
Impact of Methylene Blue on Enhancing the Hydrocarbon Potential
of Early Cambrian Khewra Sandstone Formation from the Potwar
Basin, Pakistan
Muhammad Ali,* Abdul Majeed Shar, Nurudeen Yekeen, Hussein Abid, Muhammad Shahzad Kamal,
and Hussein Hoteit

Cite This: ACS Omega 2023, 8, 47057−47066 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Significant amounts of hydrocarbon resources are left behind after
primary and secondary recovery processes, necessitating the application of enhanced
oil recovery (EOR) techniques for improving the recovery of trapped oil from
subsurface formations. In this respect, the wettability of the rock is crucial in
assessing the recovery and sweep efficiency of trapped oil. The subsurface reservoirs
are inherently contaminated with organic acids, which renders them hydrophobic.
Recent research has revealed the significant impacts of nanofluids, surfactants, and
methyl orange on altering the wettability of organic-acid-contaminated subsurface
formations into the water-wet state. This suggests that the toxic dye methylene blue
(MB), which is presently disposed of in huge quantities and contaminates
subsurface waters, could be used in EOR. However, the mechanisms behind
hydrocarbon recovery using MB solution for attaining hydrophilic conditions are
not fully understood. Therefore, the present work examines the impacts of MB on
the wettability reversal of organic-acid-contaminated Khewra sandstone samples
(obtained from the outcrop in the Potwar Basin, Pakistan) under the downhole temperature and pressure conditions. The sandstone
samples are prepared by aging with 10−2 mol/L stearic acid and subsequently treated with various amounts of aqueous MB (10−100
mg/L) for 1 week. Contact angle measurements are then conducted under various physio-thermal conditions (0.1−20 MPa, 25−50
°C, and salinities of 0.1−0.3 M). The results indicate that the Khewra sandstone samples become hydrophobic in the presence of
organic acid and under increased pressure, temperature, and salinity. However, the wettability changes from oil-wet to preferentially
water-wet in the presence of various MB solutions, thus highlighting the favorable effects of MB on EOR from the Khewra sandstone
formation. Moreover, the most significant change in wettability is observed for the Khewra sandstone sample that was aged using 100
mg/L MB. These results suggest that injecting MB into deep underground Khewra sandstone reservoirs may produce more residual
hydrocarbons.

1. INTRODUCTION
The global energy demand is rising and projected to increase
significantly in the upcoming years1,2 and may even increase by
around 60% by 2040, primarily due to population growth,
urbanization, and economic development in many coun-
tries.3−5 Crude oil is the principal source of energy worldwide,
and the increasing number of depleted oil reservoirs
(containing approximately 70% of the remaining crude oil)
requires immediate attention.6,7 Hence, the development of
innovative production enhancement strategies is essential in
order to cope with the increasing energy demand and to
optimize recovery from existing hydrocarbon fields.8,9 Several
enhanced oil recovery (EOR) methods, such as chemical EOR
and thermal EOR, are used to increase the recovery and sweep
efficiency during water flooding and gas injection.10−15 In this
respect, the wettability of the rock is an essential parameter for
improving the trapped oil recovery and sweep efficiency.16,17

However, subsurface formations are naturally contaminated
with organic acids, which renders them hydrophobic18−23 and
leads to the early breakthrough of injected fluid, which leaves
behind large volumes of hydrocarbons.24,25

Recent studies have demonstrated the wettability alteration
of organic-acid-contaminated rocks by using nanofluids,
surfactants, and certain chemicals such as methyl orange for
EOR and gas (CO2 and H2) geo-storage purposes.

24,26−33 The
results have shown that these surface-active agents can favor
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chemical flooding and CO2 injection for EOR and CO2 geo-
storage.28−30,34,35 Mechanistically, the presence of surfactants,
nanoparticles, and methyl orange in the base fluid has a robust
effect on altering the hydrophobic rock surface into a water-
wet state.36 Similarly, CO2 flooding has also depicted improved
oil recovery in many previous studies.37,38 In addition, changes
in the oil viscosity and reduction of the interfacial tension
(IFT) have contributed to the success of EOR projects.39

Methylene blue (MB) is a commonly used dye and is
presently discharged in large volumes as a component of
wastewater by textile and other industries.40,41 This wastewater
contamination leads to environmental pollution and hazards to
health.42 Although there are several techniques by which MB
can be removed from wastewater, most of these are not
economical, and managing the massive quantities of industri-
ally produced wastewater is presently challenging.42−47 Most
recently, Alhamad et al.41 reported that the treatment of
organic-molecule-contaminated quartz with MB significantly
reduced the contact angle (CA) and restored the initial
hydrophilic state of the quartz for enhanced H2 geo-storage
capacity. However, the CA measurement was conducted only
for H2/brine systems, so that their results only assess the
underground hydrogen storage potentials of MB-treated
quartz. Meanwhile, the EOR potential of MB-treated sand-
stone formations remains largely unexplored.
The present study therefore examines the feasibility of using

MB to modify the wettability of sandstone samples from the
Khewra outcrop in the Potwar Basin, Pakistan, for EOR. The
sandstone substrates are first aged in stearic acid (SA)/n-
decane solution (10−2 mol/L) and then placed in various
concentrations of aqueous MB (10, 30, 50, 80, and 100 mg/L).
The wettability is then measured in air-brine and oil−water
systems at various temperatures (25 and 50 °C), salinities (0.1,
0.3, and 0.5 M), and pressures (0.1, 5, 10, 15, and 20 MPa).
The results of this study are expected to be beneficial for
minimizing the environmental impacts of MB and enhancing
the oil recovery of organic-acid-contaminated sandstone
formations.

2. GEOLOGY OF THE STUDIED AREA
The location of Pakistan and the sample collection site (the
Khewra sandstone formation) are shown in Figure 1, and the
general stratigraphy of the Potwar Basin is shown in Figure 2.
Pakistan sedimentary basins are rich in hydrocarbon potential,
covering an area of 873,000 km2 including most of eastern

Pakistan and western part of India.48 The Potwar Basin in
Pakistan is characterized as a complex sequence of sedimentary
rocks deposited over millions of years. The geological sequence
of the Potwar Basin can be divided into several distinct
formations and layers, representing different geological periods
and processes. The oldest clastic rocks of the Potwar Basin are
found in the thick Khewra sandstones assemblage and were
deposited millions of years ago during the Pre-Cambrian era.49

These rocks are typically crystalline and metamorphic.50

However, the region’s substantial geological features primarily
consist of sandstones that were deposited during the Mesozoic
era, specifically during the Jurassic period. The Khewra
sandstone is a sedimentary rock composed mainly of sand-
sized mineral particles or rock fragments, probably due to the
accumulation and cementation of sand grains over millions of
years.49 These geological formations possess significant
hydrocarbon reserve potential,51 and the region around the

Figure 1. Geographic locations of Pakistan and the sample collection site in the Khewra sandstone formation.

Figure 2. Generalized stratigraphic section of the salt range in the
Potwar Basin, Pakistan.
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Khewra sandstone formation is known for its rich mineral
resources.

3. MATERIALS AND METHODS
3.1. Materials. The study samples were obtained from the

Khewra sandstone formation of the Potwar Basin, Punjab,
Pakistan, and represented a wide range of sedimentary
environments and postdepositional conditions (Figures 1 and
2). To assess the wetting characteristics, the samples were aged
in SA (Sigma-Aldrich, purity ≥99.999 mol %) as a geologically
representative organic acid, and MB (Sigma-Aldrich) was used
as a wettability modifier (Section 3.2). The brine solutions
with various desired concentrations (0.1−0.3 M) were
prepared by dissolving sodium chloride (NaCl, purity 99.999
mol %; Chemlabs) in deionized water. N-Decane (from Sigma-
Aldrich) was used as a nonwetting phase during the CA
measurements, and ultrapure nitrogen (≥99.999 mol %) was
used to clean the organic-contaminated Khewra sandstone
substrates.
3.2. Cleaning and Aging Procedures. Thin rectilinear

sections (10 × 10 × 3 mm) of the Khewra sandstone were
precisely machined from small cubes of about 1.52 × 1.40 ×
0.50 cm in size and then polished with abrasive sandpaper
(1000 to 400 mesh) to obtain a smooth surface before
measuring the CA. In addition, to eliminate any surface
contamination (e.g., deposits of organic matter), which might
otherwise lead to substantial measurement errors, the sample
surfaces were cleaned with deionized water, followed by drying
and blowing with ultrapure nitrogen (≥99.999 mol %). The
Khewra sandstone substrates were then placed in an oven for 2
h to remove any in situ water. After this, the Khewra sandstone
substrates were ionized with a 2 wt % NaCl solution, while the
pH was held at 4 by dropwise addition of aqueous HCl,
followed by aging with SA/n-decane solution (10−2 mol/L) for
7 days at 50 °C. This process increases the adsorption
potential of the sample surface and mimicks the natural
geological conditions under which the rock is exposed to
organic compounds for millions of years.18,19,52−54 Finally, the
SA-aged Khewra sandstone substrates were aged in various
concentrations of MB solution (10−100 mg/L) to examine the
wettability reversal for enhanced hydrocarbon potential. The
mechanisms of surface treatment with SA and MB are shown
schematically in Figure 3.
3.3. Contact Angle Measurement. Contact Angle (CA)

measurement is an effective technique for studying the
wettability of solid surfaces.55−58 It is a quantitative method
that provides direct information regarding the wetting

characteristics of the rock.1 The experimental setup for the
static CA measurement is schematically shown in Figure 4.

First, the samples are placed on a flat surface in the optical cell
(3, 8), and then the n-decane solution (as a representative
hydrocarbon) is injected via a high-precision ISCO syringe
pump (2) (Teledyne ISCO D-260; pressure accuracy = 0.01%)
to fill the IFT cell at the required pressure and temperature. A
brine droplet with an average size of 6.2 μL ± 0.6 μL is then
injected through a precise needle controlled by another ISCO
pump (1). The procedure is recorded using a high-
magnification video camera (9), and the CA images are
extracted and analyzed by using the ImageJ software (10) to
measure the tangent angles. In the present study, CA
measurements were performed at both 25 and 50 °C under
pressures of 0.1 to 20 MPa. Each CA measurement was
repeated three times to obtain the mean value with an error of
only ±3°.
3.4. Characterization. The Khewra sandstone samples

were examined via atomic force microscopy (AFM; Nanosurf,
Controller C3000, and Flex-Axiom) over an area of 10 × 10
μm2 to determine the surface roughness. Field emission
scanning electron microscopy (FESEM; Oxford Instruments)
was used to determine the surface morphology. The functional
groups resulting from MB and SA adsorption were identified
via Fourier transform infrared (FTIR) spectroscopy (Perki-
nElmer two, USA) in the range of 400−4000 cm−1.

4. RESULTS AND DISCUSSION
4.1. Surface Characterization. The surface roughness can

significantly influence the measured wettability of the
rock.59−62 Studies have shown that an increase in surface
roughness leads to a decrease in the CA because water is
retained in the grooves of the rough surface, thus resulting in
increased hydrophilicity.60,62,63 However, if the surface rough-
ness is less than 1 μm, then the CA measurement is not
significantly affected.60,64 Therefore, the surfaces of the Khewra
sandstone substrates are revealed by the AFM image in Figure
5. Here, the surface of the pristine sample exhibits a roughness
of around 234 nm, whereas the sample that was treated with

Figure 3. Chemical structures of SA and MB (left) and their effects
on the sample surface (right). Modified with permission from ref 41.
Copyright 2023, Authors and Elsevier.

Figure 4. Schematic diagram of the experimental setup for the CA
measurements: (1) ISCO pump for brine injection; (2) ISCO pump
for n-decane injection; (3) IFT cell (face-on view); (4) relieve valve;
(5) brine solution; (6) heating controller; (7) lamp; (8) IFT cell (side
view); (9) video camera; and (10) computer with ImageJ software.
Reprinted with permission from ref 24. Copyright 2022, Authors and
Elsevier.
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SA and MB exhibits a nonuniform layer with an increased
surface roughness of 345−476 nm.
The FESEM images of the samples before and after

treatment with SA and MB are presented in Figure 6. Here,
the untreated Khewra sandstone sample exhibits a smooth,

rocky texture (Figure 6a), whereas the SA- and MB-treated
samples each exhibit distinct textures due to surface
modification (Figure 6b,c). This demonstrates the irreversible
adsorption of both SA and MB on the sample surfaces,41,65,66

which is responsible for altering the wettability.31,54

The FTIR spectra of the Khewra sandstone samples before
(black) and after treatment with SA (red) and MB (blue) are
presented in Figure 7. Here, the samples are seen to be

composed primarily of quartz, with the corresponding Si−O
peaks appearing at 989, 897, 758, and 525 cm−1. The
absorption band at 837 and 539 cm−1 corresponds to the
bending and stretching vibration of the SiO2 group. However,
the intensities of the peaks at 3000−3700 cm−1 are seen to
decrease after the SA and MB treatments, which is attributed

Figure 5. AFM images (top) and surface profiles (bottom) of the pure Khewra sandstone sample.

Figure 6. FESEM images of the Khewra sandstone samples (a) before
and (b, c) after treatment with (b) SA and (c) MB.

Figure 7. FTIR spectra of the Khewra sandstone samples before and
after treatment with SA and MB.
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to the formation of hydrogen and oxygen bonds. The resulting
Si−OH groups are responsible for the observed surface
modifications.26,41,67

4.2. Effect of Methylene Blue on the Wettability of
the Khewra Sandstone Samples. The effects of various MB
concentrations on the wettability of the SA-aged (10−2 mol/L)
Khewra sandstone samples with 0.3 molar salinity at various
temperatures and pressures are presented in Figure 8. Here,

the CA values exhibit a general decrease with an increase in the
MB concentration. For instance, at 25 °C and 0.1 MPa (black
dashed line), the CA decreases from 78 to 57° as the MB
concentration is increased from 10 to 100 mg/L MB. Similarly,
at 50 °C and 20 MPa (red solid line), the CA decreases from
123 to 97° as the MB concentration is increased from 10 to
100 mg/L MB. These results indicate that the SA-aged
sandstone tends to become more hydrophilic when treated
with increasing concentrations of MB.
Before the MB treatment, the CA values of the SA-aged

Khewra sandstone samples at 25 °C are 95 and 125° at
pressures of 0.1 and 20 MPa, respectively (Figure 9). At a
higher temperature of 50 °C, the corresponding CA values are
103 and 136°, respectively. Thus, the surfaces of Khewra
sandstone outcrop substrates became hydrophobic in the
presence of organic acid, in agreement with previous
studies.26−31,56,60 However, as demonstrated in Figure 8, the
exposure of the organic acid-aged Khewra sandstone samples
to various concentrations of MB results in the adsorption of
MB onto the rock surface via van der Waals interactions.68−70

Similar reductions in the CA values of organic-acid-
contaminated samples have been reported after treatment
with increasing concentrations of nanofluids, surfactants, and
methyl orange.24,28−30,34,35,71 For example, Ali et al.28,29

examined the influence of SiO2 and Al2O3 nanofluids on the
wettability of organic acid-aged quartz and mica substrates and
observed that the surface wettability was modified due to the
adsorption of the nanofluids on the aged rock surfaces.
Similarly, Alhamad et al.24 reported a considerable reduction in
the CA of SA-contaminated quartz when the rock was treated
with methyl orange.
4.3. Effects of Pressure and Temperature on the

Wettability of the Khewra Sandstone in the Presence of

Organic Acid and Methylene Blue. The effects of pressure
variations on the wettabilities of the SA- (10−2 mol/L) and 100
mg/L MB-treated Khewra sandstone samples with 0.3 molar
salinity at temperatures of 25 and 50 °C are presented in
Figure 9. Here, the CA values are seen to increase with
increasing pressure and temperature. However, the effect of
pressure is much more profound for the SA-aged samples than
for the MB-treated samples, as evidenced by the much steeper
gradient of the solid red line (SA-aged, 50 °C) compared with
the black solid line (MB-treated, 50 °C). The effects of
temperature are also distinct for the SA-aged samples
compared to that for the MB-treated ones. Thus, at a fixed
temperature of 50 °C, the CA value of the SA-aged sample
(red solid line) increases significantly from 109° to 136 °C as
the pressure is increased from 5 to 20 MPa, whereas the CA of
the MB-treated sample (black solid line) increases more
slightly from 78 to 97° over the same range of pressures.
Meanwhile, at a constant pressure of 20 MPa, the CA value of
the SA-aged sample decreases from 136 to 125° as the
temperature decreases from 50 °C (red solid line) to 25 °C
(red dashed line), while the CA of the MB-treated sample
decreases from 97 to 86° as the temperature decreases from 50
°C (black solid line) to 25 °C (black dashed line), respectively.
Thus, it can be concluded that the oil-wet Khewra sandstone
samples change from oil-wet when aged in SA to intermediate-
wet when aged in MB at a sufficiently high temperature.
The dependence of temperature on rock wetting behaviors

and the attendant effects on oil recovery from sandstone
formations have been investigated in previous studies.72−77

Although some reported results have been quite contra-
dictory,24,78 the common trend regarding the impact of
temperature on rock wettability is that increasing the
temperature enhances the capacity of the trapped oil to flow
compared to that of the water; hence, the water-wetness of the
rock decreases at elevated temperatures. Moreover, an increase
in temperature reduces the oil−water IFT and decreases the
viscosity of trapped oil, thus resulting in an overall increase in
oil recovery from sandstone formations.79−81

Similarly, an increased pressure results in increased CAs in
the SA- and MB-aged Khewra sandstone samples. However,
the degree of change depends on the specific temperature and
surface modification conditions, as noted above. The observed

Figure 8. Effects of various concentrations of MB on the wetting
behavior of SA-aged Khewra sandstone samples at various temper-
atures and pressures.

Figure 9. Effect of varying pressures on the CA values of the SA- and
MB-aged Khewra sandstone samples at temperatures of 25 and 50 °C.
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change in wettability due to the increase in pressure is related
to the intermolecular attraction between liquid molecules and
the rock surface, thus making the Khewra sandstone samples
more hydrophobic.82,83

4.4. Effect of Salinity on the Wettability of the
Khewra Sandstone Samples in the Presence of Organic
Acid and Methylene Blue. The impacts of brine salinity on
the wettabilities of rock surfaces have been emphasized in
previous research.60,84−87 It is well-known that varying the
concentration and type of reservoir brine significantly affects
the wetting characteristics of the rock surface in the oil/brine
environment.24,88,89 Therefore, the effects of increasing salinity
(0.0 to 0.3 M) on the wettabilities of the SA- (10−2 mol/L)
and 100 mg/L MB-aged Khewra sandstone samples are
revealed by the CA measurements in Figure 10. Here, it can be

seen that the CA values increase with the increase in salt
concentration, which is consistent with the results of previous
studies.24,85,87,90,91 However, the degree of change in the CA
value is lower in the MB-aged samples than in the SA-aged
ones. This confirms the effectiveness of MB in decreasing the
hydrophobicity of the SA-contaminated Khewra sandstone
samples, thereby increasing their hydrocarbon potential. For
instance, at 50 °C and 20 MPa, the CA of the MB-aged
Khewra sandstone increases from 88 to 97° (a difference of 9°)
as the brine salinity is increased from 0.0 to 0.3 M, while the
CA of the SA-aged sandstone increases from 121 to 136° (a
difference of 15 units) under the same conditions.
The effect of increasing salinity on the wettability of the rock

surface can be attributed to the screening effect due to the
brine-induced surface charge,27 which may become positive at
higher salt concentrations, thereby nullifying the original

negative surface charge of the sandstone.90,92 This, in turn,
decreases the interactions between the rock surface and water,
thereby increasing the attraction between the oil and the rock
surface to favor the oil-wet behavior. For example, Pan et al.93

reported that the zeta potential of a shale sample surface
increased when CaCl2 and NaCl were introduced into the
system due to the surface adsorption of divalent ions, thus
resulting in a positive charge. Similarly, Kaya and Yukselen94

reported an increase in the zeta potential of quartz when the
salt concentration was increased.

5. CONCLUSIONS
Wettability is an essential property of subsurface reservoirs,
influencing the fluid flow dynamics, displacement, and
hydrocarbon recovery rate.1,16,95−97 Hydrocarbon reservoirs
are inherently hydrophobic due to dissolved organics.98,99

Meanwhile, MB dye has been extensively used in various
industries, including paper and textiles. It is typically
discharged in massive quantities as industrial wastewater,
which contaminates the subsurface water and poses a hazard to
human health and the environment.40,41 Therefore, this study
examined the feasibility of using MB to modify the wettability
of organic-acid-contaminated Khewra sandstone samples
obtained from the Potwar Basin, Pakistan, with the
simultaneous aims of enhancing the hydrocarbon recovery
and minimizing the environmental impact of MB by injecting it
into hydrocarbon-producing reservoirs.
The results demonstrated that the CA values of the Khewra

sandstone samples that were aged with 10−2 mol/L SA
increased as the temperature (from 25 to 50 °C), pressure
(from 0.1 to 20 MPa), and salinity (0.1 to 0.3 M) increased,
thereby attaining completely hydrophobic (oil-wet) conditions.
However, under similar reservoir conditions, the SA-aged
Khewra sandstone samples were modified from their initial oil-
wet state to an intermediate-wet state as the concentration of
MB was increased from 10 to 100 mg/L. Moreover, the
maximum reduction in CA value was achieved in the presence
of 100 mg/L MB. These results suggest that treating organic-
acid-contaminated Khewra sandstones with MB could
considerably promote their water wetness, thereby improving
the oil recovery from this and similar formations.
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