables 
researchers to upload and use our cell-type mapping solution based on 
the hierarchical mapping tools that we have developed (https://github.
com/AllenInstitute/scrattch.mapping). This tool facilitates integrat-
ing and comparing their scRNA-seq and/or snRNA-seq data with the 
reference taxonomy of cell types in whole brain of mouse, including 

high-quality single-cell transcriptomes. By doing so, researchers can 
gain valuable insights into their data mapped against a reference and 
accelerate their investigations.

Neuronal cell types across the mouse brain
Neuronal cell types constitute a large proportion of the whole-brain 
cell-type atlas, including 6 neighbourhoods, 29 classes (85%), 315 sub-
classes (93%), 1,156 supertypes (96%) and 5,205 clusters (98%) (Extended 
Data Table 1 and Supplementary Table 7). Neuronal types have high 
regional specificity and exhibit highly variable degrees of similarities 
and differences. To further investigate the neuronal diversity within 
each major brain structure, we generated re-embedded UMAPs (in 2D 
and 3D) for the neighbourhoods of neuronal types described above, 
to reveal fine-grained relationships between neuronal types within 
and between brain regions in conjunction with the MERFISH data. 
The results shown in Fig. 2 reveal a marked correspondence between 
transcriptomic specificity and relatedness and spatial specificity and 
relatedness among the different neuronal subclasses.

Glutamatergic neurons from all pallium structures, including iso-
cortex, HPF, OLF and CTXsp, form a distinct Pallium-Glut neighbour-
hood that includes subclasses 1–38 and a total of 517 clusters (Figs. 1a 
and 2a,b, Extended Data Table 1, Extended Data Fig. 6 and Supple-
mentary Table 7). Here, each neuronal subclass exhibits layer and/or  
region specificity (Fig. 2a,b). We found that the parallel relationships of 
the different subclasses of glutamatergic neurons between isocortex 
and HPF that we had reported previously23 extend to other pallium 
structures—that is, OLF and CTXsp. We also observed that the NP–CT– 
L6b-like (NP, near-projecting; CT, corticothalamic; L6b, layer 6b)  
subclasses emerge as a group highly distinct from the IT–ET-like 
(IT, intratelencephalic; ET, extratelencephalic) subclasses13,23,26,27, 
forming two distinct classes, IT–ET Glut and NP–CT–L6b Glut. In addi-
tion, we uncovered relatedness between the Cajal–Retzius (CR) cells 
mostly found in HPF (subclass 036 HPF CR Glut) and the olfactory  
bulb (OB)  glutamatergic subclass, 035 OB Eomes Ms4a15 Glut, 
which are likely mitral and tufted cells28, and grouped them into the  
OB–CR Glut class (Extended Data Fig. 6). Finally, this neighbour-
hood includes the DG–IMN Glut class which contains both the den-
tate gyrus (DG) granule cells and the immature neurons found in  
DG and the piriform cortex (PIR) that are involved in adult neurogen-
esis (see below).

A set of developmental subpallium-derived GABAergic (γ-amino-
butyric acid-producing) neuronal subclasses, including all GABAergic 
neurons found in pallium structures and those in the subpallial CNU, 
including dorsal STR (STRd) and ventral STR (STRv), lateral septal 
complex (LSX), and dorsal PAL (PALd), ventral PAL (PALv) and medial 
PAL (PALm), form a Subpallium-GABA neighbourhood (Figs. 1a and 
2c,d and Extended Data Fig. 6). On the basis of the molecular signa-
ture and regional specificity of each subclass, the Subpallium-GABA 
neighbourhood (subclasses 39–90, total 1,051 clusters) was divided 
into 7 classes that are likely related to their distinct developmental 
origins29,30 (Fig. 2c,d, Extended Data Table 1 and Supplementary Table 7): 
CTX–CGE GABA (containing cortical/pallial GABAergic neurons derived 
from the caudal ganglionic eminence), CTX–MGE GABA (containing 
cortical/pallial GABAergic neurons derived from the medial ganglionic 
eminence), CNU–MGE GABA (containing striatal/pallidal GABAergic 
neurons derived from MGE), CNU–LGE GABA (containing striatal/ 
pallidal GABAergic neurons derived from the lateral ganglionic emi-
nence), LSX GABA (containing lateral septum GABAergic neurons 
derived from the embryonic septum31), CNU–HYa GABA (containing 
striatal/pallidal and anterior hypothalamic GABAergic neurons poten-
tially derived from the embryonic preoptic area (POA)), and OB–IMN 
GABA (containing olfactory bulb GABAergic neurons potentially 
derived from LGE, as well as the olfactory bulb-destined immature 
neurons involved in adult neurogenesis (see below)).

https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas
https://portal.brain-map.org/atlases-and-data/bkp/abc-atlas
https://alleninstitute.github.io/abc_atlas_access/intro.html
https://alleninstitute.github.io/abc_atlas_access/intro.html
https://community.brain-map.org/c/how-to/abc-atlas/19/l/top
https://community.brain-map.org/c/how-to/abc-atlas/19/l/top
https://portal.brain-map.org/atlases-and-data/bkp/mapmycells
https://portal.brain-map.org/atlases-and-data/bkp/mapmycells
https://github.com/AllenInstitute/scrattch.mapping
https://github.com/AllenInstitute/scrattch.mapping
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The HY–EA-Glut–GABA neighbourhood (including subclasses 66 and 
73–144, total 1,404 clusters) contains a set of closely related neuronal 
subclasses from the entire hypothalamus32,33, as well as the striatum-like 
amygdalar nuclei (sAMY) and caudal PAL regions of CNU that are also 
known as the extended amygdala (Figs. 1a and 2e,f and Extended Data 
Fig. 6). Both glutamatergic and GABAergic neuronal subclasses in this 
neighbourhood exhibit a gradual anterior-to-posterior transition, and 
thus were grouped into six classes (Fig. 2e,f, Extended Data Table 1 
and Supplementary Table 7): CNU–HYa GABA, HY GABA, CNU–HYa 
Glut, HY Glut, HY Gnrh1 Glut and HY MM Glut (MM, medial mammillary 
nucleus). Neuronal types in the most anterior part of hypothalamus, 

the POA, are highly similar to neuronal types in sAMY and PAL. Thus, 
the CNU–HYa GABA class is also included in the Subpallium-GABA 
neighbourhood described above to show their relatedness and con-
tinuity with the striatal/pallidal types (Fig. 2c,d). The more posterior 
HY GABA class also includes GABAergic neurons from the thalamic 
reticular nucleus (RT) (subclass 93) and the ventral part of the lateral 
geniculate complex (LGv) (subclass 109), which are closely related to 
zona incerta (ZI) neurons in hypothalamus (subclass 101), revealing a 
relationship of GABAergic types between hypothalamus and thalamus 
that is consistent with their developmental origins. Both RT and ZI 
neurons may have originated from the prethalamus or the zona limitans 
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Fig. 2 | Neuronal cell-type classification and distribution across the brain. 
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intrathalamica (ZLI)34–38. The HY Gnrh1 Glut class is the hypothalamic 
Gnrh1 neuronal type developmentally originated from the embryonic 
olfactory epithelium39.

The fourth neuronal neighbourhood, TH–EPI-Glut (subclasses 
145–154, total 148 clusters), contains all glutamatergic neuronal sub-
classes located in the thalamus, as well as the medial habenula (MH) and 
lateral habenula (LH), which collectively compose the epithalamus 
(EPI) (Figs. 1a and 2g,h and Extended Data Fig. 6). These subclasses 
were grouped correspondingly into TH Glut and MH–LH Glut classes.

The fifth neuronal neighbourhood, MB–HB-Glut–Sero–Dopa, con-
tains all glutamatergic, serotonergic and dopaminergic neuronal types 
in midbrain (MB) and hindbrain (HB) (Figs. 1a and 2i,j and Extended Data 
Fig. 6). The neighbourhood, the largest and most complex, includes 6 
classes, 84 subclasses and 1,431 clusters (Fig. 2i,j, Extended Data Table 1 
and Supplementary Table 7). MB Glut, P Glut and MY Glut are the three 
largest classes, containing 37, 18 and 26 subclasses, respectively. By 
contrast, the MB Dopa, MB–HB Sero and Pineal Glut classes each con-
tains a single subclass. Note that we did not include the CB Glut class in 
this neighbourhood but placed it in the NN–IMN–GC neighbourhood 
instead (see below), because CB Glut contains the cerebellar granule 
cells that are highly distinct from the midbrain or hindbrain neuronal 
types.

The sixth and final neuronal neighbourhood, MB–HB–CB-GABA, 
contains all GABAergic subclasses located in midbrain, hindbrain and 
cerebellum (Figs. 1a and 2k,l and Extended Data Fig. 6). This neighbour-
hood includes 4 classes (MB GABA, P GABA, MY GABA and CB GABA), 
75 subclasses and 1,040 clusters (Fig. 2k,l, Extended Data Table 1 and 
Supplementary Table 7).

We found more transitional cell types across brain structures, which 
again may be owing to unique developmental origins. For example, both 
glutamatergic and GABAergic subclasses from the cerebellar nuclei 
(CBN), 250 CBN Neurod2 Pvalb Glut and 295 CBN Dmbx1 Gaba, are more 
closely related to those from the medulla than those from the cerebellar 
cortex (CBX), and they are included in MY Glut and MY GABA classes, 
respectively. Glutamatergic subclass 168 SPA–SPFm–SPFp–POL–PIL–
PoT Sp9 Glut and GABAergic subclass 203 LGv-SPFp-SPFm Nkx2-2 Tcf7l2 
Gaba belong to MB Glut and MB GABA classes, respectively, but they are 
both located in various posterior thalamic nuclei, suggesting potential 
migration of these neurons from midbrain pretectal area to thalamus40 
(SPA, subparafascicular area; SPFm, subparafascicular nucleus, magno-
cellular part; SPFp, subparafascicular nucleus, parvicellular part; POL, 
posterior limiting nucleus of the thalamus; PIL, posterior intralaminar 
thalamic nucleus; PoT, posterior triangular thalamic nucleus).

Neurotransmitter and neuropeptide expression
We systematically assigned neurotransmitter identity to each cell clus-
ter on the basis of the co-expression of canonical neurotransmitter 
transporter genes and synthesizing enzymes and considering alterna-
tive neurotransmitter release mechanisms (Figs. 1e and 3, Extended 
Data Figs. 5e and 9, Supplementary Table 7 and Methods).

These marker genes indicate that the majority of neuronal clusters 
release a single neurotransmitter—either glutamate or GABA. Many 
GABAergic neuronal clusters in midbrain and hindbrain co-release gly-
cine. We identified 62 clusters with glutamate–GABA dual transmitters 
(Glut–GABA), most of which express the glutamate transporter genes 
Slc17a6 or Slc17a8 (Extended Data Fig. 9). These clusters are widely 
distributed in different parts of the brain. They include four clusters 
in the isocortex and hippocampus and three clusters in globus palli-
dus, internal segment (GPi), which probably correspond to previously 
well-characterized glutamate–GABA co-releasing neuronal types in 
these regions41,42. They also include a few clusters each in STRv, PALv, 
several hypothalamus areas including arcuate hypothalamic nucleus 
(ARH) and supramammillary nucleus (SUM), several midbrain areas 
including ventral tegmental area (VTA), pedunculopontine nucleus 

(PPN) and interpeduncular nucleus (IPN), areas in pons such as supe-
rior central nucleus raphe (CS), nucleus raphe pontis (RPO), nucleus 
incertus (NI), posterodorsal tegmental nucleus (PDTg), and others. 
Notably, except for the three Glut–GABA clusters that form an exclusive 
subclass in GPi (subclass 112), the other Glut–GABA clusters are present 
in subclasses that also contain closely related single-neurotransmitter 
(glutamate or GABA) clusters (Extended Data Fig. 9 and Supplementary 
Table 7).

We also systematically identified all clusters that produce modula-
tory neurotransmitters (Fig. 3 and Supplementary Table 7). Cholinergic 
neurons43,44 are found mainly in subclass 58 in the ventral PAL (11 clus-
ters), but also include 2 clusters in LSX, 8 clusters in MH, 3 clusters in 
PPN, 5 clusters in dorsal motor nucleus of the vagus nerve (DMX) and 
nucleus of the solitary tract (NTS), and approximately 13 clusters scat-
tered in other medulla nuclei. We also found Slc18a3 and Chat expres-
sion in several clusters in the Vip GABA subclass in isocortex, but its 
expression at cluster level did not cross our threshold to label these 
clusters as cholinergic. Cholinergic neurons often co-release glutamate 
(24 clusters out of 48), sometimes GABA (7 clusters), both glutamate 
and GABA (3 clusters), or dopamine (1 cluster in DMX).

Dopaminergic neurons45 are found predominantly in subclass 215 
(containing 43 clusters), which is the sole member of the MB Dopa 
class, as well as an additional 28 clusters spread across 14 subclasses. 
Subclass 215, located in substantia nigra, compact part (SNc), VTA and 
midbrain raphe nuclei (RAmb) areas, displays the most heterogeneous 
neurotransmitter content. It contains 39 dopaminergic clusters and 
4 dual Glut–GABA clusters. Most (35) of the 39 dopaminergic clus-
ters also co-release glutamate (11 clusters) or GABA (10 clusters), or 
both glutamate and GABA (14 clusters). We identified clusters that 
correspond anatomically to all classically defined dopaminergic neu-
ron groups—A8–A16—across the brain; there were four clusters in the 
A16 main olfactory bulb (MOB) group, two clusters in the A15 rostral 
hypothalamus group, eight clusters in the A14 periventricular hypo-
thalamus group, one cluster in the A13 ZI group, five clusters in the A12 
ARH group, two clusters in the A11 posterior hypothalamus group, ten 
clusters in the A10 VTA group, nine clusters in the A9 SNc group, and 
two clusters in the A8 retrorubral group46–50 (Supplementary Table 7). 
Beyond these groups, we also found dopaminergic neuronal types in 
other brain regions, including many clusters (22) in RAmb and periaq-
ueductal gray (PAG) as well as 3 clusters in dorsomedial nucleus of the 
hypothalamus (DMH).

Serotonergic neurons51 all belong to the single subclass 216, which 
solely comprises the distinct MB–HB Sero class. This subclass consists 
of 20 serotonergic clusters and 12 glutamatergic (marked by Slc17a8) 
clusters that are all closely related to each other. The serotonergic 
neurons often co-release glutamate (8 clusters), GABA (4 clusters), or 
glutamate and GABA (7 clusters). All of these clusters reside in the vari-
ous raphe nuclei within midbrain or medulla. Thus, the serotonergic 
neuron class and/or subclass is highly heterogeneous in both neuro-
transmitter content and spatial localization. Of note, even though many 
serotonergic and dopaminergic clusters are colocalized in the RAmb 
areas, they are well segregated in the gene expression space, and we 
found no clusters that could co-release serotonin and dopamine, as no 
clusters co-express the key synthesis genes Th and Tph2.

Noradrenergic neurons52,53 are found exclusively in subclass 251. 
This subclass contains 12 noradrenergic clusters and 14 glutamatergic 
clusters, with the noradrenergic clusters also co-releasing glutamate 
(marked by Slc17a6; 10 clusters), or GABA (1 cluster), or glutamate and 
GABA (1 cluster). All but four clusters in this subclass are located in NTS; 
of the remaining clusters, one glutamatergic cluster is located in locus 
ceruleus (LC) and one noradrenergic cluster is located in both locus 
ceruleus and subceruleus nucleus (SLC).

Histaminergic neurons are found exclusively in the tuberomammil-
lary nucleus, dorsal part (TMd) and ventral part (TMv), of hypothalamus 
(5 clusters in subclass 92), and all co-release GABA54.
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Overall, a pattern emerged where nearly all subclasses with a domi-
nant modulatory neurotransmitter contain clusters transmitting gluta-
mate and/or GABA only, as well as various patterns of co-transmission, 
indicating a high degree of heterogeneity in neurotransmitter release 
and co-release among closely related neuronal types that may have 
common developmental origins. Our QC process excluded the possi-
bility of doublet or low-quality cell contamination accounting for the 
heterogeneity. Although many of these neurotransmitter co-release 
patterns had been documented previously55–57, our study defined 
a comprehensive set of cell types with unique and differing neuro-
transmitter content that can be identified through combinations of  
marker genes.

Neuropeptides are also major agents for intercellular communi-
cations in the brain58,59. We examined cell-type-specific expression 
patterns of dozens of main neuropeptide genes and their receptors 
in our datasets (Supplementary Table 7). We measured the cell-type 
specificity of expression of these genes using the Tau score60 and found 
a wide range of variation (Extended Data Fig. 10a,b). Some neuropep-
tides are widely expressed in many cell types or clusters and at high 
levels (for example, Cck, Pnoc, Adcyap1, Penk, Sst and Tac1), some are 
expressed at high levels in a moderate number of clusters (for example, 
Cartpt, Nts, Pdyn, Gal, Tac2, Grp, Vip, Crh, Trh and Cort), and others are 
highly expressed specifically in only one or few clusters (for example, 
Avp, Agrp, Pomc, Pmch, Oxt, Rln3, Npw, Nps, Ucn, Hcrt, Gnrh1, Gcg and 
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Fig. 3 | Modulatory neurotransmitter types and their distribution 
throughout the brain. a,b, Neuronal subclasses containing clusters that 
release modulatory neurotransmitters and their various co-release combinations 
with glutamate and/or GABA. UMAPs are coloured by subclass (a) and 
neurotransmitter type (b). c, Representative MERFISH sections showing  
the location of neuronal types expressing modulatory neurotransmitters.  
Cells are coloured by neurotransmitter type and labelled by subclass ID. See 
Supplementary Table 7 for detailed neurotransmitter assignment for each 
cluster. ADP, anterodorsal preoptic nucleus; AHN, anterior hypothalamic 
nucleus; ARH, arcuate hypothalamic nucleus; CLI, central linear nucleus raphe; 
CUN, cuneiform nucleus; DMH, dorsomedial nucleus of the hypothalamus; 
DMX, dorsal motor nucleus of the vagus nerve; IF, interfascicular nucleus 
raphe; LHA, lateral hypothalamic area; MDRN, medullary reticular nucleus; 
MPN, medial preoptic nucleus; MPO, medial preoptic area; MV, medial 
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preoptic part; PVR, periventricular region; RAmb, midbrain raphe nuclei; RL, 
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nucleus, ventral part; VII, facial motor nucleus; VMPO, ventromedial preoptic 
nucleus; VTA, ventral tegmental area; ZI, zona incerta.
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Pyy) (Extended Data Fig. 10c–f). About 79% of all clusters express at 
least one neuropeptide gene, and there are numerous co-expression 
combinations of different neuropeptides in many clusters, with high 
degrees of variations within subclasses (Supplementary Table 7). Our 
datasets provide a rich resource for the exploration of neuropeptide 
ligand–receptor interactions across the entire brain.

Non-neuronal and immature neuronal cell types
Unlike the six neuronal neighbourhoods defined above, the seventh 
and final neighbourhood, NN–IMN–GC, contains a mixed collection 
of highly distinct non-neuronal cell types, immature neuronal types 
and granule cell types (Fig. 4a). It has nine classes, including five 
non-neuronal classes (Astro–Epen, OPC–Oligo, OEC, Vascular and 
Immune) and four granule and immature neuronal classes (DG–IMN 
Glut, OB–IMN GABA, Pineal Glut and CB Glut).

All non-neuronal cell types across the mouse brain are classified into 
5 classes, 23 subclasses, 45 supertypes and 117 clusters (Figs. 1a, 4a,  
Extended Data Table 1 and Supplementary Table 7), which can be dis-
tinguished by highly specific marker genes at all levels of hierarchy 
(Extended Data Fig. 11a–f). The Astro–Epen class is the most com-
plex, containing ten subclasses, five of which represent astrocytes 
that are specific to different brain regions: Astro-OLF, Astro-TE (for 
telencephalon), Astro-NT (for non-telencephalon), Astro-CB and 
Bergmann glia, whereas the other five subclasses are ependymal cell 
types: astroependymal cells, ependymal cells, tanycytes, hypendymal 
cells and choroid plexus (CHOR) cells (Fig. 4a–c). The OPC–Oligo class 
contains two subclasses, oligodendrocyte precursor cells (OPC) and 
oligodendrocytes (Oligo). The Oligo subclass is further divided into 
four supertypes corresponding to different stages of oligodendrocyte 
maturation: committed oligodendrocyte precursors (COP), newly 
formed oligodendrocytes (NFOL), myelin-forming oligodendrocytes 
(MFOL), and mature oligodendrocytes (MOL) (Extended Data Fig. 11i). 
The OEC class corresponds to olfactory ensheathing cells (OEC). The 
Vascular class consists of 5 subclasses: arachnoid barrier cells (ABC), 
vascular leptomeningeal cells (VLMC), pericytes (Peri), smooth muscle 
cells (SMC) and endothelial cells (Endo). The Immune class consists 
of 5 subclasses: microglia, border-associated macrophages (BAM), 
monocytes, dendritic cells (DC) and lymphoid cells, which contains  
B cells, T cells, natural killer (NK) cells and innate lymphoid cells (ILC).

We identified transcription factors that potentially serve as master 
regulators for many of these non-neuronal cell types (Extended Data 
Fig. 11d), many of which were well documented61–66. For example, Sox2, 
a well-known radial glia marker, is widely expressed in astrocytes and 
oligodendrocytes. Sox9 is specific to the Astro–Epen class, Sox10 is 
specific to the OPC–Oligo class, Foxd3 and Hey2 are specific to OEC, 
Foxc1 is specific to the Vascular class, and Ikzf1 is specific to the Immune 
class. Within each class, additional transcription factors mark finer 
groupings (Extended Data Fig. 11d–f). For example, Astro-TE cells 
express Foxg1 and Emx2, which are key regulators of neurogenesis 
in the telencephalon. Similarly, Astro-CB cells express Pax3, which is 
also highly expressed in GABAergic neurons in the cerebellum. These 
observations are consistent with the notion that astrocytes and neurons 
are derived from common regionally distinct progenitors and share 
common transcription factors for spatial patterning66,67. Among other 
astrocyte-related subclasses, Nkx2-2 is specific to Bergmann glia, Rax is 
specific to tanycytes, Myb is specific to ependymal cells, Spdef is specific 
to hypendymal cells, and Lef1 is specific to CHOR cells.

The spatial distribution of all non-neuronal cell types in the mouse 
brain was confirmed and further refined by the MERFISH data. We 
observed an inside-out spatial gradient in MOB among the four OEC 
clusters (Extended Data Fig. 11g). In addition to being widely distributed 
across the brain, oligodendrocytes are also highly concentrated in white 
matter fibre tracts; by contrast, the 1180 OPC NN_2 supertype is found 
mostly in grey matter areas (Extended Data Fig. 11i–k).

Of all the non-neuronal cell types, the Astro–Epen class exhibits the 
most diverse spatial patterns68,69. Region-specific astrocytes Astro-OLF, 
Astro-TE, Astro-NT and Astro-CB are arranged in the UMAP in an 
anterior-to-posterior order (Fig. 4b), consistent with their spatial pat-
terning. Many astrocyte clusters exhibit further subregion specificity: 
Astro-TE cluster 5228 is specific to hippocampal region and CTXsp, 5227 
is specific to STRd, 5226 is specific to LSX and midline cortical areas, 
5225 is specific to isocortex/OLF, 5223 and 5222 are specific to dentate 
gyrus; Astro-NT cluster 5215 is specific to thalamus, and 5217 is specific 
to CBN, dorsal cochlear nucleus (DCO) and ventral cochlear nucleus 
(VCO). Astro-TE clusters 5229 and 5230 and clusters in the Astro-OLF 
subclass match the path of the rostral migratory stream70–72 (RMS; 
see below). Astro-TE cluster 5219 is located at the pia of telencepha-
lon (Fig. 4b) and has high expression of Gfap (Extended Data Fig. 11e), 
consistent with the definition of interlaminar astrocytes (ILAs)73. Other 
clusters (5208, 5209, 5210 and 5211) in the Astro-NT subclass are also 
localized at the pia with high expression of Gfap, which we hypothesize 
to be ILAs outside telencephalon.

The five ependymal subclasses—Astroependymal, Ependymal, Tany-
cyte, Hypendymal and CHOR—line different parts of the ventricles 
throughout the brain, and the clusters within them exhibit exquisite 
spatial specificity (Fig. 4c). Circumventricular organs (CVOs) are spe-
cialized structures located around the third and fourth ventricles that 
mediate communications between brain, blood and cerebrospinal 
fluid74,75 (CSF). They are highly vascularized and are lined with ependy-
mal cells and tanycytes that act as a selective barrier between brain and 
blood and/or CSF. Tanycytes are specialized ependymal cells that line 
the third ventricle (V3) and the median eminence (ME) in the hypo-
thalamus76. They are classified into four subtypes, and we identified 
clusters corresponding to each: clusters 5245/5246, 5247, 5249 and 5250 
as α1, α2, β1 and β2 tanycytes, respectively (Fig. 4e). We also identi-
fied tanycyte-like ependymal cell clusters that are specifically located 
in other CVOs (Fig. 4c): cluster 5243 in the subfornical organ (SFO), 
5244 in the vascular organ of the lamina terminalis (OV (also known as 
OVLT)), 5240 in area postrema (AP), and the hypendymal cell cluster 
5263 (marked by Sspo) (Extended Data Fig. 11e) in the subcommissural 
organ77 (SCO). Many of these clusters express radial glia marker genes 
such as Gfap, Sox2, Nkain4 and Pax6, suggesting that these types have 
neurogenic potential, which corroborates findings indicating the exist-
ence of neural stem cells in the OVLT, SFO, ME and AP78–81.

VLMC types66,82 also show highly specific spatial and colocalization 
patterns. Clusters 5296–5299 are located at the pia, in contrast to clus-
ters 5300 and 5301 which are scattered widely in the brain (Fig. 4d). 
Notably, we found highly specific spatial colocalization between VLMC 
cluster 5303 and Tanycyte clusters (Fig. 4e), between VLMC cluster 5302 
and Ependymal and CHOR clusters (Fig. 4f), and between pia-specific 
VLMC clusters and ILAs (Extended Data Fig. 11h). Marker genes for 
VLMC clusters are enriched in extracellular matrix components and 
transmembrane transporters, including collagens and solute car-
riers with distinct cell-type specificity (Extended Data Fig. 11f). The 
tanycyte-interacting VLMC cluster 5303 does not express many markers 
present in other VLMC types but has specific expression of transmem-
brane genes Tenm4 and Tmtc2. Interactions between various VLMC 
and ependymal cell clusters, together with ABCs, likely regulate the 
movement of molecules and cells across the barriers between brain 
and blood or CSF82.

Cell proliferation and neuronal differentiation continue in adulthood 
only in restricted areas of the brain83. The two main adult neurogenic 
niches are the dentate gyrus and the subventricular zone (SVZ) lining 
the lateral ventricles. The first gives rise to the excitatory DG granule 
cells, whereas the second produces migrating cells that follow the 
RMS and in the olfactory bulb differentiate into inhibitory OB gran-
ule cells72,84,85. We identified two subclasses of immature neurons, 38 
DG–PIR Ex IMN grouped with glutamatergic granule cells in DG to form 
the DG–IMN Glut class, and 45 OB–STR–CTX Inh IMN grouped with 
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GABAergic neuron subclasses in OB28 to form the OB-IMN GABA class 
(Fig. 4a and Supplementary Table 7).

The scRNA-seq data show a trajectory from immature neurons to 
mature neurons in DG, and the MERFISH data corroborate that the 
immature neurons are located in the subgranular zone (SGZ) of DG, 
whereas the mature neurons reside in the dentate granular cell layer 
(Extended Data Fig. 12a,b). Immature neurons in the SGZ, SVZ and RMS 
have a shared gene expression pattern that includes the expression 
of immature neuron markers such as Draxin, Prox1, Mex3a and Dcx 
(Extended Data Fig. 12e). Besides the shared gene expression patterns 
in DG and OB trajectories, distinct gene expression patterns include 
more lineage-specific genes, such as Rbfox3 and Frmd7 for more mature 
OB neurons, and C1ql2 and Smad3 for mature DG neurons (Extended 
Data Fig. 12f,g).

The migrating neurons in the RMS are separated from the paren-
chyma by astrocytes that form tunnels through which the cells 
migrate71,86. Astro-TE clusters 5229 and 5230, located in the lateral 

ventricle bordering rostral dorsal STR, and clusters belonging to 
the Astro-OLF subclass (5231–5236) match the path of the RMS70–72 
(Extended Data Fig. 12h); the trajectory of these astrocyte clusters 
on the UMAP matches well with the corresponding spatial gradients 
(Fig. 4b). Our data showed two main neuronal populations arising from 
RMS into olfactory bulb, clusters that populate the inner granule and 
mitral cell layers (Extended Data Fig. 12a,c, trajectory c) and clusters 
that populate the outer glomerular layer (Extended Data Fig. 12a,d, 
trajectory d). Immature neurons in the SVZ and RMS are marked by 
the expression of cell cycle-associated genes like Top2a and Mki67 
(Extended Data Fig. 12e,f). As the immature OB neurons exit the RMS, 
they express markers such as Sox11 and S100a687, whereas the mature 
OB neurons are marked by the expression of Frmd7. Astrocytes that 
follow the same trajectory as the immature neurons in the RMS also 
show changes in gene expression along the trajectory that are simi-
lar to the gene expression changes in the IMN population. There are 
290 genes that are differentially expressed along the RMS astrocyte 
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trajectory (Extended Data Fig. 12i), of which 93 genes are also differ-
entially expressed in the OB IMN.

Transcription factors in defining cell types
Transcription factors are considered key regulators of cell-type 
identity88,89. To evaluate the correspondence of transcription factor 
expression to transcriptomic cell types, we calculated the number of 
differentially expressed transcription factors between each pair of 
neuronal versus non-neuronal classes, classes, subclasses or pairs of 
clusters within a subclass (Fig. 5a). We then compared cross-validation 
accuracy of subclass and cluster recalls using classifiers built based 
on all 8,460 DEGs, 534 transcription factor marker genes, 541 func-
tional genes, genes coding for adhesion molecules, and 534 randomly 
selected DEGs (Fig. 5b; see Supplementary Table 5 for full lists of marker 
genes used). The median cluster recall accuracy of cross-validation 
with transcription factors is between that of all DEGs and the random 
subset of DEGs. The cross-validation accuracy of subclass recall with 
transcription factors is 0.94, which is close to the accuracy with all 
DEGs (0.98), whereas the accuracy using functional genes, 857 or 534 
adhesion molecule encoding genes, or the random subset of DEGs is 
lower (accuracy of 0.90, 0.88, 0.81 or 0.75, respectively). The Pearson 
correlation of gene expression between a pair of cell types computed 
using all or a subset of DEGs is a measure of the similarity between the 
two cell types. We compared the pairwise correlation values among all 
clusters computed using all 8,460 DEGs with those computed using the 
adhesion, functional or transcription factor marker gene sets (Extended 
Data Fig. 3e–g). We found that transcription factor marker genes show 
the lowest correlations in gene expression among all clusters compared 
with functional genes, adhesion molecules and all DEGs (Fig. 5c), sug-
gesting that transcription factors have the greatest capability to differ-
entiate cell types. These results quantify the major roles transcription 
factors can have in defining cell-type identities.

We identified a large set of transcription factor co-expression mod-
ules (52 modules) (Methods and Supplementary Table 8) that are selec-
tively expressed in specific groups of cell types at all hierarchical levels 
and hence may define identities of these groups of cell types (Fig. 5d). A 
pallium glutamatergic-specific module includes Tbr1 and Satb2, which 
also show differential expression in different subclasses. Immediate 
early genes Egr3 and Nr4a1 are highly expressed in pallium glutamater-
gic neurons, whereas Fos and Fosb have more uniform expression. 
The bHLH transcription factors including Neurod1, Neurod2, Neurod6 
and Bhlhe22 are widely expressed in many types of neurons but have 
highest expression in pallium glutamatergic cells. The Dlx1, Dlx2, Dlx5, 
Dlx6, Arx, Sp8 and Sp9 module is specific to GABAergic neurons in 
telencephalon, whereas the Gata3, Gata2 and Tal1 module is specific 
to GABAergic neurons in midbrain and pons. Of note, the latter gene 
module is best known as master regulator of haematopoietic develop-
ment90, and is an example of repurposing the same transcription factor 
module for specifying cell types in different systems. Gbx2, Shox2 and 
Tcf7l2 are highly expressed in thalamus glutamatergic neurons91,92, 
whereas Shox2 and Tcf7l2 are also expressed in midbrain. Hox genes 
are specific to medulla GABAergic and glutamatergic neurons, whereas 
Pax2 and Pax8 distinguish medulla GABAergic neurons from medulla 
glutamatergic neurons. We also identified a transcription factor  
module for the Astro–Epen cell class, including Sox9, Gli2, Gli3 and Rfx4, 
and several distinct modules for other non-neuronal cell subclasses.

For most other modules, each module consisted of a few transcrip-
tion factors that are homologues—for example, Nfia, Nfib and Nfix, the 
Zic family, the Irx family, the Ebf family, En1 and En2, Lhx6 and Lhx8, Six3 
and Six6, and Pou4f1, Pou4f2 and Pou4f3. Some of these homologues 
are located next to each other on the same chromosome, such as Dlx1 
and Dlx2, Dlx5 and Dlx6, Irx1 and Irx2, Irx3 and Irx5, Zic1 and Zic4, Zic2 
and Zic5, and Hoxb2–8. These homologues are likely located within the 
same chromatin domains, are regulated by the same enhancers, and 

have highly similar expression patterns. Many co-expressed homo-
logues show subtle but interesting distinctions. Consistent with the 
well-studied roles of Hox genes in regulating anterior–posterior axis 
in development93, Hoxb2 and Hoxb3 have broader expression than 
Hoxb4 and Hoxb5, and Hoxb8 has the most restricted expression pat-
tern in posterior lateral medulla, in the order that is consistent with 
their locations on the chromosome. Although their loci are not very 
near to each other, Nfia, Nfib and Nfix regulate cell-type differentiation 
in many tissues94–96, function as homo- or heterodimers, and bind to 
largely common targets97. Similar interactions between homologues 
have been reported for many other transcription factor families, such 
as Ebf98 and Irx99. Finally, we identified a set of transcription factors 
such as Meis1 and Meis2, and Nr2f1 and Nrf2f2, that are widely expressed 
but delineate closely related subclasses and clusters and show local 
spatial gradients.

Although many transcription factor homologues are co-expressed 
(Fig. 5d), they can also show distinct expression patterns. We exam-
ined the expression patterns of several transcription factor families 
(Extended Data Fig. 13), including forkhead box (Fox), Krüppel-like 
factor (Klf), LIM homeobox (Lhx), NKX-homeodomain (Nkx), nuclear 
receptor (Nr), Paired box (Pax), POU domain (Pou), positive regulatory 
domain (Prdm), SRY-related HMG-box (Sox), and T-box (Tbx), all of 
which have been shown to have important roles in spatial patterning, 
cell-type specification and differentiation during development100–107. 
In each family, only the transcription factor markers identified in this 
study are included. Members of the same transcription factor family 
evolved from common ancestors, have strong sequence conservation, 
and very similar DNA binding motifs. Revealing their distinct cell-type 
specificity provides deeper insights into the evolution of these tran-
scription factor families.

Particularly intriguing is the LIM homeobox family, which can be 
split into multiple groups with complementary expression patterns 
that together cover most neuronal types in the brain. Lhx2 and Lhx9 
are co-expressed in thalamus and midbrain glutamatergic types, but 
Lhx2 is also specifically expressed in the pallium IT–ET types108,109. Lhx6 
and Lhx8 are co-expressed in some CNU and hypothalamus GABAergic 
types110,111, but Lhx6 is also specifically expressed in MGE types. Lhx1 and 
Lhx5 are co-expressed in HY MM, as well as in midbrain and hindbrain 
cell types where they are more widely expressed in GABAergic than 
glutamatergic types. Lmx1a and Lmx1b are co-expressed in hindbrain 
glutamatergic and midbrain dopaminergic cell types112, and Lmx1b is 
also specifically expressed in serotonergic types113,114. Lhx3 and Lhx4 
are co-expressed in very specific glutamatergic types in hindbrain and 
pineal gland. Isl1 is widely expressed in hypothalamus and CNU, and 
more highly in GABAergic than glutamatergic cell types115. The group-
ing of Lhx members based on their gene expression patterns exactly 
matches their phylogeny tree based on their coding sequences106 and 
aligns with the sub-family definition.

Brain region-specific cell-type features
The results presented above showed that each cell type has a specific 
spatial localization. To compare the global spatial distribution pat-
terns of all cell types and the relationship between transcriptomic 
similarity and spatial proximity, we quantified the brain-wide spatial 
distribution patterns of all cell subclasses against all mid-ontology level 
brain regions (Supplementary Table 9) using the CCFv3-registered 
whole-brain MERFISH dataset (Fig. 6a). The result showed that all neu-
ronal subclasses are restricted to a particular brain region, whereas 
non-neuronal subclasses are more widely distributed. Transcrip-
tomically more similar cell types are located closer to each other 
spatially—for example, neuronal subclasses within the same class are 
mostly colocalized within the same major brain region. Conversely, 
transcriptomically more distant cell types are spatially further apart 
from each other. Each major brain region has its own specific sets of 
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both glutamatergic and GABAergic neuronal subclasses that are mostly 
colocalized. Although not illustrated here, such high correspondence 
between transcriptomic and spatial specificity extends to supertype 
level. We further used the Gini coefficient and Shannon diversity index 
to measure the extent of variation in spatial distribution among sub-
classes (Fig. 6a; also see Extended Data Fig. 14 for Gini coefficient), and 
both reveal very high inequality (that is, highly localized patterns) in 
spatial distribution of each neuronal subclass.

We further evaluated the correspondence between transcriptomic 
identity and spatial specificity by computing their mutual predict-
ability (Methods) using imputed whole-transcriptomic profiles in 
the MERFISH space (Extended Data Fig. 8). As glutamatergic and 
GABAergic neurons colocalize in many brain regions, which would 
confound the space-to-transcriptome prediction, we performed the 
analysis in two separate groups, one with the GABA classes and the 
other with Glut, Dopa and Sero classes. We found high predictability 
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from 3D coordinates in CCFv3 for transcriptomic classes and sub-
classes (Extended Data Fig. 15), with confusions seen only among 
a few closely related subclasses. Similarly, there was a high degree 
of predictability from transcriptomic identities to the location of 
cell types in CCFv3 subregions, with confusions mostly confined 
to neighbouring subregions (Extended Data Fig. 16). This analysis 

indicates that most CCFv3 structures contain distinct neuronal cell 
types. Notably, the prediction of GABAergic subclasses and their 
spatial location in both directions appears to have more confusions, 
especially in the Subpallium-GABA neighbourhood, consistent with 
the more widespread distribution across multiple cortical areas of 
many GABAergic cell types23,26.
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Fig. 6 | Brain region-specific features of cell types. a, Heat map showing the 
CCFv3 region distribution ( y axis) in each subclass (x axis) for MERFISH cells. 
Bar graphs on the left show the broad CCFv3 regions, proportion of neuronal 
versus glial cells per region of interest (ROI), and proportion of neurotransmitter 
types per ROI. Bar graphs on the right show broad CCFv3 regions, Shannon 
diversity per subclass and supertype, and number of cells per ROI. Bar graphs 
on the top show number of cells per subclass, Gini coefficient and class 
assignment. Bar graphs on the bottom show subclass and class annotations.  
b, Scatter plot showing the number of neuronal clusters identified per major 
brain region versus the number of neuronal cells profiled by scRNA-seq in the 
corresponding region. Each neuronal cluster is assigned to the most dominant 
region. c, As in b, except numbers of clusters and profiled cells are normalized 

by the region volume. d, Distribution of the number of DEGs (identified in 
scRNA-seq data) between every pair of neuronal clusters within each major 
brain region, split into indicated quantiles. The curves show the spread of the 
number of DEGs between more similar types at 0.1 quantile versus the more 
distinct types at 0.9 quantile. e, Scatter plot showing the number of cells 
mapped to a given neuronal cluster versus the span (as measured by IQR) of 
their 3D coordinates along the anteroposterior, dorsoventral and mediolateral 
axes based on the MERFISH dataset, stratified by the major brain regions.  
Note that both axes are in log scales. The plot shows how localized the clusters 
are within each region along each spatial axis. IQR, inter-quantile range  
(the difference between 75% quantile and 25% quantile). Pall, pallium.
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We found that the numbers of clusters from different regions do not 
correlate with the numbers of cells profiled by scRNA-seq even when 
corrected for brain region volumes (Fig. 6b,c); rather, region-specific 
characteristics dominate. The hypothalamus, midbrain and hindbrain 
regions contain the largest numbers of clusters, indicating a high 
degree of cell-type complexity, consistent with these broad regions 
having many small and heterogeneous subregions. By contrast, despite 
orders of magnitude more cells profiled in the pallium owing to the 
many subregions contained within it (including isocortex, HPF, OLF 
and CTXsp, each containing multiple subregions) and its overall 4 to 
15 times larger volume compared with other major brain structures 
(Supplementary Table 1), we found an intermediate number of clusters 
for the entire pallium, similar to the other telencephalic structure, the 
subpallial CNU. Overall, after volume normalization, pallium, CNU, 
thalamus and cerebellum contain smaller numbers of clusters, sug-
gesting lower complexity than hypothalamus, midbrain and hindbrain.

We calculated the number of DEGs between each pair of clusters 
within a brain region, divided the numbers into nine quantiles based on 
similarities (that is, higher similarity yields fewer number of DEGs) and 
plotted their distribution by quantiles (Fig. 6d). In regions with larger 
numbers of clusters—that is, hypothalamus, midbrain and hindbrain—
the clusters are more similar to each other within each region, suggest-
ing that cell types in these regions have lower level of transcriptomic 
differences and are less hierarchical. By contrast, in regions with smaller 
numbers of clusters—that is, cerebellum, thalamus and pallium—there 
are large differences in numbers of DEGs between clusters; thus, cell 
types in these regions appear to be more diverse and hierarchical. CNU 
exhibits an intermediate level of diversity.

We calculated the 3D spatial span of each cluster based on the  
MERFISH dataset and aggregated the spans of all clusters within each 
brain region (Fig. 6e). Again, different regions show differential char-
acteristics, with clusters in pallium, CNU and cerebellum having much 
larger spans suggesting more widespread distributions, and clusters 
in hypothalamus, midbrain and hindbrain having much smaller spans 
suggesting more confined localization. Consistent with this, when 
quantifying the number of clusters in each subregion, we observed 
more clusters in individual cortical areas than in many hypothalamus, 
midbrain and hindbrain nuclei (Extended Data Fig. 17a), suggesting that 
there are more cell types intermixed in each cortical area than in hypo-
thalamus, midbrain and hindbrain subregions. Furthermore, cluster 
sizes (tha is, the number of cells in each cluster) also vary among major 
brain regions (Extended Data Fig. 17b), with hypothalamus, midbrain 
and hindbrain containing more smaller clusters.

We investigated sex differences in the whole mouse brain transcrip-
tomic cell-type atlas. We identified 26 clusters across 11 subclasses with 
a skewed distribution of cells derived from the two sexes (Fig. 1a and 
Supplementary Table 7). Of these, 5 are small, sex-specific clusters: 
clusters 211, 1299, 2470 and 2472 are male-specific and cluster 2293 is 
female-specific. The 21 sex-dominant clusters include 1301, 1891, 1895, 
1898, 1915, 1916, 2251, 2282, 2290 and 4246, which contain mostly cells 
from female donors; and clusters 1293, 1304, 1306, 1562, 1685, 1881, 
1890, 1913, 2247, 2281 and 4088, which contain mostly cells from male 
donors. On the basis of the MERFISH data, these clusters mostly reside 
in specific regions of PAL, sAMY, hypothalamus and hindbrain.

Within the whole mouse brain scRNA-seq dataset, we also collected a 
complete subset of data covering all brain regions from the dark phase 
of the circadian cycle (Supplementary Table 2, total 1,121,542 10xv3 
cells). All the dark-phase transcriptomes were included in the overall 
clustering analysis. In all but one subclass, they are found commingled 
with the corresponding light-phase transcriptomes (the exception 
being subclass 282, with only 22 cells that are all from the light phase) 
(Extended Data Fig. 3e and Supplementary Table 7). Out of all 5,322 clus-
ters, there are 335 clusters that do not contain dark-phase cells, whereas 
none contain dark-phase cells only. Detailed gene expression analysis 
at class and subclass levels revealed widespread expression differences 

of canonical circadian clock genes between the light and dark phases 
(Extended Data Fig. 18). Across many neuronal and non-neuronal classes 
and subclasses throughout the brain, nearly all clock genes show con-
sistently higher expression levels in the dark phase than the light phase, 
except for Arntl, which displays an opposite pattern. The 262 Pineal Crx 
Glut subclass, located in the dorsal part of the third ventricle and on 
top of superior colliculus (SC) in the MERFISH data, which probably 
represents the pinealocytes that evolved from photoreceptor cells and 
secret melatonin116, has particularly strong circadian gene expression 
fluctuations (Extended Data Fig. 18b,c). Furthermore, in the 094 SCH 
Six6 Cdc14a Gaba subclass, which is specific to the suprachiasmatic 
nucleus (SCH), the circadian pacemaker of the brain, most clock genes 
(for example, Per1, Per3, Dbp, Nr1d1 and Nr1d2) have higher levels of 
expression in the light phase than the dark phase, suggesting that the 
pacemaker cells are at a different phase of the circadian cycle of gene 
expression from the rest of the brain, consistent with previous find-
ings117 (Extended Data Fig. 18b,c). Of note, the vascular 329 ABC NN 
subclass also displays a similar phase shift. These results suggest that 
our whole mouse brain transcriptomic cell-type atlas also captured 
circadian state-dependent gene expression changes. Although super-
vised analysis can reveal these changes, our cell-type classification is 
not significantly affected by the different circadian states.

Discussion
In this study, we created a comprehensive, high-resolution transcrip-
tomic cell-type atlas for the whole adult mouse brain based on the com-
bination of whole-brain-scale scRNA-seq and MERFISH datasets. The 
cell-type atlas was hierarchically organized into four nested levels: 34 
classes, 338 subclasses, 1,201 supertypes and 5,322 clusters (Fig. 1). The 
neuronal cell-type composition in each major brain region was system-
atically analysed (Fig. 2) and distinct features in different brain regions 
were identified (Fig. 6). We identified many sets of neuronal types with 
varying degrees of similarity with each other, including highly distinct 
neuronal types as well as transitional neuronal types across regions. 
We also systematically analysed all classes of non-neuronal cell types 
as well as immature neuronal types and identified their unique spa-
tial distribution and spatial interaction patterns (Fig. 4 and Extended 
Data Fig. 12). Finally, we characterized cell-type-specific expression of  
neurotransmitters, neuropeptides and transcription factors (Figs. 3 
and 5 and Extended Data Fig. 10) and identified unique characteris-
tics for each, as discussed below. This large-scale study enabled us to 
delineate several principles regarding cell-type organization across 
the whole brain. It provides a reference cell-type atlas as a resource for 
the community that will enable many more discoveries in the future.

One of the most notable findings from our study is the high degree of 
correspondence between transcriptomic identity and spatial specificity 
(Figs. 2–4 and 6). Every subclass (and all supertypes and many clusters 
within each) has a unique and specific spatial localization pattern within 
the brain. The relative relatedness between transcriptomic types is 
strongly correlated with the spatial relationship between them (Fig. 6a 
and Extended Data Figs. 3, 15 and 16). Transcriptomically similar cell 
types are often found in the same region, or in some cases in related 
regions that have a common developmental origin. Transitional cell 
types in the transcriptomic space are also found crossing regional 
boundaries. The strong correspondence between transcriptomic and 
spatial specificity and relatedness indicates the importance of anatomi-
cal specialization of cell types and lends strong support to the robust-
ness and validity of our transcriptome-derived cell-type classification.

Another notable finding is the distinct features of cell-type organi-
zation in different major brain structures (Fig. 6). The anterior and 
dorsal brain regions, including OLF, isocortex, HPF, STR, thalamus and 
cerebellum, contain cell classes and types that are highly distinct from 
the other parts of the brain. Cell types in these regions tend to be more 
widely distributed, and are often shared between neighbouring regions 
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or subregions. By contrast, cells from the ventral part of the brain—
including ventral PAL, extended amygdala, hypothalamus, midbrain, 
pons and medulla—form many small clusters that are closely related to 
each other. These cell types often have restricted spatial localization 
that likely underlies the small nuclei characteristic of these regions. 
This dichotomy between the roughly dorsal and ventral parts of the 
brain may reflect the different evolutionary histories of these brain 
structures. We hypothesize that the ventral part of the brain mainly 
carries out the survival function of the organism (such as feeding, 
reproduction and metabolic homeostasis) and is thus more ancient 
and subject to more evolutionary constraints; as such, there are many 
dedicated cell types and circuits in this part of the brain, and they have 
not changed markedly during evolution. Conversely, the dorsal part 
of the brain mainly carries out the adaptive function of the organism 
(such as sensorymotor specialization and cognition), and its structure, 
function and underlying cell types have expanded and diversified more 
rapidly during evolution.

While neuronal types constitute the vast majority of cell types in the 
brain and exhibit high regional specificity, non-neuronal cell types are 
generally more widely distributed, except for astrocytes and ependy-
mal cells, which have multiple subclasses with regional specificity. 
However, at the cluster level, we also observed a great degree of spa-
tial specificity in non-neuronal cell types, especially for astrocytes, 
ependymal cells, tanycytes and VLMCs, indicating specific neuron–glia 
and glia–vasculature interactions (Fig. 4). We also identified several 
groups of immature neuronal types and could infer their trajectories 
to mature neuronal types in olfactory bulb and dentate gyrus on the 
basis of their spatial localization and transitioning gene signatures 
(Extended Data Fig. 12).

We examined neurotransmitter and neuropeptide expression in cell 
types across the brain. We found a diverse set of neuronal clusters with 
glutamate–GABA co-transmission from many brain regions (Extended 
Data Fig. 9). We identified all cell types expressing different modula-
tory neurotransmitters and found that they often co-release glutamate  
and/or GABA. The neuromodulatory cell types often have closely related 
glutamatergic and/or GABAergic clusters within the same subclass, 
showing a high degree of heterogeneity in neurotransmitter content in 
these cell populations (Fig. 3). Of note, our assignment of neurotrans-
mitter types based on synthesizing enzymes and transporter genes is 
conservative; there may be even more diversity in neurotransmitter 
co-release patterns if other unconventional transmitter release routes 
are considered57,118. Similarly, there is a wide spectrum of expression 
patterns among the different neuropeptide genes—some are widely 
expressed in many cell types, whereas others are highly specific to one 
or few cell types (Extended Data Fig. 10). Furthermore, there are numer-
ous co-expression combinations of two or more neuropeptide genes in 
many neuronal clusters (Supplementary Table 7). These results support 
the extraordinary diversity in intercellular communications in the brain.

Transcription factors are known to have major roles in pattern-
ing brain regions, defining neural progenitor domains and specify-
ing cell-type identities during development. Here we found that in 
the adult brain, transcription factors also are major determinants in 
defining cell types across all regions of the brain. Comparison of gene 
expression correlation matrices among all pairs of clusters showed that 
transcription factors have the greatest overall power to distinguish 
cell types (Fig. 5 and Extended Data Fig. 3). We identified transcription 
factor genes and co-expression modules that are specific at different 
hierarchical levels (Fig. 5d, Extended Data Fig. 13 and Supplementary 
Table 8). We observed several different modes of coordination among 
transcription factors. The first mode is the coordinated expression of 
different transcription factors (often pairs of transcription factors) 
within the same transcription factor gene family in specific cell types. 
The second is the combination of transcription factors at different 
hierarchical branch levels to collectively define the identity of the 
leaf-node cell types. The third represents the intersection between 

different sets of transcription factors that define molecular identity 
or spatial specificity, respectively, within a cell type. These findings 
reveal how transcription factors form a combinatorial code that lays 
out the highly complex cell-type landscape.

The above findings of the high correspondence between transcrip-
tomic identities and spatial distribution patterns of cell types and the 
prominent roles of transcription factors in defining both transcrip-
tomic and spatial specificity paint a unified picture of the brain archi-
tecture—that is, different anatomical regions contain highly diverse 
sets of cell types that are defined by a master plan of transcription 
factors. Prior knowledge informed us that the transcription factor 
master plan is played out during development to generate cell types 
and brain regions in a stepwise manner. Therefore, studying cell types 
in the developing brain will be extremely informative for gaining a 
mechanistic understanding of the formation of the brain architecture 
(from which brain functions emerge). This understanding will further 
enable the refinement and revision of existing anatomical ontologies, 
which are based on the current limited knowledge about brain develop-
ment at cellular level, and lead to new cell-type-based brain atlases that 
integrate developmental and adult brain circuit information.

Consistent with the principle of hierarchical cell-type organization 
identified in previous studies2, here we have defined a hierarchical  
taxonomy of cell types across the entire mouse brain, with four  
levels of classification: class, subclass, supertype and cluster (or type). 
This classification scheme is analogous to the Linnaean classification 
system of species and continues to be a useful general framework for 
defining cell types, since—like species—cell types are the product of 
evolution2, evolving from singular to multiple with the genetic linkages 
to their ancestors and siblings stored in their genomes, epigenomes 
and transcriptomes. At the same time, the transcriptomic profile of 
each cell is multidimensional, containing not only information about 
the cell-type identity, but also information about many other aspects 
of cellular properties such as connectivity, function or a particular cell 
state. Therefore, the transcriptomic relationships between cell types 
are both hierarchical and multidimensional.

We also emphasize the great technical challenges we encountered 
when analysing these large and highly complex datasets and the two 
main caveats for the results presented here. First, owing to the dif-
ficulty in dissociating and isolating intact cells from the adult brain 
tissue—especially in highly myelinated areas—our scRNA-seq dataset 
contained many types of low-quality cells, including damaged cells 
and mixed debris of various cell-type combinations. These low-quality 
transcriptomes could be mistaken as real cell types, part of a cell-type 
continuum, or transitional cell types. They could also drive substantial 
wrong mapping of MERFISH cells, as we discovered in our analysis. 
To generate a high-quality transcriptomic cell-type atlas with precise 
spatial annotation, we developed a set of QC metrics that are more 
stringent than those widely used in the field, and therefore we disquali-
fied a high proportion of cells from our scRNA-seq dataset (Extended 
Data Fig. 1). During this process, it is likely that some cell types were 
more selectively depleted than others, especially large neurons that are 
more vulnerable to damage during tissue dissociation—such as Purkinje 
cells and large motor neurons in the midbrain and hindbrain. Thus, cell 
types in the midbrain and hindbrain may not be fully represented or 
fully resolved in our atlas. To compensate for this, we performed more 
refined clustering on the particularly messy midbrain and hindbrain 
cell types present in our scRNA-seq data and further supplemented 
it with a small set of high-quality snRNA-seq transcriptomes that we 
generated separately to make our cell-type taxonomy more complete 
in this part of the brain.

Second, although we used only the selected high-quality single-cell 
transcriptomes to construct the cell atlas, the relationships between 
the large number of cell types across the entire brain are still highly 
complex and cannot be fully captured by a one-dimensional hier-
archical tree or two-dimensional UMAPs. We conducted extensive 
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iterative clustering to try to resolve all dimensions of variation at the 
cluster level. Thus, not every cluster may represent a true cell type; our 
categorization scheme may also need to be revised in the future with 
better computational methods and/or more experimental evidence 
(especially developmental data). Lastly, owing to the sheer scale of the 
atlas, we have not extensively incorporated the vast amount of existing 
data and knowledge about cell types in many parts of the brain to help 
better annotate the cell-type atlas. Moving forward, it will be critical to 
engage the neuroscience community to collectively annotate, refine 
and enhance this whole mouse brain cell-type atlas, and we hope that 
the online platform we have provided will facilitate this effort.

In conclusion, the transcriptomic and spatial cell-type atlas of the 
whole mouse brain establishes a foundation for deep and integrative 
investigations of cellular and circuit function, development and evo-
lution of the brain, akin to the reference genomes for studying gene 
function and genomic evolution. The atlas provides baseline gene 
expression patterns that enable investigation of the dynamic changes 
in gene expression and cellular function in different physiological and 
diseased conditions. It enables the creation of cell-type-targeting tools 
for labelling and manipulating specific cell types to probe and modify 
their functions in vivo. The atlas provides a foundational framework 
for organizing and integrating the vast knowledge about the brain 
structure and function, facilitating the extraction of new principles 
from the extraordinarily complex cell-type and circuit landscape. It pro-
vides a guidepost for generating similarly comprehensive and detailed 
cell-type atlases for other species as well as across developmental times, 
facilitating cross-species comparative studies and gaining mechanistic 
insights into the genesis of cell types and circuits in the mammalian 
brain. Understanding the conservation and divergence of cell types 
between human and model organisms will have profound implications 
for the study of human brain function and diseases.
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Methods

Mouse breeding and husbandry
All experimental procedures related to the use of mice were approved 
by the Institutional Animal Care and Use Committee of the AIBS, in 
accordance with NIH guidelines. Mice were housed in a room with tem-
perature (21–22 °C) and humidity (40–51%) control within the vivarium 
of the AIBS at no more than five adult animals of the same sex per cage. 
Mice were provided food and water ad libitum and were maintained 
on a regular 14:10 h light:dark cycle, or on a reversed 12:12 h light:dark 
cycle. Mice were maintained on the C57BL/6 J background. We excluded 
any mice with anophthalmia or microphthalmia.

We used 95 mice (41 female, 54 male) to collect 2,492,084 cells for 
10xv2 and 222 mice (112 female, 110 male) to collect 4,466,283 cells for 
10xv3. Animals were euthanized at postnatal day (P)53–59 (n = 141), 
P50–52 (n = 3), or P60–71 (n = 173). No statistical methods were used 
to predetermine sample size. All donor animals used for scRNA-seq 
data generation are listed in Supplementary Table 2.

Transgenic driver lines were used for fluorescence-positive cell isola-
tion by fluorescence-activated cell sorting (FACS) to enrich for neurons. 
Most cells were isolated from the pan-neuronal Snap25-IRES2-cre line 
(RRID:IMSR_JAX:023525) crossed to the Ai14-tdTomato reporter119,120 
(RRID:IMSR_JAX:007914) (279 out of 317 donors, Supplementary 
Table 2). A small number of Gad2-IRES-cre/wt;Ai14/wt (6 donors) and 
Slc32a1-IRES-cre/wt;Ai14/wt mice (4 donors) (Gad2-IRES-cre: RRID:IMSR_
JAX:028867; Slc32a1-IRES-cre: RRID:IMSR_JAX:028862) were used 
for fluorescence-positive cell isolation to enrich for the sampling of 
GABAergic neurons in hippocampal region, OLF and cerebellum. For 
unbiased sampling without FACS, we used either Snap25-IRES2-cre/
wt;Ai14/wt or Ai14/wt mice.

The number of mice contributing to each cluster varies between 2 
and 266, with an average of 19 and median of 14. There are 23 clusters 
that have fewer than 4 donor animals each. Thus, individual mouse 
variability should not affect cell-type identities (Extended Data Fig. 5).

For cell collection during the dark phase of the circadian cycle, mice 
were randomly assigned to circadian time groups at time of weaning 
and housed on the reversed 12:12 h light:dark cycle. Brain dissections 
for all groups took place in the morning. From 267 donors, 5,836,825 
cells were collected during the light phase of the light:dark cycle. For 
50 donors, 1,121,542 cells across the whole brain were collected during 
the dark phase of the light:dark cycle (Supplementary Table 2).

scRNA-seq
Single-cell isolation. We used CCFv3 (RRID: SCR_002978) ontology22 
(http://atlas.brain-map.org/, Supplementary Table 1) to define brain  
regions for profiling and boundaries for dissection. We covered all 
regions of the brain using sampling at top-ontology level with judi-
cious joining of neighbouring regions (Extended Data Fig. 1d,e and 
Supplementary Table 3). These choices were guided by the fact that 
microdissections of small regions were difficult. Therefore, joint dis-
section of neighbouring regions was sometimes necessary to obtain 
sufficient numbers of cells for profiling. Comparison with subsequently 
generated MERFISH data showed that our CCFv3-based microdissec-
tions were largely accurate at cell subclass and major brain region levels 
(Extended Data Fig. 2h).

Single cells were isolated following a cell-isolation protocol devel-
oped at AIBS23,121. The brain was dissected, submerged in artificial 
cerebrospinal fluid (ACSF), embedded in 2% agarose, and sliced into 
350-µm coronal sections on a compresstome (Precisionary Instru-
ments). Block-face images were captured during slicing. ROIs were 
then microdissected from the slices and dissociated into single cells 
as previously described23. Fluorescent images of each slice before and 
after ROI dissection were taken at the dissection microscope. These 
images were used to document the precise location of the ROIs using 
annotated coronal plates of CCFv3 as reference.

Dissected tissue pieces were digested with 30 U ml−1 papain  
(Worthington PAP2) in ACSF for 30 min at 30 °C. Due to the short incu-
bation period in a dry oven, we set the oven temperature to 35 °C to 
compensate for the indirect heat exchange, with a target solution tem-
perature of 30 °C. Enzymatic digestion was quenched by exchanging the 
papain solution three times with quenching buffer (ACSF with 1% FBS 
and 0.2% BSA). Samples were incubated on ice for 5 min before tritura-
tion. The tissue pieces in the quenching buffer were triturated through 
a fire-polished pipette with 600-µm diameter opening approximately 
20 times. The tissue pieces were allowed to settle and the supernatant, 
which now contained suspended single cells, was transferred to a new 
tube. Fresh quenching buffer was added to the settled tissue pieces, and 
trituration and supernatant transfer were repeated using 300-µm and 
150-µm fire-polished pipettes. The single-cell suspension was passed 
through a 70-µm filter into a 15-ml conical tube with 500 µl of high-BSA 
buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help cushion the 
cells during centrifugation at 100g in a swinging-bucket centrifuge for 
10 min. The supernatant was discarded, and the cell pellet was resus-
pended in the quenching buffer. We collected 1,508,284 cells without 
performing FACS. The concentration of the resuspended cells was 
quantified, and cells were immediately loaded onto the 10x Genomics 
Chromium controller.

To enrich for neurons or live cells, cells were collected by fluorescence- 
activated cell sorting (FACS, BD Aria II running FACSdiva v8) using a 
130-µm nozzle, following a FACS protocol developed at AIBS122. Cells 
were prepared for sorting by passing the suspension through a 70-µm 
filter and adding Hoechst or DAPI (to a final concentration of 2 ng ml−1). 
Sorting strategy with example images122 was as previously described23, 
and most cells were collected using the tdTomato-positive label. 
Around 30,000 cells were sorted within 10 min into a tube containing 
500 µl of quenching buffer. We found that sorting more cells into one 
tube diluted the ACSF in the collection buffer, causing cell death. We 
also observed decreased cell viability for longer sorts. Each aliquot of 
sorted 30,000 cells was gently layered on top of 200 µl of high-BSA 
buffer and immediately centrifuged at 230g for 10 min in a centrifuge 
with a swinging-bucket rotor (the high-BSA buffer at the bottom of 
the tube slows down the cells as they reach the bottom, minimizing 
cell death). No pellet could be seen with this small number of cells, so 
we removed the supernatant and left behind 35 µl of buffer, in which 
we resuspended the cells. Immediate centrifugation and resuspension 
allowed the cells to be temporarily stored in a high-BSA buffer with 
minimal ACSF dilution. The resuspended cells were stored at 4 °C until 
all samples were collected, usually within 30 min. Samples from the 
same ROI were pooled, cell concentration quantified, and immediately 
loaded onto the 10x Genomics Chromium controller.

Single-nucleus isolation. Some neuronal types are difficult to isolate 
using a cell-isolation procedure. We collected additional single-nucleus 
10x Multiome data in midbrain and hindbrain regions to supplement 
cell types lost due to technical limitations.

Mice were anaesthetized with 2.5–3% isoflurane and transcardially 
perfused with cold, pH 7.4 HEPES buffer containing 110 mM NaCl, 10 mM 
HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2, and 2.5 mM KCl 
to remove blood from brain123. Following perfusion, the brain was dis-
sected quickly, frozen for 2 min in liquid nitrogen vapour and then 
moved to −80 °C for long term storage following a freezing protocol 
developed at AIBS124.

Frozen mouse brains were sectioned using a cryostat with the cryo-
chamber temperature set at −20 °C and the object temperature set 
at −22 °C. Brains were securely mounted by the cerebellum or by the 
olfactory region onto cryostat chucks using OCT (Sakura FineTek 
4583). Tissue was trimmed using a thickness of 20–50 µm and once 
at the desired location slices with thickness of 300 µm were gener-
ated to dissect out ROI(s) following reference atlas. Images were taken 
while leaving the dissection in the cutout section. Nuclei were isolated 
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using the RAISINs method125 with a few modifications as described in a 
nuclei isolation protocol developed at AIBS126. In short, excised tissue 
dissectates were transferred to a 12-well plate containing CST extrac-
tion buffer. Mechanical dissociation was performed by chopping the 
dissectate using spring scissors in ice-cold CST buffer for 10 min. The 
entire volume of the well was then transferred to a 50-ml conical tube 
while passing through a 100-µm filter and the walls of the tube were 
washed using ST buffer. Next the suspension was gently transferred to 
a 15-ml conical tube and centrifuged in a swinging-bucket centrifuge 
for 5 min at 500 rcf and 4 °C. Following centrifugation, the majority of 
supernatant was discarded, pellets were resuspended in 100 µl 0.1× lysis 
buffer and incubated for 2 min on ice. Following addition of 1 ml wash 
buffer, samples were gently filtered using a 20-µm filter and centrifuged 
as before. After centrifugation most of the supernatant was discarded, 
pellets were resuspended in 10 µl chilled nuclei buffer and nuclei were 
counted to determine the concentration. Nuclei were diluted to a con-
centration targeting 5,000 nuclei per µl.

cDNA amplification and library construction. For 10xv2 processing, 
we used Chromium Single Cell 3′ Reagent Kit v2 (120237, 10x Genomics). 
We followed the manufacturer’s instructions for cell capture, barcod-
ing, reverse transcription, cDNA amplification, and library construc-
tion127. We loaded 11,870 ± 4,146 (mean ± s.d.) cells per port. We targeted 
sequencing depth of 60,000 reads per cell; the actual average achieved 
was 54,379 ± 34,845 (mean ± s.d.) reads per cell across 299 libraries.

For 10xv3 processing, we used the Chromium Single Cell 3′ Reagent 
Kit v3 (1000075, 10x Genomics). We followed the manufacturer’s 
instructions for cell capture, barcoding, reverse transcription, cDNA 
amplification and library construction128. We loaded 13,404 ± 2,798 
cells per port. We targeted a sequencing depth of 120,000 reads per 
cell; the actual average achieved was 83,190 ± 85,142 reads per cell 
across 482 libraries.

For 10x Multiome processing, we used the Chromium Next GEM Sin-
gle Cell Multiome ATAC + Gene Expression Reagent Bundle (1000283, 
10x Genomics). We followed the manufacturer’s instructions for trans-
position, nucleus capture, barcoding, reverse transcription, cDNA 
amplification and library construction129. For the snRNA-seq libraries, 
we loaded 16,007 ± 692 nuclei per port and targeted a sequencing depth 
of 120,000 reads per nucleus. The actual average achieved, for the 
nuclei included in this study, was 157,023 ± 68,484 reads per nucleus 
across 1,687 nuclei.

Sequencing data processing and QC. Processing of 10x Genomics 
scRNA-seq libraries was performed as described previously23. In brief, 
libraries were sequenced on the Illumina NovaSeq6000, and sequenc-
ing reads were aligned to the mouse reference transcriptome (M21, 
GRCm38.p6) using the 10x Genomics CellRanger pipeline (version 
6.1.1) with default parameters.

10x Genomics Multiome (10xMulti) libraries were sequenced on 
the Illumina NovaSeq6000, and sequencing reads were aligned to the 
mouse references downloaded from 10x Genomics, which includes 
ensembl GRCm38 (v98) fasta and gencode (vM23) gtf file, using the 
10x Genomics CellRanger Arc (v2.0) workflow with default parameters.

To remove low-quality cells, we developed a stringent QC process. 
Cells were first classified into broad cell classes after mapping to 
an existing, preliminary version of taxonomy, and cell quality was 
assessed based on gene detection, QC score, and doublet score. The 
QC score was calculated by summing the log-transformed expression 
of a set of genes whose expression level is decreased significantly in 
poor quality cells. These are housekeeping genes that are strongly 
expressed in nearly all cells with a very tight co-expression pattern 
that is anti-correlated with the nucleus localized gene Malat1 (Supple-
mentary Table 4). Out of the 62 such genes chosen, 30 are annotated as 
mitochondrial inner membrane category based on GO ontology cel-
lular component, although they are not located on the mitochondrial 

chromosome. Some evidence suggests the mRNAs of some of these 
genes or their homologues are translocated to the mitochondrial sur-
face130,131. We used this QC score to quantify the integrity of cytoplasmic 
mRNA content, which tended to show bimodal distribution. Cells at 
the low end were very similar to single nuclei, which we removed for 
downstream analysis. Doublets were identified using a modified ver-
sion of the DoubletFinder algorithm132 (available in scrattch.hicat, 
https://github.com/AllenInstitute/scrattch.hicat, v1.0.9) and removed 
when doublet score >0.3. Using QC score and gene-count thresholds 
that were tailored to different cell classes, we filtered out 43% and 29% 
of cells and kept 2,546,319 cells and 1,769,304 cells for 10xv3 and 10xv2 
data, respectively (Extended Data Fig. 1). Threshold parameters and 
number of cells filtered are summarized in Supplementary Table 4. For 
example, for neurons (excluding granule cells) we used gene counts 
cutoff of 2,000 and QC score cutoff of 200.

We adopted a similar strategy to filter low-quality nuclei for the 
10xMulti snRNA-seq dataset. Nuclei were first classified into broad cell 
classes after mapping to an existing, preliminary version of taxonomy, 
and cell quality was assessed based on gene detection, QC score, and 
doublet score. For 10xMulti snRNA-seq dataset, although the overall 
gene counts were lower compared to 10xv3 scRNA-seq dataset, they 
showed stronger bimodal distribution of QC metrics, so we could afford 
to keep the high cutoffs. For neurons (excluding granule cells), we 
applied the gene-count cutoff of 2,000, and QC score cutoff of 100.

Clustering scRNA-seq data. Clustering for both 10xv2 and 10xv3 
datasets was performed independently using the in-house developed 
R package scrattch.bigcat (v0.0.5, available via github https://github.
com/AllenInstitute/scrattch.bigcat), which is a scaled-up version of R 
package scrattch.hicat23,26 to deal with the increased size of datasets. 
Scrattch.bigcat adopted the parquet file format for storing sparse 
matrix, which allows for manipulation of matrices that are too large 
to fit in memory through memory mapping to files on disk. The whole 
gene-count matrices were chunked to smaller parquet files with bin size 
of 50,000 for cells, and 500 for genes, which could be loaded efficiently 
and concurrently using the arrow package (v12.0.1, https://github.com/
apache/arrow/, https://arrow.apache.org/docs/r/).

We provide utility functions to convert and concatenate sparse 
matrices in R to this format, and functions for conversion between 
this format and other commonly used file formats such as h5, h5ad 
and Zarr. We also provide a function that loads any sub-matrix into the 
memory given the cell IDs and gene IDs. The choice of parquet format 
is based on its great performance in R, which allows continual usage 
of our legacy codebase. The major functions of scrattch.hicat pack-
age were rewritten and made available in scrattch.bigcat. We used the 
automatic iterative clustering method, iter_clust_big, which performed 
clustering in top down manner into cell types of increasingly finer reso-
lution without any human intervention, while ensuring that all pairs of 
clusters, even at the finest level, were separable by stringent differential 
gene expression criteria as follows: for 10v2, q1.th = 0.4, q.diff.th = 0.7, 
de.score.th = 150, min.cells = 10; for 10xv3, q1.th = 0.5, q.diff.th = 0.7, 
de.score.th = 150, min.cells = 4. These criteria translated to at least 8 
binary DEGs between any pair of clusters (each DEG’s contribution to 
de.score was capped at 20, so at least 8 genes were needed to exceed 
de.score.th of 150). Binary DEGs were defined as genes expressed 
in at least 40% cells in the foreground cluster in 10xv2, and 50% in 
10xv3 (q1.th parameter), |log2(FC)| > 1, adj Pval <0.01, and difference 
between the fraction of cells expressing the gene in foreground and 
background divided by the foreground fraction was greater than 0.7  
(q.diff.th parameter).

To enhance scalability, a randomly subsampled set of cells to be 
clustered were loaded into memory to compute high variance genes 
and perform principal component analysis (PCA), then projected to 
all the cells to obtain their reduced dimensions. Then Jaccard–Leiden 
clustering proceeded as before23.

https://github.com/AllenInstitute/scrattch.hicat
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10xMulti snRNA-seq datasets were clustered using the same  
pipeline, using more relaxed threshold: q1.th = 0.4, de.score.th = 130, 
min.cells = 10.

Differential gene expression analysis. We performed differential 
gene expression both at the clustering step for each iteration, and after 
clustering between all pairs of clusters. In our original scrattch.hicat 
package, we applied limma package133 to perform this analysis. Given 
the significant increase of data size and complexities of the taxonomy, 
we re-implemented this method that provides essentially identical  
results, but drastically improves performance and scalability. The 
method first scanned the whole log-transformed cell-by-gene matrix 
once to compute, for each cluster and each gene, the average expres-
sion, the fraction of cells expressing the gene, and the sum of square 
of gene expression of all the cells within the cluster. These cluster-level 
summary statistics were then used in the linear model equivalent to 
the one used in limma to compute the pvalue, adjusted pvalue, log fold 
change, and the contrast between foreground and background based 
on the fraction of cells expressing the gene. This process was massively 
parallelized. Clusters were grouped into bins, and the DEG analysis  
results were stored on disk in chunked parquet files, split based on 
which bin the foreground and background clusters belonged to. In this 
way, we were able to compute DEGs between ~13.5 million pairs of clus-
ters within a day on a single Linux server. Using the arrow package, we 
were able to query DEGs between any pairs of clusters very efficiently.

Excluding noise clusters. Before proceeding with integration between 
10xv2, 10xv3, and 10xMulti datasets, we first needed to remove noise 
clusters. The presence of such clusters can confuse the integration 
algorithm and reduce the cell-type resolution. There are two main 
categories of noise clusters: clusters with significantly lower gene 
detection due to extensive drop out, and clusters due to doublets or 
contamination.

We first identified doublet clusters based on the co-expression of any 
pair of broad class marker genes using find_doublet_by_marker func-
tion in scrattch.bigcat package. To identify other doublet clusters, we 
searched for triplets of clusters A, B and C, wherein A was the putative 
doublet cluster, such that up-regulated genes of A relative to B largely 
overlapped with up-regulated genes in C relative to B, and up-regulated 
genes in A relative to C largely overlapped with up-regulated genes of 
B relative to C. This criterion ensured that A included the most distin-
guished signature of B and C. To rule out the possibility that A was a 
transitional type between B and C, we required that B and C could not 
be closely related types based on the correlation of their average gene 
expression of marker genes. After we systematically produced the 
list of all the candidate triplet clusters, the final determination was an 
iterative process that involved setting different thresholds and manual 
inspection of borderline cases.

After removing all doublet clusters, we then identified clusters with 
lower gene detection. To do that, we identified pairs of clusters such that 
one cluster with at least 50% fewer UMIs or >100 lower QC score, smaller 
size, and no more than one up-regulated gene relative to another cluster 
was identified as the low-quality cluster. In these cases, one cluster was 
a degraded version of another cluster and therefore removed.

We identified 933 noise clusters with 153,598 cells in 10xv3, and 201 
noise clusters with 38,073 cells in 10xv2. 10xv3 noise clusters were 
removed from integration analysis but 10xv2 noise clusters were 
included accidentally. Fortunately, most of the cells from 10xv2 noise 
clusters were excluded in further QC steps after integration.

Joint clustering 10xv2 and 10xv3 datasets. To provide one con-
sensus cell-type taxonomy based on both 10xv2 and 10xv3 datasets 
of ~2 M cells each, we scaled up the integrative clustering method23 
and made it available via scrattch.bigcat package which extends the 
clustering pipeline described above to integrate datasets collected 

by different transcriptomic platforms. Analysis was performed as de-
scribed before23 with minor modifications. To build the common graph 
that incorporates samples from all the datasets, both 10xv2 and 10xv3 
were used as the reference datasets. The key steps in the pipeline are:  
(1) select anchor cells for each reference dataset; (2) select high vari-
ance genes in each reference dataset, prioritizing shared high variance 
genes; (3) compute KNN both within modality and cross modality;  
(4) compute Jaccard similarity based on shared neighbours; (5) perform 
Leiden clustering based on Jaccard similarity; (6) merge clusters based 
on total number and significance of conserved DEGs across modality 
between similar cell types; (7) repeat steps 1–6 for cells within a cluster 
to gain finer-resolution clusters until no clusters can be found; (8) con-
catenate all the clusters from all the iterative clustering steps and per-
form final merging as in step 6. For step 6, if one cluster had fewer than 
the minimal number of cells in a dataset (4 cells for 10xv3 and 10 cells 
for 10xv2), then this dataset was not used for differentially expressed 
gene computation for all pairs involving the given cluster. This step 
allows detection of unique clusters only present in some data types.

Compared to the previous version, the key improvement is step 3 
for computing KNN. We used BiocNeighbor package (v1.16.0, https://
github.com/LTLA/BiocNeighbors) for computing KNN using Euclidean 
distance within modality and cosine distance across modality using 
the Annoy algorithm (v1.17.1, https://github.com/spotify/annoy). The 
Annoy index was built based on anchor cells for the reference data-
set, and KNNs were computed in parallel for all the query cells. Due 
to significantly increased dataset sizes, the Jaccard similarity graph 
can be extremely large, impossible to fit in memory. The method 
down-sampled the datasets based on a user specified parameter, and 
if the cluster membership of each modality was provided as input for 
integration algorithm, we down-sampled cells by within-modality clus-
ters, ensuring preservation of rare cell types. All the anchor cells were 
added to the down-sampled datasets. The Jaccard–Leiden clustering 
was performed on the down-sampled datasets, and the cluster mem-
bership of other cells were imputed based on KNNs computed in step 3.

The integration algorithm generated 5,283 clusters, which were used 
to build cell-type taxonomy. During this process, additional noise clus-
ters were identified by manual inspection, which exhibited abnormal 
QC statistics, abnormal expression of canonical markers, or absence in 
MERFISH dataset. Most of these clusters were very small, likely doublets 
of damaged cells. After removing these additional noise clusters, we 
had 5,200 clusters with 4,041,289 cells.

After careful examination of spatial distribution of each cell types 
based on the MERFISH dataset, we realized that the some of the existing 
clusters in Astro–Epen class did not fully capture the rich spatial gradi-
ents present in the dataset. We also identified some hindbrain neuronal 
clusters that had high within-cluster heterogeneity. Several factors 
potentially contribute to presence of these heterogeneous clusters. 
First, sampling of these cell types was not comprehensive enough. They 
are likely very rare and, given the large fraction of non-neuronal cells 
present in these areas along with high level of myelination, these cells 
can be very difficult to collect. Second, some cell types in hindbrain 
are particularly vulnerable to tissue dissociation, making them even 
more difficult to profile, and the cells that survive tend to leak more 
transcripts. This is what we observed in Purkinje neuron population, 
which was very small in our dataset. After initial clustering, we identi-
fied a pair of Purkinje neuron clusters, with high or low gene count, 
respectively. The low gene-count cluster was discarded subsequently 
as a low-quality cluster in the post-processing pipeline. Finally, tran-
scriptomic differences in hindbrain neuronal types appear to be subtler 
compared to neuronal types in other brain regions. These subtler differ-
ences make the hindbrain neuronal types more difficult to categorize. 
To address the problems stated above, we re-clustered cells from the 
Astro–Epen class and the few highly heterogeneous hindbrain neuronal 
clusters with more relaxed threshold: de.score.th = 80, min.cells = 8. 
The resulting more refined clusters were better mapped to the MERFISH 
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dataset, with distinct spatial distribution and more distinct expression 
of marker genes.

Supplementing scRNA-seq taxonomy with Multiome snRNA-seq 
clusters. Through mapping our newly generated 10xMulti snRNA-seq 
data with the scRNA-seq taxonomy (see ‘Assigning cell-type identities’), 
we identified several 10xMulti clusters that have very few mapped 
scRNA-seq cells with clear transcriptional signature. The missing of 
these clusters in our scRNA-seq taxonomy led to poor mapping and 
‘holes’ in our MERFISH cell-type annotation. We therefore added these 
and their neighbouring 10xMulti clusters to the existing taxonomy 
to enhance cell-type resolution of these depleted populations in the 
scRNA-seq datasets. Considering the overall lower cell-type resolution 
of the 10xMulti snRNA-seq dataset due to smaller number of cells and 
lower gene detection compared to the scRNA-seq datasets, we did not 
proceed with full-scale integration of the entire 10xMulti snRNA-seq 
dataset which could compromise the many high-resolution clusters 
already present in our scRNA-seq taxonomy. As such, our final cell-type 
taxonomy consists of 5,291 scRNA-seq dominated clusters with a total 
of 4,041,289 cells and 31 10xMulti snRNA-seq dominated clusters with 
a total of 1,687 nuclei.

Marker gene selection. For each pair of clusters, we computed con-
served DEGs (at least significant in one dataset, and at least twofold 
change in the same direction in the other datasets). We selected the 
top 20 DEGs in each direction and pooled such genes from all pairwise 
comparisons to generate a total of 8,460 gene markers (Supplementary 
Table 5).

MERFISH gene panel design. To create the gene panel for MERFISH  
experiments, we prioritized choosing marker genes that separate 
pairs of distinct clusters with >100 DEGs, and pairs of MB/HB cell types 
with >20 DEGs. We also excluded any genes that performed poorly in 
previous MERFISH experiments. We started with a default set of well- 
established marker genes curated from previous studies and selected 
additional genes to choose a minimal set that includes at least 2 DEGs for 
all such pairs in each direction. To do that, we used a greedy algorithm 
to choose one gene at a time that separates as many unresolved pairs as 
possible while still considering its relative statistical significance, which 
is implemented in select_N_markers function from scrattch.bigcat 
package, and selected the top 400 genes (including the default genes) 
from this list. We then attempted to select one DEG in each direction for 
any remaining pairs of clusters not covered by the selected genes using 
the same function. Our goal was to build a solid gene panel with strong 
predictive power at subclass level and be opportunistic at resolving 
finer cell types. Except for the default gene set, the remaining genes 
were largely ordered with decreasing predictive power. We submitted 
a total of 700 genes to the Vizgen portal and selected the top 500 genes 
that passed the additional filters applied by Vizgen. The final gene set 
provided an overall cross-validation accuracy of 76.6% at cluster level 
and 97.2% at subclass level.

Assessing concordance of joint clustering between 10xv2 and 
10xv3. We first compared the joint clustering result with the independ-
ent clustering result from each dataset. We then calculated the cluster 
means of marker genes for each dataset. For each marker gene, we com-
puted the Pearson correlation between its average expression for each 
cluster across two different datasets to quantify the consistency of its 
expression at the cluster level between datasets (Extended Data Fig. 7d). 
We performed a similar analysis between 10xv3 and MERFISH datasets.

Building cell-type hierarchy. To make the cell-type complexity trac-
table at each level, we organized the 5,322 clusters into a hierarchy 
with 4 levels: class, subclass, supertype and cluster. After clusters were 
computed as descripted in ‘Joint clustering’ section, we first defined 

subclasses by clustering the clusters. This was performed by Jaccard–
Leiden clustering using the average expression of 534 transcription 
factor marker genes of all the cells in each cluster, using 5 KNNs, and 
varying the resolution index of Leiden algorithm at 0.1, 0.2, 1, 5 and 8. We 
tried clustering using either all 8,460 marker genes or 534 transcription 
factor marker genes only, and found the result based on transcription 
factors recapitulate existing knowledge of cell types including spatial 
distribution and lineage relationships better. The Leiden algorithm 
generated 48 groups at resolution index 0.2, which generated the initial 
version of ‘classes’, and 240 groups at resolution index 8, which gener-
ated the initial version of ‘subclasses’.

The initial fully automatically generated versions of classes and sub-
classes were visualized together with all the other metadata on UMAPs 
and on MERFISH sections using the single-cell data visualization tool 
cirrocumulus (v1.1.56, https://cirrocumulus.readthedocs.io/en/latest/) 
for manual examination. We fine tuned the borderline cases, and further 
split or merged some putative subclasses to reach the final definition 
of subclasses. We applied a similar process to define classes, and to 
achieve strict hierarchy, assigned all the clusters in one subclass to the 
same class. Finally, we applied the same Jaccard–Leiden algorithm to 
all the clusters within each subclass separately to define supertypes, 
using the union of the top 20 DEGs between all pairs of clusters within 
the subclass as features. Again, they were adjusted based on manual 
inspection of 2D and 3D UMAPs and MERFISH sections after visualiza-
tion on cirrocumulus to increase the consistency of supertype defini-
tions between subclasses. Comparison of automatically computed 
and manually revised, final definitions of cell classes and subclasses 
are shown as confusion matrices in Extended Data Fig. 4.

UMAP projection. We performed PCA based on the imputed gene  
expression matrix of 8,460 marker genes using the 10xv3 reference. We 
down-sampled up to 100 cells per cluster, and further down-sampled 
up to 250,000 cells if the total exceeded this number, so that PCA 
could proceed without any memory issues. Again, the principal com-
ponents based on sampled cells were projected to the whole datasets. 
We selected the top 100 principal components, then removing one PC 
with more than 0.7 correlation with the technical bias vector, defined 
as log2(gene count) for each cell. We used the remaining principal 
components as input to create 2D and 3D UMAPs134, using parameters 
nn.neighbors = 25 and md = 0.4. To prevent some of the big clusters tak-
ing up too much space, we down-sampled up to 1,000 cells per cluster 
to build the UMAP and imputed the UMAP coordinates of the other cells 
based on KNN neighbours among the sampled cells in the PCA space.

Constellation plot. The global relatedness between cell types was 
visualized using a constellation plot (Extended Data Fig. 6). To generate 
the constellation plot, each transcriptomic subclass was represented by 
a node (circle), whose surface area reflected the number of cells within 
the subclass in log scale. The position of nodes was based on the cen-
troid positions of the corresponding subclasses in UMAP coordinates. 
The relationships between nodes were indicated by edges that were 
calculated as follows. For each cell, 15 nearest neighbours in reduced 
dimension space were determined and summarized by subclass. For 
each subclass, we then calculated the fraction of nearest neighbours 
that were assigned to other subclasses. The edges connected two nodes 
in which at least one of the nodes had >5% of nearest neighbours in 
the connecting node. The width of the edge at the node reflected the 
fraction of nearest neighbours that were assigned to the connecting 
node and was scaled to node size. For all nodes in the plot, we then  
determined the maximum fraction of “outside” neighbours and set this 
as edge width = 100% of node width. The function for creating these 
plots, plot_constellation, is included in scrattch.bigcat.

Assigning subclass, supertype and cluster names. We first anno-
tated each subclass with its most representative anatomical region(s) 
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and named the subclass using the combination of its representative 
region(s), major neurotransmitter, and in some cases one or two marker 
genes. We then ordered the subclasses based on the taxonomy tree 
and assigned subclass IDs accordingly. Supertype names within each 
subclass were defined by combining the subclass name and the group-
ing numbers of supertypes within the subclass. Supertype IDs were 
assigned sequentially based on the taxonomy tree order of subclasses 
and the group order of supertypes within each subclass. Cluster IDs 
were also assigned sequentially based on the ordering of subclasses and 
supertypes. And the final cluster names were assigned by combining 
each cluster’s ID with the name of the supertype the cluster belongs 
to. Based on the Allen Institute proposal for cell-type nomenclature135,  
we also assigned accession numbers to cell types, as included in  
Supplementary Table 7.

Assigning cell-type identities within a modality for cross-validation 
and across modalities. We performed fivefold cross-validation using 
different sets of marker genes: all 8,460 marker genes (‘Marker gene 
selection’), 534 transcription factor marker genes, and 20 sets of 534 
randomly sampled marker genes from the 8,460-marker list. We defined 
the cluster centroid in each modality as the average gene expression 
for all the training cells within the cluster and built the Annoy KNN 
indices based on user specified distance metrics (cosine by default) 
using the chosen marker list. For the testing cells in each modality, 
we assigned their cell-type identities by mapping them to the nearest 
cluster centroid using the corresponding Annoy index. This process 
is implemented in map_cells_knn_big function from scrattch.bigcat 
package, and mapping can be performed very efficiently by massive 
parallelization.

We also developed a hierarchical version of this approach to assign 
cell-type identities for MERFISH, Multiome snRNA-seq, or any external 
datasets to the 10xv3 dataset as reference, using different gene lists 
based on the contexts. When mapping confidence was needed, we 
sampled 80% genes from the marker list randomly, and performed 
mapping 100 times. The fraction of times a cell is assigned to a given 
cell type is defined as the mapping probability.

For the hierarchical mapping, we first built a tree with root, classes, 
subclasses, and clusters. At each internal node, we selected markers that 
best discriminate the clusters from different child nodes and assign the 
query cells to the child node with the nearest cluster centroids based 
on the selected markers. The process was repeated at each level of the 
tree till the query cells were mapped to the leaf-level clusters. This algo-
rithm is implemented in the scrattch-mapping package and publicly 
accessible (v0.2, https://github.com/AllenInstitute/scrattch.mapping).

Imputation. To facilitate direct comparisons of cells from different 
platforms, we projected gene expression of the 10xv2 or MERFISH 
dataset (query) to the 10xv3 dataset (reference). The basic idea is to 
compute the KNNs (k = 15 by default) among the reference cells for 
each query cell and use the average expression of these neighbours for 
each gene as the imputed values. One of the key decisions is selection 
of the distance metric used to compute the KNNs. We chose cosine 
metric due to overall conservation of gene expression at the cluster 
level (Extended Data Fig. 7d). On the other hand, the conservation is not 
perfect, and using too many genes to infer KNNs could make the infer-
ence more susceptible to platform differences. Therefore, we used the 
500 MERFISH marker genes to compute KNNs, since they provide good 
predictive powers at all levels of the hierarchy and show high correlation 
at the cluster level between 10xv2 and 10xv3 platforms (median 0.945, 
Extended Data Fig. 7d). Although a good starting point, the imputation 
accuracy for separating finer cell types could be improved further 
by incorporating cluster-level DEGs, as fewer of them were included 
in the 500 MERFISH gene list and they are not completely binary. To 
solve this problem, we leveraged the established cell-type hierarchy 
and performed imputation iteratively, first at top level and then within 

each class and subclass. At the top level, we used the 500 MERFISH 
genes to compute KNNs and then imputed the expression of all 8,460 
marker genes. For each subsequent iteration, we only computed the 
KNNs among the reference cells within the same class/subclass as the 
query cells using the top 10 DEGs between clusters within the given 
class/subclass; we then updated the imputed expression of the top 20 
DEGs between clusters within the given class/subclass.

An alternative simpler strategy is to simply compute the KNNs of 
each query cell among the reference cells within the same cluster and/
or the same subclass and impute the expression of all marker genes. 
However, the imputation values using this strategy could not preserve 
the transitions between clusters or subclasses, exaggerating the separa-
tions between cell types, especially at the finer level.

Recent benchmark studies indicate that for simpler integration prob-
lems with relatively low biological complexity and relatively small batch 
effects in scRNA-Seq datasets, linear methods outperform nonlinear, 
more complex methods136,137, while for complicated integration tasks 
with large biological complexity and bigger batch effects, nonlinear 
methods such as scVI/scanVI outperform others138. In our case, the 
overall batch effects between 10xv2 and 10xv3 are relatively small, but 
biological complexities are huge. Therefore, to tackle this complexity in 
a divide and conquer manner, we used series of linear imputations with 
increasing resolutions to approximate the nonlinear relationship, as any 
nonlinear curve can be accurately approximated using a series of linear 
segments. This method provides the scalability/robustness to very 
large datasets while preserving fine-grained cell-type resolution. The 
method is implemented in the impute_cross_big function in scrattch.
bigcat, with predefined split of the datasets at various levels, the genes 
used for KNN inference, and the genes used for imputation as inputs.

In parallel, we have also tested nonlinear methods including scVI/
scanVI. To make it work for this large dataset with high complexity, 
we down-sampled the datasets and increased the size of neuronal net-
work model dramatically to achieve reasonable performance. There 
is a huge parameter space we need to explore to further optimize the 
performance, and this is an active area of further investigation.

We used the same strategy to impute the expression of 8,460 marker 
genes for the MERFISH dataset, except that only the DEGs present in 
the 500 MERFISH gene panel were used to compute KNNs at class and 
subclass levels. This strategy still helped to reduce the effect of con-
tamination from neighbouring cells due to imperfect segmentation. 
Validation results are shown in Extended Data Fig. 8.

The imputation results for 10xv2, 10xMulti and MERFISH datasets, 
along with the 10xv3 dataset as the anchor, were used to generate the 
integrated UMAP shown in Extended Data Fig. 7a.

Defining neurotransmitter types. We systematically assigned neu-
rotransmitter identity to each cell cluster based on the expression 
of canonical neurotransmitter transporter genes and synthesizing 
enzymes (Fig. 1e, Fig. 3, Extended Data Fig. 3e, Extended Data Fig. 9, 
Supplementary Table 7). Criteria used are:

Glutamatergic (Glut): Slc17a6 (also known as Vglut2), Slc17a7 (Vglut1) 
or Slc17a8 (Vglut3).

GABAergic (GABA): (Slc32a1 (Vgat) or Slc18a2 (Vmat2)) and (Gad1, 
Gad2 or Aldh1a1).

Glycinergic (Glyc): Slc6a5.
Cholinergic (Chol): Slc18a3 (Vacht) and Chat.
Dopaminergic (Dopa): (Slc6a3 (Dat) or Slc18a2) and (Th and Ddc).
Serotonergic (Sero): (Slc6a4 (Sert) or Slc18a2) and (Tph2 and Ddc).
Noradrenergic (Nora): (Slc6a2 (Net) or Slc18a2) and Dbh.
Histaminergic (Hist): Slc18a2 and Hdc.
We used a stringent expression threshold of log2(CPM) > 3 for these 

genes to assign neurotransmitter identity to each cluster.
These criteria are stringent as they require co-expression of both a 

neurotransmitter transporter and the corresponding key neurotrans-
mitter synthesizing enzyme(s). They are also inclusive as alternative 
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neurotransmitter synthesizing and releasing genes are included. For 
example, we included the vesicular monoamine transporter Slc18a2 
(Vmat2) to all monoamine transmitters as well as GABA. It is known that 
in many midbrain dopamine neurons (in VTA and SNc), Aldh1a1 is used 
for synthesizing GABA in the absence of Gad1 or Gad2, and Slc18a2 is 
used for co-release of dopamine and GABA in the absence of Slc32a157.

Of note, a reported unconventional mechanism118 underlying 
co-transmission of dopamine and GABA by SNc dopaminergic neurons 
in the STR does not depend on cell-autonomous GABA synthesis but 
instead on presynaptic uptake from the extracellular space through the 
GABA transporter Slc6a1 (Gat1) while still relying on Slc18a2 for synaptic 
GABA release, which could make Aldh1a1 unnecessary in these cells. 
However, because Slc6a1 is widely expressed in all GABAergic neurons, 
as well as astrocytes, and even many subcortical glutamatergic neurons, 
it is unclear to us how widely applicable this unconventional mechanism 
(which bypasses all GABA-synthesizing enzymes) is. Therefore, we did 
not include Slc6a1 in our criteria in order to minimize false positives, 
even at the risk of having some false negatives.

Defining transcription factor co-expression gene modules. To iden-
tify transcription factor gene modules that are involved in defining  
major cell types (Fig. 5d, Supplementary Table 8), we performed  
WGCNA analysis139 on 534 transcription factor marker genes based 
on their average expression at the subclass level with power = 6 and 
TOMType = “signed”, and detectCutHeight = 0.998. Genes in the ‘grey’ 
module were removed, which had poor correlation with all the other 
genes, and genes that were generally enriched in neurons were exclu-
ded. Genes in some modules clearly had distinct patterns and were 
thus further split, and they were re-ordered for better visualization.

MERFISH
Brain dissection and freezing. Standard procedures were developed 
to isolate, cut, fix and pre-treat tissue to preserve macro and cellular 
morphology and to produce the best signal to noise ratio for MERFISH. 
Mice were transferred from the vivarium to the procedure room with 
efforts to minimize stress during transfer. If mouse body weight fell 
outside of the normal range (18.8 to 26.4 g), the brain was not used in 
the MERFISH process. Mice were anaesthetized with 0.5% isoflurane. 
A grid-lined freezing chamber was designed to allow for standardized 
placement of the brain within the block in order to minimize variation 
in sectioning plane. Chilled OCT was placed in the chamber, and a thin 
layer of OCT was frozen along the bottom by brief placement of the 
chamber in a dry ice ethanol bath. The brain was rapidly dissected and 
placed into the OCT. The orientation of the brain was adjusted using a 
dissecting scope, and the freezing chamber containing OCT and brain 
were frozen in a dry ice/ethanol bath. Brains were stored at −80 °C.

Cryosectioning. The fresh frozen brain was sectioned at 10 µm on 
Leica 3050 S cryostats. The OCT block containing a fresh frozen brain 
was trimmed in the cryostat until reaching the desired starting section. 
Sections were collected every 200 µm to evenly cover the brain from 
anterior to posterior and each section was mounted onto a function-
alized 20-mm coverslip treated with yellow green (YG) fluorescent 
microspheres (VIZGEN, 2040003)

Fixation and dehydration. After air drying on the coverslips for  
10–15 min, the tissue sections were loaded into a Leica Autostainer XL 
(Leica ST5010). They were washed in 1× PBS for 1 min, fixed in 4% PFA 
for 15 min, washed in 1× PBS for 5 min 3 times, washed in 70% ethanol 
and then stored in 70% ethanol at 4 °C. They were stored for at least one 
day and no more than 6 weeks before proceeding.

Hybridization. For staining the tissue with MERFISH probes a modi-
fied version of instructions provided by the manufacturer was used. 
All solutions were prepared according to the instruction provided by 

the manufacturer. For hybridization samples were removed from the 
70% ethanol and washed in a petri dish containing VIZGEN sample prep 
buffer (VIZGEN, 20300001). Sample prep buffer was aspirated, and the 
samples were equilibrated with 5 ml of VIZGEN formamide wash buffer 
(VIZGEN, 20300002) in a humidified incubator at 37 °C for 30 min. 
Formamide wash buffer was removed via aspiration and a 50-µl droplet 
of MERSCOPE Gene Panel Mix was added onto the centre of the tissue 
section. Next, the tissue section was covered with parafilm and stored 
in a humidified 37 °C cell culture incubator for 36–48 h.

Gel embedding. Parafilm covering the sections was removed and 5 ml 
of the VIZGEN formamide wash buffer was immediately added. Sections 
were incubated at 47 °C for 30 min. Formamide wash buffer was aspira-
ted and the previous step repeated. Sections were washed with VIZGEN 
sample prep wash buffer after the second formamide wash for 2 min. 
110 µl of VIZGEN gel embedding solution (VIZGEN 20300004) with APS 
and TEMED was added onto the centre of a Gel Slick-coated micro scope 
slide and any excess embedding solution was gently removed.

To allow for the gel to fully polymerize the sections were incubated at 
room temperature for 1.5 h. To clear the tissue the section was incubated 
in 5 ml of VIZGEN Clearing Solution (VIZGEN 20300003) with Protein-
ase K (NEB P8107S) according to the Manufacturer’s instructions for at 
least 24 h or until it was clear in a humidified incubation oven at 37 °C.

Imaging. Following clearing, sections were washed twice for 5 min in 
Sample prep wash buffer (VIZGEN, 20300001). VIZGEN DAPI and PolyT 
Stain (VIZGEN, 20300021) was applied to each section for 15 min followed 
by a 10 min wash in formamide wash buffer. Formamide wash buffer was 
removed and replaced with sample prep wash buffer during MERSCOPE 
set up. 100 µl of RNAse Inhibitor (New England BioLabs M0314L) was 
added to 250 µl of Imaging Buffer Activator (VIZGEN, 203000015) and 
this mixture was added via the cartridge activation port to a pre-thawed 
and mixed MERSCOPE Imaging cartridge (VIZGEN, 1040004). Fifteen 
millilitres of mineral oil (Millipore-Sigma m5904-6X500ML) was added 
to the activation port and the MERSCOPE fluidics system was primed 
according to VIZGEN instructions. The flow chamber was assembled 
with the hybridized and cleared section coverslip according to VIZGEN 
specifications and the imaging session was initiated after collection of 
a 10× mosaic DAPI image and selection of the imaging area. For speci-
mens that passed the minimum count threshold, imaging was initiated, 
and processing completed according to VIZGEN proprietary protocol.

Data analysis. Raw MERSCOPE data were decoded using Vizgen software 
(v231). Cell segmentation was performed as described previously140.  
In brief, cells were segmented based on DAPI and PolyT staining using 
Cellpose141. Segmentation was performed on a median z-plane (4th out 
of 7) and cell borders were propagated to z-planes above and below. 
The resulting cell-by-gene table was filtered to keep cells with a volume 
>100 µm3 and <3,000 µm3, that have at least 15 genes detected and 
contain a minimum of 40 but no more than 3,000 mRNA molecules 
(red dashed lines in Extended Data Fig. 2d,e) to remove low-quality 
cells and doublets that are outside of these ranges. Overall counts of  
genes were normalized by cell volume and log2-transformed. To  
assign cluster identity to each cell in the MERFISH dataset, we mapped 
the MERFISH cells to the scRNA-seq reference taxonomy. For this, the 
10xv3 scRNA-seq data was subsetted to only genes common to both 
datasets. Our mapping method (as described in ‘Assigning cell-type 
identities’) finds the nearest cluster centroid in the scRNA-seq reference 
dataset for a query data point with the correlation of shared genes as 
distance metric. The cluster label of the nearest neighbour was assigned 
as mapped label. Bootstrapping was conducted with 80% subsampling 
of marker genes to make label assignment robust.

Registration to Common Coordinate Framework. To facilitate align-
ment of MERFISH sections to the CCFv3, we assigned each cell from the 



scRNA-seq dataset to one of these major regions: cerebellum, CTXsp, 
hindbrain, HPF, hypothalamus, isocortex, LSX, midbrain, OLF, PAL, sAMY, 
STRd, STRv, thalamus and hindbrain. This delineation was driven by the 
level of region-specific dissection for the scRNA-seq experiments as well 
as the cell-type specificity of regions. Because of the more gradient transi-
tion of cell-type composition between cortical regions, the specificity of 
cortical plate regions is limited to isocortex, OLF and HPF despite more 
granular dissection regions. Each cluster in the scRNA-seq dataset was 
assigned to the region the majority of cells were derived from. We identi-
fied anchor clusters we used for region annotation of the MERFISH data. 
These clusters were defined as (1) having more that 30% of all cells in one 
region, and (2) more than 20 cells in a MERFISH section. In addition to 
that we used ependymal and choroid plexus cells to label the ventricles 
and identified specific clusters of oligodendrocytes that were enriched 
in white matter tracts. To account for clusters that were found at low 
frequency in regions outside its main region we calculated for each cell 
its 50 nearest neighbours in physical space and reassigned each cell to 
the region annotation dominating its neighbourhood. Next, we used that 
same approach to assign each cell mapped to a non-anchor cluster to the 
region annotation dominating its immediate surrounding. The resultant 
label maps were used as input to our registration tool to find for each sec-
tion its approximate location along the anterior to posterior axis of the 
brain as well as any offsets in pitch and yaw introduced during sectioning.

Registration was performed at 10-µm in-plane resolution. For each 
section, an anatomical reference image was created by aggregating the 
number of detected spots within a 10 × 10 µm grid for each gene probe. 
A single image was created across all probes by taking the maximum 
count for each grid unit. The midline was manually determined by 
annotating the most dorsal and most ventral point. These points were 
then used to compute a rigid transform to rotate the section upright 
and centre in the middle. This set of rectified images were stacked in 
sequencial order to create an initial configuration for registration.

Alignment to the Allen CCFv3 was performed by matching the 
above-mentioned scRNA-seq derived region labels to their correspond-
ing anatomical parcellation of the CCFv3. A label map was generated 
for each region by aggregating the cells assigned to that region within a 
10×10 µm grid, transformed to the initial configuration using the com-
puted rigid transforms. Using the corresponding anatomical labels, the 
ANTS registration framework was used to establish a 2.5D deformable 
spatial mapping between the MERFISH data and the CCFv3 via three 
major steps: (1) A 3D global affine (12 dof) mapping was performed to 
align the CCFv3 into the MERFISH space. This generated resampled 
sections from the CCFv3 that provided section-wise 2D target space for 
each of the MERFISH sections. Since the CCFv3 is a continuous label set 
with isotropic voxels, this avoids interpolation artifacts that can result if 
resampling is performed on the MERFISH data instead, which has large 
section gaps, and can contain missing sections. (2) After establishing a 
resampled CCFv3 section for each MERFISH section, 2D affine registra-
tions were performed to align each MERFISH section to match the global 
anatomy of the CCFv3 brain. This addressed misalignments from the 
initial manual stacking of the MERFISH sections using the midline and 
provided a global mapping to initialize the local deformable mappings. 
(3) Finally, a 2D multi-scale, symmetric diffeomorphic registration (step 
size = 0.2, sigma = 3) was used on each section to map local anatomic 
differences between the corresponding MERFISH and CCFv3 structures 
in each section. Global and section-wise mappings from each of these 
registration steps were preserved and concatenated (with appropri-
ate inversions) to allow point-to-point mapping between the original 
MERFISH coordinate space and the CCFv3 space.

After registration to CCFv3, we found that out of 554 terminal regions 
(grey matter only, Supplementary Table 1), there were only 7 small sub-
regions completely missed in the MERFISH dataset: frontal pole, layer 1 
(FRP1), FRP2/3, FRP5, accessory olfactory bulb, glomerular layer (AOBgl), 
accessory olfactory bulb, granular layer (AOBgr), accessory olfactory 
bulb, mitral layer (AOBmi) and accessory supraoptic group (ASO).

Quantifying spatial distribution of cell types. Based on the CCFv3 
registration results, each MERFISH cell was assigned to a CCFv3 struc-
ture. For further quantification, we aggregated the CCFv3 at two levels 
of hierarchy (CCFv3_level1 and CCFv3_level2, Supplementary Table 9) 
focusing on grey matter structures only. Only 51/59 sections fell within 
the boundaries of the CCFv3. In addition, potentially misaligned cells 
were filtered out by excluding cells of a subclass in a CCFv3_level1 region 
if less than 5% of cells were present in that region. This limits the number 
of cells used for spatial analysis to 3,062,367 cells. We summed up all 
cells per subclass within a region and normalized by the max number 
of subclasses per region (Enrichment, Fig. 6a). Regions were ordered 
by graph order of the CCFv3 (Supplementary Table 9), and subclasses 
were order by class first and within class by subclass ID. Class order 
was slightly altered to have less emphasize on neurotransmitter type 
and more on region specificity. We did not include the class 25 Pineal 
Glut, since the pineal body is not part of the CCFv3. To calculate the 
neuron/glia ratio we assigned various classes as either neuronal or glial 
(Supplementary Table 7) and summed up the cells per CCFv3_level2 
region. A similar approach was used to calculate the neurotransmit-
ter composition per region based on the assigned neurotransmitter 
identity for each cluster (Supplementary Table 7).

Gini coefficient. To quantify the distribution patterns of cell types 
across brain regions we calculated the Gini coefficient for each sub-
class at the CCFv3_level2 region annotation (Fig. 6a and Extended 
Data Fig. 14). The Gini coefficient is a measure of inequality within a 
distribution. It’s a number between 0 and 1, where 0 represents perfect 
equality (every region has the same relative number of cells of a type), 
and 1 represents maximum inequality (a cell type is found in only one 
region). Before calculating the Gini coefficient, the number of cells per 
subclass in each region was normalized by the total number of cells per 
region to account for difference in volume and hence total number of 
cells of individual brain regions. We used the Gini function from the R 
package DescTools to calculate the Gini coefficient for each subclass.

Shannon diversity. To measure complexity of brain regions with 
res pect to cell-type composition we calculated the Shannon diver-
sity index. The Shannon diversity index quantifies the uncertainty or  
entropy in a system by considering the distribution of cell types and 
their abundance. It combines richness (number of distinct cell types) 
and evenness to provide a measure of diversity, reflecting the informa-
tion content or disorder in the system. Higher values indicate greater 
diversity and more uniform distribution of species. We used the diver-
sity function from the R package vegan. We calculated the Shannon 
diversity index for CCFv3_level2 regions for both the composition of 
subclasses and supertypes (Fig. 6a).

Mutual prediction between transcriptomic identity and spatial 
localization. To examine the relationship between transcriptomic 
identity and spatial localization for neuronal cells, we tested to what 
extent transcriptomic cell types can be predicted based on spatial loca-
tion and vice versa. As glutamatergic and GABAergic neurons colocalize 
in many brain regions, to simplify the problem, we first divided neurons 
based on their class assignment, with cells from the GABA classes in one 
group, and cells from Glut, Dopa and Sero classes in another group. 
For this analysis, our goal is to understand the relationship between 
transcriptome and spatial location within either group.

We used the MERFISH dataset for this test. To predict spatial locali-
zation based on transcriptome, we used the imputed MERFISH tran-
scriptomes of all 8,460 marker genes. Within each group, we first 
computed the top 20 DEGs between all pairs of clusters within the 
group and pooled them. We then performed PCA on the imputed  
MERFISH transcriptomes using selected markers and selected the 
top 100 components to compute the KNNs (excluding itself) of each 
cell. Then for each cell, we predicted its CCFv3 region based on the 
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majority votes of the CCFv3 regions of its transcriptomic KNNs com-
puted as described above. The confusion matrix between the actual 
CCFv3 region and the predicted CCFv3 region (Extended Data Fig. 16) 
indicates which CCFv3 regions share cells with homogeneous tran-
scriptomic signatures.

Similarly, we computed KNNs of each cell based on their 3D spatial 
coordinates and predicted its cell-type identity at class, subclass and 
supertype levels based on the majority votes of the cell type of its spatial 
KNNs. The confusion matrix between the actual cell-type identity and 
the predicted cell type (Extended Data Fig. 15) indicates the cell types 
that colocalized in the same spatial location.

This analysis showed that for most of the CCFv3 regions, each region 
contains cells with distinct transcriptomic signatures from other 
regions and confusion usually only exists among neighbouring regions. 
One exception is cortical GABAergic cell types, which are shared across 
all cortical areas as we previously reported23,26 (Extended Data Fig. 16b). 
We could still observe partial separation of upper and lower cortical 
layers due to enrichment of CGE and MGE neurons respectively. The 
analysis also showed that each subclass only colocalizes spatially with 
a few other subclasses within the same group, except for a couple of 
HB subclasses that are highly heterogenous (Extended Data Fig. 15).

Note that the precision of this analysis is highly dependent on the 
accuracy of CCFv3 registration. Any confusion arising from neighbour-
ing CCFv3 regions might be due to registration inaccuracies, an aspect 
we are actively working to improve.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data were generated under the BRAIN Initiative Cell Census Net-
work (BICCN, www.biccn.org, RRID: SCR_015820) and are accessi-
ble through Neuroscience Multi-omic Data Archive (NeMO, https://
nemoarchive.org/) and Brain Image Library (BIL; https://www.brain-
imagelibrary.org/index.html). The AIBS 10x scRNA-seq datasets 
(FASTQ files) are available at NeMO (https://assets.nemoarchive.org/
dat-qg7n1b0). The 10x scRNA-seq sequencing data are also uploaded to 
Gene Expression Omnibus (GEO) under accession code GSE246717, and 
to Bio Project under accession code PRJNA1030397. The AIBS MERFISH 
dataset is available at BIL (https://doi.org/10.35077/g.610). Allen Brain 
Cell Atlas—mouse whole-brain cell-type atlas is accessible at https://
portal.brain-map.org/atlases-and-data/bkp/abc-atlas, to visualize 
scRNA-seq, snRNA-seq and MERFISH datasets. Instructions for access to 
the processed 10x scRNA-seq data are available at https://github.com/ 
AllenInstitute/abc_atlas_access/blob/main/descriptions/WMB−10X.md,  
and instructions for access to the processed MERFISH data are avail-
able at https://github.com/AllenInstitute/abc_atlas_access/blob/main/
descriptions/MERFISH-C57BL6J-638850.md. Source data are provided 
with this paper.

Code availability
Data analysis code used in the manuscript—R package scrattch. 
bigcat—is available via github https://github.com/AllenInstitute/
scrattch.bigcat. Cell-type mapping code is available via github https://
github.com/AllenInstitute/scrattch.mapping.
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Extended Data Fig. 1 | scRNA-seq data analysis workflow. (a) Number of cells 
at each step in the scRNA-seq data analysis pipeline. The identification of 
doublets and low-quality clusters is described in more detail in Methods. The 
10xv2 and 10xv3 data were first QC-ed and analyzed separately. After initial 
clustering the datasets were combined and QC-ed again before and after joint 
clustering. 10x Multiome snRNA-seq data was added to fill in gaps that were 
identified after joint clustering of 10xv2 and 10xv3 scRNA-seq data. (b-c) Gene 

count and qc score thresholds used for each of the four major cell populations 
(neuroglial cells, neurons, immature neurons and granule cells, and other)  
on the 10xv2 (b) and 10xv3 (c) datasets. (d-e) Number of cells isolated from 
dissection ROIs (pre-QC) and number of cells passing QC (post-QC) for 10xv2 
(d) and 10xv3 (e) datasets. We didn’t profile LSX, STR, sAMY, PAL, Pons, MY, and 
CB by 10xv2. Some regions were collected using different dissections between 
10xv2 and 10xv3, but all regions were covered by 10xv3.
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Extended Data Fig. 2 | MERFISH data generation, data processing and 
summary of results. (a) Workflow for generating and processing MERFISH data. 
(b) Correlation of gene detection between MERFISH and bulk RNA-sequencing 
for four different brain regions. (c) Histogram displaying the distribution of 
gene detection correlation between adjacent MERFISH sections. (d-f) Violin 
plots displaying distribution of cell volumes (d), gene detection (e), and mRNA 
molecule detection (f) for individual sections ordered from anterior to posterior 

(left panel) or cumulative distribution for the whole brain (right panel). Red 
dashed lines indicate cutoff for filtering. (g) Cumulative histogram showing 
the relative contribution of each subclass to each section ordered from 
anterior to posterior. (h) Heatmap showing the proportion of cells per region 
for each subclass in the MERFISH data (left) and scRNA-seq data (right). The 
heatmap in the middle shows the correlation between region distribution of 
MERFISH and scRNA-seq data.



Extended Data Fig. 3 | Marker gene expression correlation matrices 
showing relatedness among cell types. (a-d) Heatmaps showing pairwise 
Pearson correlation of gene expression levels for each pair of clusters using 
marker gene sets of 534 transcription factors (a), 541 functional genes 
(including neuropeptides, GPCRs, ion channels, transporters, etc.) (b), 857 
adhesion molecules (c), and all 8,460 marker genes (d). Correlations were 

computed using 10xv3 scRNA-seq data only except for the 31 nuclei-dominated 
clusters where 10xMulti snRNA-seq data were used. (e-g) All marker gene 
expression correlation between clusters compared to correlation between 
clusters of expression of functional marker genes (e), adhesion marker genes 
(f), and transcription factor (TF) marker genes (g). Correlation values are 
derived from a-d.
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Extended Data Fig. 4 | Comparison of the initial automated computational 
assignment of classes and subclasses with the manually revised, final 
assignment of classes and subclasses. Size of the dot corresponds to the 

number of overlapping cells (frequency) in corresponding classes or subclasses, 
and color represents the Jaccard similarity between corresponding classes or 
subclasses.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Transcriptomic cell type taxonomy of the whole 
mouse brain with additional metadata information. (a-b) Number of genes 
(a) or number of UMIs (b) detected per cell in 10xv2 (top) or 10xv3 (bottom) 
datasets for each cell type neighborhood. The data shown is post-QC. Numbers 
of cells for 10xv2: Pallium-Glut n = 1,128,664, Subpallium-GABA n = 269,307, 
HY-EA-Glut-GABA n = 107,706, TH-EPI-Glut n = 73,702, MB-HB-CB-GABA 
n = 18,590, MB-HB-Glut-Sero-Dopa n = 20,089, IMN-GC n = 123,650, Neuroglial 
n = 80,959, Vascular n = 6,894, Immune n = 4,941. Numbers of cells for 10xv3: 
Pallium-Glut n = 366,137, Subpallium-GABA n = 342,116, HY-EA-Glut-GABA 
n = 187,742, TH-EPI-Glut n = 52,469, MB-HB-CB-GABA n = 167,425, MB-HB-Glut-
Sero-Dopa n = 159,653, IMN-GC n = 209,310, Neuroglial n = 774,537, Vascular 
n = 130,599, Immune n = 87,639. (c-d) Number of genes (c) or number of UMIs 
(d) detected per nucleus in the 10xMulti dataset (post-QC) for each subclass 

where 10xMulti nuclei were added. Numbers of nuclei: 157 RN Spp1 Glut n = 48, 
233 NLL-SOC Spp1 Glut n = 115, 254 VCO Mafa Meis2 Glut n = 490, 261 HB Calcb 
Chol n = 274, 278 NLL Gata3 Gly-Gaba n = 339, 279 PSV Pax2 Gly-Gaba n = 43, 280 
NLL-po Pax7 Gaba n = 17, 297 CU-ECU Pax2 Gly-Gaba n = 15, 313 CBX Purkinje 
Gaba n = 346. All box plots include the median line, the box denotes the 
interquartile range (IQR), whiskers denote the rest of the data distribution, and 
outliers are denoted by points greater than ± 1.5× IQR. (e) The transcriptomic 
taxonomy tree of 338 subclasses organized in a dendrogram (same as Fig. 1a). 
From left to right, the bar plots represent neurotransmitter (NT) type assignment, 
heat map showing expression of major neurotransmitter marker genes, sex 
distribution, platform distribution, light-dark distribution of profiled cells, 
and number of donors that contributed to each subclass.



Extended Data Fig. 6 | Constellation plot of the global relatedness between 
subclasses. Each subclass is represented by a disk, labeled by the subclass ID 
and positioned at the subclass centroid in UMAP coordinates shown in Fig. 1c. 
The size of the disk corresponds to the number of cells within each subclass, 

and the edge weights correspond to the fraction of shared neighbors 
(see Methods) between subclasses. Each subclass is colored by the class it 
belongs to. Curved outlines drawn around subclasses show the major 
neighborhoods.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Validation of data integration across 10xv2, 10xv3, 
and MERFISH datasets. (a-c) UMAP representation of all cell types colored by 
profiling platform (a), region (b), and subclass (c). Other than the regions only 
profiled by 10xv3 (LSX, STR, sAMY, PAL, Pons, MY), the cells from both 10xv2 
and 10xv3 platforms integrate very well. Cell types in isocortex and HPF have a 
lot more 10xv2 cells, consistent with our sampling plan. For cell types/clusters 
containing many cells, we observed separation of 10xv2 and 10xv3 data in the 
UMAP space, but not at the cluster level. (d) Correlation of gene expression 
between 10xv2 and 10xv3 and between 10xv3 and MERFISH. For each gene,  
we computed the Pearson correlation of its average expression in each cluster 
across clusters between 10xv2 and 10xv3, and the correlation between 10xv3 
and MERFISH. For 10xv3 and MERFISH comparison, distribution of the 
correlation values of all 500 genes in the MERFISH panel is shown. For 10xv3 
and 10xv2 comparison, we show the correlation of 5383 marker genes based on 
10xv2, and 466 10xv2 marker genes that are also present on the MERFISH gene 
panel (the other 34 MERFISH genes not shown have low expression in 10xv2 
clusters). We manually inspected several genes with poor correlation and 
found them to have poor gene annotation or show relatively small variations 
across clusters. Most genes with low correlations between 10xv3 and MERFISH 
data are *Rik genes that are more likely to be poorly annotated, and the 

MERFISH probes selected for them might not work well. (e) 2D density plot 
showing on the X-axis the number of DEGs (based on 10xv3 dataset) present on 
the MERFISH gene panel between all pairs of clusters, and on the Y-axis the 
number of such DEGs showing the same direction of changes between 
corresponding pairs of mapped MERFISH clusters. Almost all the DEGs 
between all pairs of clusters show the same direction of changes between 10xv3 
and MERFISH. (f) 2D density plot showing on the X-axis the number of DEGs 
(based on 10xv3 dataset) present on the MERFISH gene panel between all pairs 
of clusters, and on the Y-axis the number of such DEGs showing the same 
direction of changes, and |log2(FC)| > 1 between corresponding pairs of mapped 
MERFISH clusters. About 60% of DEGs between all pairs of clusters based on 
10xv3 show significant fold change (FC) in MERFISH. (g) Similar analysis as in (f) 
but shown as violin plot by binning the number of 10xv3 DEGs present on the 
MERFISH gene panel on the X-axis, with better resolution on closely related 
pairs with four or fewer DEGs present on MERFISH gene panels. The MERFISH 
dataset can resolve the vast majority of clusters due to strong correlation of 
DEG expression between 10xv3 and MERFISH clusters. On the other hand, a few 
hundred pairs of clusters with fewer than two DEGs on the MERFISH gene panel 
remain unresolvable in the MERFISH data, and they are usually sibling clusters 
with indistinguishable spatial distribution.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Validation of gene expression patterns of scRNA-seq 
transcriptomes imputed into MERFISH space. (a) Correlation of expression 
for all 500 genes in the MERFISH panel between MERFISH and 10xv3 (red), 
imputed MERFISH and MERFISH (green), and imputed MERFISH and 10xv3 
(blue). To test the accuracy of MERFISH imputation, one gene is excluded from 
the gene panel at a time from KNN computation at all levels and its imputed 
gene expression is compared with its original gene expression. The distribution 
of correlations between imputed expression and the original MERFISH 
expression or the reference 10xv3 expression is shown for each gene at the 
cluster level. (b) Scatterplots showing the correlation between imputed 

MERFISH gene expression vs. MERFISH gene expression (left panels) and 
imputed MERFISH gene expression vs. 10xv3 gene expression (right panels) for 
selected genes, Calb2 (top row), Baiap3 (middle row), and Lypd1 (bottom row). 
(c-e) Examples of spatial gene expression patterns from MERFISH data (left 
panels), imputed MERFISH data (middle panels), and images from the Allen 
in situ hybridization (ISH) atlas (right panels) for select genes, Calb2 (c), Baiap3 
(d), and Lypd1 (e). (f) Representative MERFISH sections showing imputed 
expression of Foxp2 (which was not directly profiled by MERFISH) and Allen ISH 
images. ISH image credit: Allen Institute for Brain Science, https://mouse.
brain-map.org/.

https://mouse.brain-map.org/
https://mouse.brain-map.org/
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Extended Data Fig. 9 | Distribution of glutamate-GABA dual transmitting 
cell types throughout the brain. (a-b) Neuronal subclasses containing 
clusters releasing glutamate-GABA dual transmitters. UMAPs are colored by 
subclass (a) and neurotransmitter type (b). Glutamate-GABA co-releasing 

clusters are labeled by cluster ID in panel (b). (c) MERFISH sections showing 
glutamate-GABA co-releasing clusters colored by the subclass to which they 
belong. See Supplementary Table 7 for detailed neurotransmitter assignment 
for each cluster.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Neuropeptide distribution across the whole mouse 
brain. (a) Scatter plot of Tau score over the number of clusters each neuropeptide 
is expressed in at the level of log2(CPM) > 3. The Tau score is a measurement  
of cell type specificity, which varies from 0 to 1 where 0 means uniformly 
expressed and 1 means highly specific to one type. (b) Scatter plot of Tau score 
over the number of clusters each peptide-liganded G-protein coupled receptor 
(GPCR) gene is expressed in at the level of log2(CPM) > 3. (c) Expression level of 
neuropeptide in log2(CPM) per cluster. For each neuropeptide along the Y axis, 
clusters are sorted from the highest to lowest mean gene expression level along 
the X axis. (d) Expression level of neuropeptide in log2(CPM) per cluster. For 
each neuropeptide along the Y axis, clusters are sorted from the highest to 

lowest mean gene expression level along the X axis. For each gene, only  
the top 200 highest-expressing clusters out of 5,322 clusters are shown.  
(e) Representative MERFISH sections highlighting the spatial location of 
clusters expressing each of the 20 highly cell-type-specific neuropeptide  
genes (expressed in 8 or fewer clusters). (f) Representative MERFISH sections 
showing the expression of the neuropeptides present on the MERFISH gene 
panel that are widely expressed. We also note that the relationships between 
mRNA levels, the post-translationally processed peptide levels, and the 
functional levels are unknown for most neuropeptides, thus, it is difficult to 
predict what mRNA levels would lead to sufficient functional expression of a 
given neuropeptide.



Extended Data Fig. 11 | Additional non-neuronal UMAPs and marker genes. 
(a-c) UMAP representation of the NN-IMN-GC neighborhood colored by 
subclass (a), region (b), and supertype (c). (d) Dot plot showing marker gene 
expression in non-neuronal subclasses. Dot size and color indicate proportion 
of expressing cells and average expression level in each subclass, respectively. 
(e) Dot plot showing marker gene expression in all clusters in the Astro-Epen 
class. Dot size and color indicate proportion of expressing cells and average 
expression level in each cluster, respectively. (f) Dot plot showing marker gene 

expression in VLMC clusters. Dot size and color indicate proportion of 
expressing cells and average expression level in each cluster, respectively.  
(g) Representative MERFISH sections showing the spatial gradient of OEC 
clusters. (h) Co-localization of VLMCs with interlaminar astrocytes (ILA) as 
shown in selected MERFISH sections. (i) UMAP representation of OPCs and 
oligodendrocytes colored and labeled by supertype. ( j-k) Representative 
MERFISH sections showing the spatial distribution of OPC ( j) and Oligo (k) 
supertypes.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Gene expression patterns in immature neuronal 
populations and RMS astrocytes. (a) UMAP representation of immature 
neuron populations colored by supertype. Maturation trajectories in dentate 
gyrus (DG) (b), inner olfactory bulb (c), and outer olfactory bulb (d) are 
highlighted. (b-d) Representative MERFISH sections showing location of 
immature neuronal supertypes from the three trajectories shown in (a).  
(e-g) Heatmap showing gene expression changes as immature neurons 
transition to mature cell types, conserved between OB (left) and DG (right) cell 
type development (e), specific to OB cell types (f), and specific to DG cell types 
(g). Key marker genes at each stage of development are highlighted. It seems, 
however, that the scRNA-seq data might not have captured all cell states along 

the DG maturation trajectory based on the gaps between clusters in the UMAP 
and absence of expression for genes like Ascl1, Pax6, Top2a, and Mki67 along the 
DG trajectory. Various studies have tried to capture the transitional states 
between neural stem and neuronal progenitor cells in the DG with most making 
use of transgenic mice to isolate specific states142,143. (h) MERFISH sections 
showing the co-localization of immature neurons and astrocytes in the rostral 
migratory stream (RMS). The dashed boxes in (d) show the location of the 
highlighted regions in (h). (i) Heatmap showing gene expression changes in 
astrocytes associated with the RMS from SVZ to OB. Highlighted genes are 
conserved between the RMS-associated astrocytes and the OB trajectory.
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Extended Data Fig. 13 | Transcription factor families. Expression of key transcription factors for each subclass in the taxonomy tree, organized by transcription 
factor gene families. The lines divide the dendrogram into neighborhoods.



Extended Data Fig. 14 | Distribution of Gini coefficient for subclasses.  
(a) Illustration explaining the concept of the Gini coefficient (GC). For each 
subclass, brain regions are ordered by number of cells present in x-axis. The 
y-axis is the cumulative fraction of cells for each subclass. The Gini coefficient 
is calculated by dividing the area (Area A) between the line of perfect equality 
and the observed distribution curve (the Lorenz curve) by the total area under 
the line of perfect equality (Areas A + B). The result is a value between 0 and 1 

with 0 representing perfect equality and 1 maximum inequality. (b) Distribution 
of GCs for all subclasses. Color scheme is the same as used for Fig. 6a. (c) Ridge 
plot showing the distribution of GCs for subclasses grouped by class. (d) 3D 
example plots of subclasses for 4 classes (02 NP-CT-L6b, 07 CTX-MGE-GABA,  
30 Astro-Epen, and 33 Vascular), illustrating the wide range of GCs present. 
Within each class, plots are ordered by GC from lowest to highest.
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Extended Data Fig. 15 | Predicting transcriptomic subclasses based on 
spatial location of MERFISH cells. (a) Correspondence between assigned 
subclasses for MERFISH cells in glutamatergic, dopaminergic and serotonergic 
subclasses, and predicted subclasses based on the spatial coordinates of these 
MERFISH cells. Each row is normalized by dividing by the maximum number. 
Insert in the lower left corner shows the correspondence between assigned and 
predicted glutamatergic, dopaminergic, and serotonergic classes. Insert in the 

upper right corner highlights the correspondence between assigned and 
predicted subclasses in the MB Glut class. (b) Correspondence between 
assigned GABAergic subclasses and predicted subclasses based on the spatial 
coordinates of MERFISH cells. Insert in the lower left corner shows the 
correspondence between assigned and predicted GABAergic classes. Insert in 
the upper right corner highlights the correspondence between assigned and 
predicted subclasses in the MB GABA class.



Extended Data Fig. 16 | Predicting anatomical regions based on imputed 
MERFISH transcriptomes. (a) Correspondence between assigned CCFv3 
regions for MERFISH cells in glutamatergic, dopaminergic, and serotonergic 
cell types to predicted CCFv3 regions based on imputed transcriptomes of 
these MERFISH cells. Each row is normalized by dividing by the maximum 
number. Insert in the lower left corner shows the correspondence between 
assigned and predicted regions for glutamatergic, dopaminergic, and 
serotonergic cell types. Insert in the upper right corner highlights the 

correspondence between assigned and predicted subregions in midbrain.  
(b) Correspondence between assigned CCFv3 regions for MERFISH cells in 
GABAergic cell types and predicted CCFv3 regions based on imputed 
transcriptomes of these MERFISH cells. Insert in the lower left corner shows the 
correspondence between assigned and predicted regions for GABAergic cell 
types. Insert in the upper right corner highlights the correspondence between 
assigned and predicted subregions in midbrain.
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Extended Data Fig. 17 | Distribution of cluster numbers and cluster sizes 
across different brain regions. (a) Number of clusters per fine CCFv3 region 
(Supplementary Table 9) as analyzed using the MERFISH data. Bars are colored 

by broad CCFv3 regions. (b) Distribution of cluster size (number of cells per 
cluster) per major brain region in scRNA-seq data and MERFISH data.



Extended Data Fig. 18 | Circadian cycle associated expression changes  
in clock genes. (a-b) Dot plots showing the expression of clock genes in 
light-phase and dark-phase cells within each cell class (a) or selected subclasses 
that have any clock genes with fold change |log2(FC)| > 1 between light and dark 

phases (b). Dot size and color indicate proportion of expressing cells and 
average expression level in each class or subclass, respectively. (c) Heatmap 
showing the log2(FC) difference between light and dark phases for clock genes 
in the selected subclasses as in (b).
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Extended Data Table 1 | Summary of the whole mouse brain cell type atlas

The numbers of subclasses, supertypes, and clusters in each class, as well as the neighborhood(s) each class is assigned to, are listed. Classes are color coded consistently with the taxonomy.
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