Skip to main content
. 2023 Dec 13;13:22130. doi: 10.1038/s41598-023-47266-7

Table 3.

Confusion matrices for four classification model architectures on test images.

(a) ResNet50
Predicted
Unfed Fully fed Semi-gravid gravid
Actual Unfed 71 0 0 0
Fully fed 0 49 0 3
Semi-gravid 0 2 63 1
Gravid 0 0 0 45
(b) MobileNetV2
Predicted
Unfed Fully fed Semi-gravid Gravid
Actual Unfed 71 0 0 0
Fully fed 0 45 1 6
Semi-gravid 1 3 58 4
Gravid 2 1 2 40
(c) EfficientNet-B0
Predicted
Unfed Fully fed Semi-gravid Gravid
Actual Unfed 71 0 0 0
Fully fed 0 48 0 4
Semi-gravid 0 2 60 4
Gravid 2 0 3 40
(d) ConvNeXtTiny
Predicted
Unfed Fully fed Semi-gravid Gravid
Actual Unfed 65 1 0 5
Fully fed 0 48 2 2
Semi-gravid 3 1 52 10
Gravid 1 2 4 38

Correctly predicted instances are in bold.