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Abstract 

Background  Colon cancer (CC) is a heterogeneous disease that is categorized into four Consensus Molecular 
Subtypes (CMS) according to gene expression. Patients with loco-regional CC (stages II/III) lack prognostic factors, 
making it essential to analyze new molecular markers that can delineate more aggressive tumors. Aberrant methyla‑
tion of genes that are essential in crucial mechanisms such as epithelial mesenchymal transition (EMT) contributes 
to tumor progression in CC. We evaluate the presence of hyper- and hypomethylation in subrogate IHC markers 
used for CMS classification (CDX2, FRMD6, HTR2B, ZEB1) of 144 stage II/III patients and CC cell lines by pyrosequenc‑
ing. ZEB1 expression was also studied in control and shRNA-silenced CC cell lines and in paired normal tissue/
tumors by quantitative PCR. The pattern of ZEB1 staining was also analyzed in methylated/unmethylated tumors 
by immunohistochemistry.

Results  We describe for the first time the hypermethylation of ZEB1 gene and the hypomethylation of the FRMD6 
gene in 32.6% and 50.9% of tumors, respectively. Additionally, we confirm the ZEB1 re-expression by epigenetic 
drugs in methylated cell lines. ZEB1 hypermethylation was more frequent in CMS1 patients and, more importantly, 
was a good prognostic factor related to disease-free survival (p = 0.015) and overall survival (p = 0.006) in our patient 
series, independently of other significant clinical parameters such as patient age, stage, lymph node involvement, 
and blood vessel and perineural invasion.

Conclusions  Aberrant methylation is present in the subrogate genes used for CMS classification. Our results are 
the first evidence that ZEB1 is hypermethylated in CC and that this alteration is an independent factor of good 
prognosis.
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Introduction
Colon cancer (CC] is the third most prevalent type of 
cancer worldwide, with more than 1.1 million and 0.57 
million new cases and cancer-related deaths, respec-
tively, arising in 185 countries annually [1]. Among the 
wide range of risk factors, the biological features of CC 
and genetic and epigenetic tumor heterogeneity largely 
explain the different clinical outcomes. Advances in 
molecular pathology have allowed for the development of 
treatments such as the anti-EGFR monoclonal antibod-
ies for metastatic CC patients (stage IV) without RAS 
mutations [2]. Nevertheless, the choice of chemotherapy 
treatment for patients with loco-regional CC (stages II–
III) and bad prognostic factors is currently based only on 
histopathological and clinical factors [3]. For this reason, 
there is an urgent need to refine these prognostic factors 
in order to help clinicians stratify these patients more 
effectively.

Previously, CC has been categorized into four Consen-
sus Molecular Subtypes (CMSs): CMS1 (MSI immune 
subtype), CMS2 (canonical subtype), CMS3 (meta-
bolic subtype) and CMS4 (mesenchymal subtype) [4, 
5]. This classification is based on the differential gene 
expression, detected by microarrays, of genes crucial 
to cancer onset and progression. However, logistic and 
economic constraints render the use of DNA microar-
rays for routine classification unfeasible for most Pathol-
ogy Departments. Nevertheless, an advance in this field 
was achieved using a new approach based on a surrogate 
immunohistochemistry (IHC) panel that can be applied 
in routine clinical practice [6]. This panel comprises four 
IHC markers involved in crucial cell mechanisms: caudal-
related homeobox 2 (CDX2), FERM domain-containing 6 
(FRMD6), 5-hydroxytryptamine (serotonin) receptor 2B, 
G protein-coupled (HTR2B) and zinc finger E-box bind-
ing homeobox 1 (ZEB1).

There are few or no studies about the role of epigenetic 
alterations in the differential expression of subrogate 
CDX2, FRMD6, HTR2B and ZEB1 genes and about their 
possible clinical value. Aberrant DNA methylation of 
promoter regions in genes is the best-known epigenetic 
modification. This alteration is involved in regulating the 
expression of a great variety of genes [7]. This mechanism 
can be altered in cancer and be of clinical utility in the 
early detection of a wide range of cancers, and in predict-
ing their prognosis and response to treatment, for exam-
ple, the response to temozolomide in glioma patients 
with hypermethylation of the MGMT DNA repair gene 
[8]. Nevertheless, no aberrantly methylated genes with 
prognostic value have been exploited in clinical practice 
to treat CC patients [9].

CDX2 gene is known to be hypermethylated in colorec-
tal cancer, but few attempts have been made to determine 

its clinical value in CC [10]. It encodes a homeobox 
transcription factor that plays an important role in the 
development and maintenance of the intestinal tract and 
is used as an IHC marker to distinguish between adeno-
carcinomas of colorectal origin and those arising in other 
organs. It inhibits Wnt signaling and consequently the 
epithelial–mesenchymal transition (EMT) associated 
with tumor initiation, invasion, metastasis, and resist-
ance to therapy [11]; CDX2 hypermethylation is frequent 
in late stages of lung cancer [12] and plays an important 
role in the activation of lung cancer cell proliferation by 
suppressing Wnt signaling [13].

The FRMD6 gene is also altered in cancer but the 
causes of its aberrant expression have not been stud-
ied. FRMD6 protein can bind to actin filaments, thereby 
regulating actomyosin contractility in epithelial cell–cell 
junction complexes in order to maintain epithelial struc-
ture [14]. FRMD6 has been identified as an upstream 
regulator of the Hippo signaling cascade, which regulates 
cell contact inhibition, apoptosis and proliferation, which 
themselves are known to be deregulated in CC [15] and 
other cancers [16].

The HTR2B receptor binds its ligand serotonin acti-
vating the GNAQ, GNA11 and GNA13 proteins that 
participate in cell proliferation and survival through the 
activation of Janus kinase/signal transducer and activator 
of transcription (JAK/STAT) and RAF/mitogen-activated 
protein kinase (MEK)/ERK signal-transduction path-
ways, among other [17]. HTR2B gene has been described 
as an oncogene in uveal melanoma [18], among other 
solid tumors [19], and as a tumor suppressor gene in 
ovarian cancers [20].

Finally, ZEB1 belongs to the EMT-zing finger transcrip-
tion factor family and is involved in crucial mechanisms 
related to the formation and development of the organs 
in the embryonic development, fibrosis and tumor pro-
gression [21]. It is crucial in promoting EMT in cancer, 
including CC [22]; its expression is inhibited by miR200, 
which is activated by suppressor gene TP53 [23]; ZEB1 is 
known to be involved in regulating key factors in malig-
nant cells at the invasive front of carcinomas, conferring 
a proinvasive and stem-like phenotype on cancer cells, 
as well as leading to a worse clinical prognosis in several 
human cancers [24].

ZEB1 is known to participate in important epigenetic 
mechanisms. Its overexpression causes the epigenetic 
deregulation of colon cancer cells via activation of chro-
matin mark H3K4me3 leading to EMT [25]. Additionally, 
dysregulation of ZEB1 antisense 1 (ZEB1-AS1), an out-
standing cancer-related long non coding RNA (lncRNA) 
has been demonstrated to regulate ZEB1 expression and 
to play a pivotal role in tumorigenesis and progression 
[26]. Nevertheless, to our knowledge there are no studies 
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about the possible regulation of the promoter of ZEB1 
gene itself by aberrant methylation in CC.

The utility of CMS classification and the dearth of 
studies of epigenetic alterations in the subrogate genes 
prompted us to analyze the presence of aberrant meth-
ylation in those genes and examine its clinical value in 
stage II-III CC patients, who are characterized by the lack 
of prognostic biomarkers that are useful for their clinical 
follow-up.

Results
Study of aberrant methylation in subrogate genes
CDX2, FRMD6 and ZEB1 methylation could not be ana-
lyzed in 11.1%, 22.2% and 10.4% of the tumors, respec-
tively, probably due to the effect of formalin fixation on 
the tissue [27]. The mean values of the average meth-
ylation levels of CpGs were 5.3% for CDX2, 59.5% for 
FRMD6 and 15.0% for ZEB1, respectively. The mean 
value was considered the threshold for distinguishing sta-
tistically between the unmethylated (less than the mean) 
and methylated (greater or equal to the mean) than sta-
tus of each gene in normal and tumoral tissues. In the 
evaluable tumors, aberrant methylation was found for the 
three genes, with CDX2 and ZEB1 being hypermethyl-
ated in 32.8% and 32.6%, respectively, and FRMD6 being 
hypomethylated in 50.9% of the patients. Aberrant CDX2, 
FRMD6 and ZEB1 hypermethylation or hypomethyla-
tion was more frequent in tumoral than in normal tissue 
(p = 0.04, p = 0.0004, p = 0.0024, respectively) (Fig. 1B).

HCT116, HT29 and SW837 cells were clearly methyl-
ated for ZEB1 (80.5%, 96.0% and 49.0%, respectively). 
Conversely, ZEB1 was completely unmethylated in RKO 
cells (0.0%) and scarcely methylated in LoVo, SW480 and 
T84 cells (3.0%, 2.0% and 4.5%, respectively) (Fig. 2A).

Association between pathological and molecular 
parameters in CC
CC tumors with absent/low levels of CDX2 expression 
and a low percentage of positive tumor cells (< 25.0%) 
were associated with CDX2 hypermethylation (p = 0.044 
and p = 0.048, respectively) (Additional file 1: Fig. 1) and 
were preferentially of mesenchymal type and hMLH1/
hPMS2 defective tumors (p < 0.005). Absent/low lev-
els of expression are very frequent in stage III, less dif-
ferentiated and right colon-sided CC tumors (p = 0.024, 
p = 0.006 and p = 0.093, respectively).

FRMD6 hypomethylation was not associated with any 
of the variables included in the study, except for weaker 
PD-L1 expression (p = 0.012) analyzed previously by our 
group. It is remarkable that four of the five mesenchymal 
type tumors (80%) were hypomethylated for this gene 
compared with 49.5% of the epithelial ones (p = 0.182).

ZEB1 expression detected by qRT-PCR revealed that 
normalized ZEB1 expression of unmethylated tumors 
was higher than in methylated ones (p = 0.035) (Fig. 2B). 
ZEB1 expression detected by IHC in complete sections 
was well correlated with the findings obtained in TMAs 
in both groups of comparison (methylated vs. unmethyl-
ated tumors; high-grade vs. low-grade tumors) and pro-
duced no discordant results (p < 0.001). Lymphocytes and 
mesenchymal cells were used as internal positive controls 
of expression (Fig. 2C). There were no tumors with exten-
sive positive ZEB1 expression, except isolated cell groups 
(< 5–10% of area of the slide) in more differentiated 
tumoral areas in contrast to no/lower levels of expres-
sion in undifferentiated areas. One of three tumors with a 
signet-ring phenotype characterized by its bad prognosis 
expressed a low level of ZEB1. ZEB1 hypermethylation 
was associated with focal ZEB1 expression (p = 0.028). 
Finally, ZEB1 hypermethylation was more frequent in 
the CMS1 subtype (p = 0.072), with a clear association 
of this epigenetic alteration with the pathological (null) 
expression of hMLH1 and hPMS2 proteins (p = 0.040 and 
p = 0.022, respectively).

In vitro study
The highest levels of ZEB1 expression were detected 
mainly in AZA (p < 0.0001) and AZA + TSA (p = 0.003) 
groups of treated HCT116 and HT-29 cells, respectively 
(Fig. 2D).

The transfected RKO cells showed a significantly 
lower level of ZEB1 expression, mainly with shZEB1_1 
(p = 0.031) in comparison with shZEB1_2 (p = 0.078) and 
shZEB1_3 (p = 0.016), with the greatest difference com-
pared with the control (Additional file 2: Fig. 2). SW620 
and T84 cells did not re-express ZEB1, probably because 
ZEB1 expression is regulated by a different mechanism. 
It is notable that it was not possible to select transfected 
cells with these shRNAs to perform functional assays (cell 
migration, cell invasion, response to treatment) because 
ZEB1 knockdown by shRNAs induced cell death in the 
first few hours after transfection.

Survival analysis
The median follow-up for DFS and OS was 5.30 and 
5.48  years, respectively. The univariate analyses con-
firmed that factors such as age, tumor size, stage, lymph 
node involvement, vessel invasion and perineural inva-
sion were associated with worse prognosis as indicated 
by DFS (p < 0.001, p < 0.001, p = 0.040, p = 0.017, p = 0.005 
and p = 0.034, respectively) and OS (p < 0.001, p < 0.001, 
p = 0.042, p = 0.030 and p = 0.220, respectively). It is of 
particular note that CMS subtypes had differential prog-
noses as previously reported [28], that of CMS4 being the 
worst (p = 0.014).
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It is very striking that ZEB1 hypermethylation was 
clearly associated with longer DFS and OS (p = 0.017 
and p = 0.007, respectively) (Fig. 3). Therefore, the inde-
pendent impact of ZEB1 hypermethylation on DFS and 
OS, regardless of significant clinicopathological vari-
ables (patient age, stage, lymph node involvement, and 
blood vessel and perineural invasion), was tested in a 

Cox multivariate regression analysis. ZEB1 hypermeth-
ylation was still significantly associated with longer 
DFS (p = 0.015) and OS (p = 0.006), irrespective of age, 
tumor size, stage, and blood vessel and perineural inva-
sion (Table 1). The prognostic role of this alteration was 
maintained in the CMS2/3 subtypes (DFS: p = 0.023; 
OS: p = 0.009) (Additional file 3: Fig. 3).

Fig. 1  A Ideograms showing the location of the gene regions analyzed by pyrosequencing (PyroSeq) for CDX2, FRMD6 and ZEB1 genes, obtained 
from UCSC Genome Browser (Human GRCh37/hg19). The transcription start sites (TSSs), and the location of the PCR and sequencing primers are 
displayed. CpGs sites are represented by vertical bars. B Average percentage of CpGs methylation values within CDX2 and ZEB1 genes, and CpG 
methylation value of FRMD6 gene of each non-neoplastic colon (N) and each tumor (T) obtained by PyroSeq. The horizontal line represents 
the mean of both series (*p < 0.05, *** p < 0.001)
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Fig. 2  A Average percentage of CpGs methylation values within ZEB1 gene in cell lines by increasing order, detected by pyrosequencing (PyroSeq). 
B ZEB1 expression in unmethylated (U) and highly methylated (M) paired normal tissues-tumors (N–T) (n = 10 for each group), calculated by 2−ΔCt 
method. C Negative ZEB1 staining (methylated tumor), including positive nuclear staining in fibroblasts as internal control (up); positive nuclear 
ZEB1 staining in tumoral cells (unmethylated tumor) (down) (magnification: ×400). D Restoration of ZEB1 expression in HCT116 and HT29 cells 
by treatment of control cells (Ctl) with 5-aza-dC (AZA), trichostatin (TSA) and AZA + TSA, as calculated by 2−ΔΔCt method (* p < 0.05, **p < 0.01, 
***p < 0.001,****p < 0.0001)

Fig. 3  Univariate survival analysis. Kaplan–Meier curves stratified for (A) disease-free survival and (B) overall survival, stratified by ZEB1 
hypermethylation in all the patients. Log-rank p values are displayed
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Conversely, CDX2 hypermethylation and FRMD6 
hypomethylation were not of prognostic significance 
(Additional file 4: Fig. 4).

Discussion
Colon cancer heterogeneity highlights the importance 
of undertaking studies to find new molecular markers. 
MMR proteins currently help distinguish between MSI 
tumors and MSS, with better prognosis and response 
to treatment for the first group [29]. The incorporation 
of the subrogate IHC panel (CDX2, FRMD6, HTR2B, 
ZEB1) to classify CC into CMS to detect mesenchymal 
type tumors characterized by their bad prognosis is an 
easy task [30]. Nevertheless, the subrogate panel is clearly 
incapable of distinguishing CMS2 from CMS3 patients. 
This is a problem, given that CMS2/CMS3 is the most 
numerous group (81.0% of our series). In this context, the 
discovery of key molecular alterations would allow new, 
clinically useful biomarkers to be proposed for the man-
agement of CC patients.

The detection of epigenetic alterations such as hyper-
methylation and hypomethylation of regulatory regions 
could explain the patterns of expression in tumors and 
may be clinically significant, as we have described pre-
viously in breast and cervical cancers, among other [31, 
32]. It is worth noting that there have been no studies of 
epigenetic alterations of the FRMD6 and ZEB1 genes, 
which encode the proteins included in the panel, that are 
differentially expressed in colorectal cancer, as is demon-
strated in Human Protein Atlas database [33]. Even less is 
known about the clinical role of these alterations in CC.

In the group of patients studied here, loss or absence of 
CDX2 expression was much more frequent in the CMS1 

subtype but without prognostic significance [34], consist-
ent with the findings of Baba et al. in sporadic CC [35]. 
The association between CDX2 hypermethylation and 
lower levels of CDX2 expression is consistent with the 
first description of this epigenetic alteration in CC, which 
was detected by the less-informative methylation-specific 
PCR assay [36].

The clinical importance of the lack of CDX2 expression, 
measured as the level of mRNA or protein, has already 
been described in two reports [30, 37]. Less information 
is available about the clinical role of CDX2 hypermeth-
ylation [38, 39]. In the group studied here, CDX2 expres-
sion was not correlated with clinicopathological variables 
except for a non-significant tendency for patients with 
methylated tumors (mainly in CMS2/3 patients) to dis-
play longer disease-free survival. This contrasts with the 
study by Jiang et  al., which reported that CDX2 hyper-
methylation was associated with a bad prognosis [39]. 
It is worth noting that all the stages were covered by the 
previous report; whereas, our present study examined 
only stage II/III tumors.

Very little is known about the FRMD6 gene, expect 
that it is crucial to the Hippo pathway and therefore 
also to the EMT pathway. There is no agreement about 
what suppressor or oncogenic role FRMD6 alteration 
might play in cancer. In keeping with its suppressor role, 
FRMD6 mutations dysregulate the Hippo pathway by 
translocating the YAP/TAZ complex into the nucleus and 
thereby activating the expression of genes affecting key 
EMT genes (ZEB1, Snail/Slug, Twist) [40]. In line with 
these findings, low levels of FRMD6 expression are asso-
ciated with worse prognosis in prostate cancer [41], and 
inhibition of the gene is directly related to progression 

Table 1  Multivariate Cox regression analysis of the risk of recurrence or death related to demographic and pathological variables in CC 
patients

HR (95% CI): Hazard ratio, 95% confidence interval; LNI, Lymph node involvement

Disease-free survival Overall survival

Variable HR (95% CI) p value HR (95% CI) p value

Age 1.02 (0.98–1.06) 0.310 1.07 (1.02–1.12) 0.003

Tumor size 0.82 (0.62–1.08) 0.150 0.97 (0.79–1.19) 0.780

Stage II 1 0.008 1 0.940

III 36.33 (2.57–513) 0.005 (0.00–0.01)

LNI No 1 0.039 1 0.930

Yes 0.07 (0.006–0.87) 472 (0.93–563)

Blood vessel invasion No 1 0.340 1 0.750

Yes 1.67 (0.58–4.83) 1.51 (0.51–4.52)

Perineural invasion No 1 0.370 1 0.980

Yes 1.56 (0.59–4.14) 0.99 (0.36–2.73)

ZEB1 hypermethylation No 1 0.015 1 0.006

Yes 0.22 (0.06–0.74) 0.18 (0.05–0.6)
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of hepatocellular carcinoma [42]. Nevertheless, FRMD6 
expression also contributes to cancer progression by 
activating the mTOR signaling pathway, similar to what 
occurs in lung cancer [43].

In the case of CC, FRMD6 is more strongly expressed 
in the serrated-type of colorectal cancer corresponding 
to colon cancer subtype 3 (CCS3) [44]. Unfortunately, 
in the group that we studied there were no cases avail-
able to examine with this morphology, probably due to 
the fact that serrated-type is more frequent in stage IV 
CC than in the stages II–III considered in this study 
[45]. FRMD6 was also reported to be upregulated in 
the poor survival CRC group by unknown causes [44, 
46] and is also one of the panel of five key biomark-
ers of poor prognosis expressed in gastric cancer [47]. 
The mechanism underlying FRMD6 upregulation has 
not yet been determined. To our knowledge, our study 
is the first to report that FRMD6 gene is highly meth-
ylated in normal colon tissue and hypomethylated in 
tumors. Overexpression could be mediated, at least in 
part, by DNA hypomethylation; in our study group, 
the lack of association between FRMD6 expression and 
hypomethylation could be related to components of 
post-transcriptional regulation of FRMD6 expression, 
such as phosphorylation events, or other epigenetic 
modifications (e.g., DNA methylation, histone acetyla-
tion, miRNA expression) [48].

In our study, neither FRMD6 gene hypomethylation 
nor protein expression was associated with any clinico-
pathological variable, except for a clear association with 
a lower level of PD-L1 expression, a biomarker that pre-
dicts which patients with different types of cancer are 
more likely to respond to immunotherapy [49]. To our 
knowledge, this finding has not been reported elsewhere. 
Few studies have addressed the involvement of FMRD6 
protein in the immune response; it is thought to be a neo-
antigen directly associated with the expression of HLA-
A, and B and T cell activation characteristic of immune 
activated basal-like breast cancers with favorable progno-
sis [50].

HTR2B was recently described as being a suppres-
sor gene whose mutations are related to the prognosis 
of squamous lung cancer [51] and metastasis in uveal 
melanoma [52]. Conversely, it has been described as an 
oncogene in CC whose aberrant activation promotes the 
TGF-beta pathway and metastasis [53]. There is no infor-
mation about the presence of epigenetic alterations in 
this gene; it was not possible to study this here because 
the targeted CpG-rich region is very dense and the 
design of primers without CpGs in their sequence cannot 
be implemented. This is a frequent drawback in the anal-
ysis of FFPE samples, in which the starting material of 
study is so highly fragmented that the optimal amplicon 

length is restricted, thereby further limiting the options 
for primer placement [54].

ZEB1 is a crucial transcriptional activator of the trans-
formation from epithelial phenotype to mesenchymal 
phenotype that promotes invasion, intravasation and dis-
semination to distant sites [55]. ZEB1 is upregulated in 
colorectal cancer, alongside other types of cancer such 
as those of the bladder, breast, stomach, pancreas and 
prostrate, and endometrial adenocarcinoma, oesophageal 
squamous cell carcinoma, head and neck squamous cell 
carcinoma, hepatocarcinoma, leiomyosarcoma and lung 
carcinoma [56, 57].The expression of this protein is also 
associated with resistance to oxaliplatin chemotherapy 
widely used in the clinical treatment of CC [58].

In the group studied here ZEB1 hypermethylation, 
which was associated with a lower level of ZEB1 expres-
sion, was clearly associated with better prognosis, as 
indicated by DFS and OS, independently of other sig-
nificant variables. This important finding also pertains to 
the CMS2/3 subgroup, which could enable clinicians to 
stratify this heterogeneous group of patients into groups 
with different degrees of risk of relapse or of death. These 
findings are consistent with those of Lindner et al. about 
the worse prognosis correlated with the high expression 
of ZEB1 [25]. The good prognostic role of this epigenetic 
alteration leading to ZEB1 silencing confirms the impor-
tant role of this protein in the progression of CC.

Additionally, ZEB1 hypermethylation is associated 
with the CMS1 subtype, characterized by its high degree 
of immune infiltration and better prognosis confirmed 
in our sample. It is notable that the only patient with 
the CMS1 subtype who died displayed an unmethylated 
promoter. The influence of ZEB1 expression in immune 
infiltration has been well studied, with reports on the 
inhibition of immune response exerted by this protein 
in melanoma and lung cancer [59, 60]. The role of ZEB1 
hypermethylation in this context and its influence on 
conventional or experimental treatments [61, 62] should 
therefore be investigated further.

Conclusions
To our knowledge, this is the first report of aberrant 
methylation of the subrogate genes FRMD6 and ZEB1 
being used for CMS classification. More importantly, we 
describe here for the first time the role of ZEB1 hyper-
methylation as a crucial biomarker for the better progno-
sis of CC patients, as represented by disease-free survival 
and overall survival.

Materials and methods
Group of study
The group of patients studied consisted of 144 patients 
diagnosed with stage II (80 patients, 55.6%) and stage 
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III (64 patients, 44.4%) sporadic CC between 2012 and 
2013 in the Pathology Department of the Hospital Uni-
versitario de Navarra (Navarra Public Health System). All 
patients underwent surgical resection and tumors were 
staged according to their size, lymph node involvement 
and distant metastasis, following the most recent rec-
ommendations [63]. None of the patients had received 
radiation or chemotherapy before surgery. The study 
was approved by the Regional Clinical Research Ethics 
Committee (CEIC) (Pyto2017/51 Cod. MOL_CRC, 15 
May 2018). The diagnosis of these tumors was confirmed 
following microscopic inspection by a certified patholo-
gist with expertise and specialism in colon pathology 
(M.G.D.).

Tumors were classified by the subrogate IHC panel 
into CMS1 (MSI Immune), CMS2/CMS3 (Canonical/
Metabolic) and CMS4 (Mesenchymal) in 18 (12.5%), 117 
(81.3%) and nine patients (6.3%), respectively, based on 
previously established criteria [6].

Pathological and clinical characteristics are summa-
rized in Table  2. Adjuvant chemotherapy was admin-
istered in 53 patients (37.9%), preferentially in stage III 
patients (81.1%) compared with stage II patients (18.9%), 
according to standard procedures. Follow-up included a 
physical and clinical examination every 4 months. During 
follow-up, 25 (17.4%) patients died of the disease and 26 
(18.1%) died of other causes.

Immunohistochemical study
Three-μm sections of tissue microarrays (TMAs) blocks 
harboring four tumor-carrying cores selected by the 
pathologist were placed on slides and then deparaffi-
nized, hydrated and treated to block endogenous peroxi-
dase activity using Vision Biosystems Bond-Max (Leica, 
Wetzlar, Germany) and Bench-Mark XT Ventana (Roche, 
Basel, Switzerland) automatic immunostaining apparatus, 
as previously published [64]. These slides were incubated 
with the appropriate primary antibodies against mis-
match repair proteins-MMR (MLH1, MSH2, MSH6) and 
against proteins of the subrogate panel (CDX2, FRMD6, 
HTR2B and ZEB1) under the conditions summarized in 
Additional file 5: Table 1. In each TMA, normal colonic 
mucosa and stromal ovary tissue were included as the 
positive and negative control, respectively. A minimum 
of 500 tumor cells per tumor were counted by two inde-
pendent expert pathologists. To evaluate the immu-
nostaining pattern of the four proteins, we used the 
online test for CCR classification (https://​crccl​assif​ier.​
shiny​apps.​io/​appTe​sting/). Expression of nuclear CDX2 
and cytoplasmic FRMD6 was evaluated by categorizing 
counts of positive tumor cells into three categories (null/
low number of positive cells: no expression or expression 

Table 2  Pathological and clinical characteristics of CC patient 
series

*ADC NOS: Adenocarcinoma not otherwise specified; **SRCC: Signet ring cell 
carcinoma

Variable Frequency
n (%)

Age (years)

Mean 72.2

Range 48–93

Gender

Female 46/144 (31.9)

Male 98/144 (68.1)

Tumor location

Right colon 79/144 (54.9)

Left colon 65/144 (45.1)

Histologic type

ADC NOS* 125/144 (86.8)

Colloid 18/144 (12.5)

SRCC** 1/144 (0.7)

Differentiation grade

Well differentiated 118/144 (81.9)

Moderately-Poorly differentiated 26/144 (18.1)

Tumor size (cm)

Mean 4.51

Range 1.5–13

Lymph node involvement

No 81/144 (56.3)

Yes 63/144 (43.8)

Stage

II 80/144 (55.6)

III 64/144 (44.4)

Lymphatic vascular invasion

Negative 108/144 (75.0)

Positive 36/144 (25.0)

Blood vessel invasion

Negative 102/144 (70.8)

Positive 42/144 (29.2)

Perineural invasion

Negative 112/144 (77.8)

Positive 32/144 (22.2)

Chemotherapy

No 53/144 (36.8)

Yes 67/144 (60.4)

Not valuable 4/144 (2.8)

Recurrence

No 116/144 (80.6)

Yes 27/144 (18.8)

Not valuable 1/144 (0.7)

Exitus

No 113/144 (78.5)

Yes 31/144 (21.5)

https://crcclassifier.shinyapps.io/appTesting/
https://crcclassifier.shinyapps.io/appTesting/
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in fewer than 25% of cells; intermediate: expression in 
26–55% of cells; high: expression in 56–100% of cells) 
and the intensity of the expression (low, intermediate and 
high). They were considered separate variables for the 
purpose of comparison. Diffuse CDX2 expression present 
in normal mucosa was used as a positive internal control 
and reference for the intensity of expression. Cytoplasmic 
HTR2B expression was evaluated in terms of its inten-
sity, as in the case of CDX2/FRMD6. Nuclear ZEB1 was 
scored as its presence or absence. ZEB1 expression was 
also measured by IHC in complete sections of two groups 
of patients. The first group (16 tumors) included eight 
completely unmethylated (0.0%) tumors and eight highly 
methylated (> 50% methylation) tumors. The second 
group consisted of high-grade tumors (those with < 50% 
of glandular differentiation) (15 tumors). Programmed 
death ligand 1 (PD-L1), previously analyzed by our group 
[28], and P53 proteins were also evaluated in TMAs, fol-
lowing previous criteria [28, 65].

DNA extraction from cell lines and tissue
DNA was extracted from 0.5 × 106 cells in the case of cell 
lines, while for tumoral/normal tissues, it was obtained 
by QIAamp DNA Tissue kit (Qiagen, Hilden, Ger-
many) from a representative area with more than 70% 
of tumoral cells in 5-μm-thick formalin-fixed, paraffin-
embedded (FFPE) sections selected by the pathologist. 
DNA concentration was measured using an Invitro-
gen™ Qubit™ 3 Fluorometer (Thermo Fisher Scientific, 
Waltham, MA, USA).

Pyrosequencing of subrogate genes
DNA methylation levels for CDX2, FRMD6 and ZEB1 
genes were analyzed by bisulfite pyrosequencing in 144 
patient tumor samples and in 40 paired normal tissues. 
The sets of primers for PCR amplification of analyzed 
CpGs (two positions in the case of CDX2 and ZEB1, 
and one position in the case of FRMD6) and sequenc-
ing for each gene (Fig. 1A, 1B, 1C) were designed using 
the specific PyroMark assay design software (version 
2.0.01.15; Qiagen, Hilden, Germany). We considered 
the same genomic regions of the CDX2 and ZEB1 genes 
that were previously analyzed by the methylation-spe-
cific PCR (MSP) method or Illumina methylation arrays, 
respectively [66, 67]. In the case of FRMD6, primers were 
designed to cover the promoter region. The location of 
the analyzed CpGs with respect to GRCh37/hg19, the 
primer sequences and the PCR conditions are included 
in Additional file 5: Table 2. It was not possible to design 
primers for HTR2B due to the high CpG density.

Bisulfite modification of DNA was performed with an 
EZ DNA methylation-gold kit (Zymo Research Irvine, 
CA, USA), following the manufacturer’s instructions. 

PCR amplification, pyrosequencing and methylation 
quantification were performed using PyroMark Q96 rea-
gents in a PyroMark Q96 ID (Qiagen, Hilden, Germany). 
The average methylation percentage of CpGs of each 
gene was calculated for each tumor and normal tissue.

The survival of patients bearing these genes was ana-
lyzed (see below) to test the clinical value of the aberrant 
gene methylation of subrogate genes.

In vitro treatments
Additional in  vitro and molecular studies were carried 
out to test the biological value of ZEB1 hypermethyla-
tion. A panel of seven cell lines derived from colon can-
cer (HCT116, HT29, LoVo, RKO, SW480, SW837 and 
T84) was used to study ZEB1 (kindly donated by Dr. Aro-
zarena, Navarrabiomed, Spain). All these cell lines were 
grown in DMEM, supplemented with 10% fetal bovine 
serum and 1.0% penicillin/streptomycin (all from Life 
Technologies, Carlsbad, CA, USA) at 37 °C in a humidi-
fied atmosphere with 5% CO2. The basal level of ZEB1 
methylation was assessed in all cell lines.

Two highly methylated cell lines (HCT116, HT29) 
and one demethylated (RKO) cell line were treated at 
low passage with the demethylating agent 5-aza-2′-
deoxycytidine (AZA) and the histone deacetylase inhibi-
tor trichostatin A (TSA) (both from Sigma-Aldrich, St 
Louis, MO, USA). Briefly, cells were seeded at a density of 
1 × 105 cells/ml in six-well plates, allowed to attach over-
night, and treated with 4 μM AZA for 72 h added freshly 
every 24 h, 300 nM TSA for 24 h, or the combination of 
the two drugs (4  μM AZA + 300  nM TSA) for the final 
24 h, using PBS as a vehicle control.

RNA extraction and quantitative reverse transcription PCR 
(qRT‑PCR)
qRT-PCR was performed to check the restoration of 
ZEB1 expression in control and AZA + TSA-treated CC-
derived cell lines. Three replicates were performed for 
each experimental condition. This analysis was also per-
formed in 20 paired paraffin tumor–normal tissues (10 
methylated and 10 unmethylated) to check the differen-
tial expression of this marker in tissue.

To this end, total RNA was extracted and purified 
using the RecoverAll kit (Thermo Fisher Scientific, 
Waltham, MA, USA) following the manufacturer’s 
instructions. Five hundred nanograms of total RNA were 
retrotranscribed using a PrimeScript™ RT Reagent Kit 
(TaKaRa, Otsu, Japan) at 37 °C for 15 min and 85 °C for 
5  s. One microliter of the resulting cDNA was placed 
in a 96-well plate with 0.5  μl TaqMan probes (ZEB1: 
Hs.PT.58.39178574, IDT, Coralville, Iowa, USA) and 19 μl 
of mix were included in the Premix ExTaq™ kit (TaKaRa, 
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Otsu, Japan). PCR amplification was performed in tripli-
cate using the Quant Studio 12 K Flex (Life Technologies, 
Carlsbad, CA, USA) under thermal cycler conditions of 
95 °C for 30 s and 40 cycles at 95 °C for 5 s and 60 °C for 
34  s. Cycle threshold (Ct) values were calculated using 
Quant Studio software (Life Technologies, Carlsbad, CA, 
USA), using the reference housekeeping pseudogene-free 
ribosomal gene (18S rRNA: Hs.PT.39a.22214856.g, IDT 
Coralville, Iowa, USA), which shows little variation in 
basal expression in colon cancer [68, 69], as a normaliza-
tion standard Absolute values of ZEB1 expression in nor-
mal tissues and tumoral tissues were calculated by ΔCt 
method (2−ΔCt) (Fig. 2B). The fold change in ZEB1 expres-
sion of each cell treatment (AZA, TSA, AZA + TSA) rela-
tive to the control value (ctl) was calculated by the ΔΔCt 
method (RQ = 2−ΔΔCt) (Fig. 2C).

ZEB1 silencing in colon cancer cell lines
ZEB1 expression was silenced in cell lines positive for 
ZEB1 expression (RKO, SW620 and T84 cells) by short 
hairpin RNAs (shRNAs). For shRNA construction, 
three sequences targeting ZEB1 (shZEB1_1, shZEB1_2, 
shZEB1_3) and one scramble sequence were used (Addi-
tional file  5: Table  3). After inserting shRNAs into the 
pHIV1-SIREN-PuroR plasmid (kindly provided by Dr. 
Escors, Navarrabiomed), BamHI and EcoRI restriction 
enzymes (Life Technologies, Carlsbad, CA, USA) and T4 
DNA ligase enzyme (New England Biolabs, Ipswich, MA, 
USA), respectively, were used to digest and ligate the 
construction. XL1-Blue Competent cells were then trans-
formed with these three shRNA constructions. Plasmids 
were purified using the Qiagen Plasmid Midi kit (Qiagen, 
Hilden, Germany) and sequenced to check the ligation. 
Since the plasmid contained the puromycin-resistance 
gene for mammalian cell selection, cell sensitivity to this 
antibiotic (Thermo Fisher Scientific, Waltham, MA, USA) 
was tested for 5 days, and a concentration of 1 μg/ml was 
chosen as optimal from a range of possibilities. 5 × 104 
cells were seeded in six-well plates, allowed to attach 
overnight and then stably transfected with 1.2 µg of the 
plasmid of interest and 1:3 (v/v) FuGene HD (Promega, 
Madison, WI, USA) containing scramble, shZEB1_1, 
shZEB1_2 and shZEB1_3 in 60 µl of DMEM (Lonza Bio-
logics, Basel, Switzerland), as previously described [70]. 
qRT-PCR was performed to check the silencing of ZEB1 
expression with three replicates for each experimental 
condition (control, shZEB1_1, shZEB1_2, shZEB1_3).

Statistical analysis
Associations between molecular (aberrant methylation, 
RNA expression), pathological and clinical variables of 

this retrospective study were assessed with the chi-square 
or Fisher’s exact test. Disease-free survival (DFS) and 
overall survival (OS) were analyzed in all CC patients. 
Survival curves were calculated using the Kaplan–Meier 
method and compared by univariate (log-rank) test. 
A multivariate Cox (proportional hazards) regression 
model was used to test the independent contribution of 
each variable to patient outcome. The proportional haz-
ard ratio and 95% confidence interval (95% CI) were cal-
culated for each factor. The hazard risk was adjusted for 
tumor stage and patient age. Statistical significance was 
concluded for values of p < 0.05 in all analyses.
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