Skip to main content
. 2023 Nov 28;8(49):46390–46398. doi: 10.1021/acsomega.3c02364

Table 5. Results of the Most Relevant Test and Total Data That Were Utilized to Predict ROP Using Statistical Correctness Criteria.

split data models RMSE R2
train data set Maurer 17.43 0.6678
  Galle and Woods 20.68 0.5832
  LSSVM 6.19 0.8662
  LSSVM-GA 3.55 0.9018
  LSSVM-PSO 1.05 0.9845
test data set Maurer 18.29 0.6321
  Galle and Woods 22.46 0.5509
  LSSVM 7.21 0.8034
  LSSVM-GA 4.70 0.8997
  LSSVM-PSO 1.92 0.9516
total data set Maurer 17.86 0.6500
  Galle and Woods 21.57 0.5671
  LSSVM 6.70 0.8348
  LSSVM-GA 4.125 0.9008
  LSSVM-PSO 1.485 0.9681