
Multiscale deep learning framework captures systemic immune
features in lymph nodes predictive of triple negative breast cancer
outcome in large-scale studies
Gregory Verghese1,2,3†, Mengyuan Li1,2† , Fangfang Liu4†, Amit Lohan5, Nikhil Cherian Kurian5, Swati Meena5,
Patrycja Gazinska3,6, Aekta Shah1,7, Aasiyah Oozeer8, Terry Chan9 , Mark Opdam9 , Sabine Linn9,10,11,
Cheryl Gillett8, Elena Alberts1,2, Thomas Hardiman1,2, Samantha Jones12, Selvam Thavaraj13,14, J Louise Jones12 ,
Roberto Salgado15,16, Sarah E Pinder2, Swapnil Rane17 , Amit Sethi5 and Anita Grigoriadis1,2,3*

1 Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
2 School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
3 Breast Cancer Now Unit, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
4 Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer,

Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention
and Therapy, Tianjin, PR China

5 Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India
6 Biobank Research Group, Lukasiewicz Research Network, PORT Polish Center for Technology Development, Wroclaw, Poland
7 Department of Pathology, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
8 King’s Health Partners Cancer Biobank, King’s College London, London, UK
9 Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
10 Department of Medical Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Amsterdam, The Netherlands
11 Department of Pathology, University Medical Centre, Utrecht, The Netherlands
12 Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
13 Faculty of Dentistry, Oral & Craniofacial Science, King’s College London, London, UK
14 Head and Neck Pathology, Guy’s & St Thomas’ NHS Foundation Trust, London, UK
15 Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
16 Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
17 Department of Pathology, Tata Memorial Centre-ACTREC, HBNI, Mumbai, India

*Correspondence to: A Grigoriadis, Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s
College London, SE1 9RT London, UK. E-mail: anita.grigoriadis@kcl.ac.uk

†These authors contributed equally.

Abstract
The suggestion that the systemic immune response in lymph nodes (LNs) conveys prognostic value for triple-negative
breast cancer (TNBC) patients has not previously been investigated in large cohorts. We used a deep learning
(DL) framework to quantify morphological features in haematoxylin and eosin-stained LNs on digitised whole slide
images. From 345 breast cancer patients, 5,228 axillary LNs, cancer-free and involved, were assessed. Generalisable
multiscale DL frameworks were developed to capture and quantify germinal centres (GCs) and sinuses. Cox regression pro-
portional hazardmodels tested the association between smuLymphNet-captured GC and sinus quantifications and distant
metastasis-free survival (DMFS). smuLymphNet achieved a Dice coefficient of 0.86 and 0.74 for capturing GCs and
sinuses, respectively, and was comparable to an interpathologist Dice coefficient of 0.66 (GC) and 0.60 (sinus).
smuLymphNet-captured sinuseswere increased in LNs harbouring GCs (p < 0.001). smuLymphNet-captured GCs retained
clinical relevance in LN-positive TNBC patients whose cancer-free LNs had on average ≥2 GCs, had longer DMFS (hazard
ratio [HR] = 0.28, p = 0.02) and extended GCs’ prognostic value to LN-negative TNBC patients (HR = 0.14, p = 0.002).
Enlarged smuLymphNet-captured sinuses in involved LNs were associated with superior DMFS in LN-positive TNBC
patients in a cohort from Guy’s Hospital (multivariate HR = 0.39, p = 0.039) and with distant recurrence-free survival
in 95 LN-positive TNBC patients of the Dutch-N4plus trial (HR = 0.44, p = 0.024). Heuristic scoring of subcapsular
sinuses in LNs of LN-positive Tianjin TNBC patients (n = 85) cross-validated the association of enlarged sinuses with
shorter DMFS (involved LNs: HR = 0.33, p = 0.029 and cancer-free LNs: HR = 0.21 p = 0.01). Morphological LN fea-
tures reflective of cancer-associated responses are robustly quantifiable by smuLymphNet.Ourfindings further strengthen
the value of assessment of LN properties beyond the detection ofmetastatic deposits for prognostication of TNBC patients.
©2023TheAuthors. The Journal of Pathology published by JohnWiley & Sons Ltd on behalf of The Pathological Society ofGreat Britain and
Ireland.
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Introduction

Solid tumours engage the lymphatic system, whereby
the draining lymph nodes (LNs) are often the first site
of dissemination outside the primary tumour [1]. For
the treatment of invasive breast cancer, the tumour-
draining LNs, including the sentinel lymph node
(SLN), are routinely excised, and details of the pres-
ence and size of LN metastases provide the basis for
pathological staging. However, extensive dissection of
all draining LNs does not reduce the mortality of
breast cancer patients [2]. In recent years, surgical
management of the axilla has become less radical,
with fewer complete axillary clearances for those
with small volume metastasis, for example of
micrometastasis (≤2 mm). As demonstrated in the
International Breast Cancer Study Group (IBCSG)
trial 23-01, eliminating axillary dissection had no
adverse effect on survival compared to axillary dis-
section in early breast cancer patients with ≥1
micrometastasis [3].

Above and beyond the detection of metastasis, LNs
serve as immunological hubs between the tumour and
the patient’s systemic immunity and provide an oppor-
tunity to study systemic host defence mechanisms,
both pro- and anti-tumoural, and their role in likely
disease trajectories [1]. Such responses in the LNs
include changes in fibroblastic architecture, the abun-
dance of macrophages in sinuses, and hyperplasia of
lymphoid follicles [4]. These morphological changes
can be captured by computational approaches, such
as deep learning (DL)-based algorithms. A series of
competitive international challenges have demon-
strated the utility of exploring digitised whole-slide
images (WSI) of LNs, e.g. CAMELYON16 and
17, however, to date, with the focus only on cancer cell
detection [5,6]. By manually assessing �3,000
H&E-stained LNs and patient-matched primary
tumours on glass slides [7], we and others have
demonstrated a higher risk of developing distant
metastases, in particular in TNBC patients with low
levels of tumour-infiltrating lymphocytes (TILs),
when the cancer-free LNs lacked germinal centre
(GC) formation [7–10]. GCs are highly organised
structures with an inner B-cell follicle and an outer
T-cell zone that generate long-lived memory B cells
and plasma cells. Since these highly proliferative GC
cells show some morphological similarities to cancer
cells (e.g. size of cells), lymphoid follicle detection

using convolutional neural networks (CNNs) has been
proposed to exclude these areas for tumour detection
in LNs [11]. However, DL-based algorithms to capture
the formation of GCs and other morphometric immune
responses in LNs have, so far, not been utilised, in par-
ticular to determine whether their patterns hold clini-
cally relevant information.
CNNs have superior performance in imaging tasks

to alternative models, mainly due to their efficient
parameter-sharing between kernels and local connec-
tivity properties [11,12]. Based on the standard CNN
framework, fully convolutional networks (FCNs)
replace fully connected layers at the end of the network
with convolutional layers, enabling pixel-level classi-
fication and a low dimensional reconstruction of the
input [12]. In biomedical applications, where datasets
are often sparse relative to other computer vision tasks,
the U-Net architecture has proven to be an effective
network for segmentation [13,14]. However, whilst
the standard U-Net architecture is trained on single-
scale images, histopathologists analyse glass slides at
multiple magnifications and integrate information
from multiple fields of view when making clinical
diagnostic, and prognostic factor, decisions. Thus,
currently, this single-scale feature encoding of images
used by most convolutional models is not commensu-
rate with a pathologist’s visual assessment of multiple
fields. In light of this, recent methods integrating a
multiscale feature extractor into the U-Net architec-
ture, mimicking a histopathologist’s assessment, have
been developed and demonstrated superior segmenta-
tion performance on a range of medical image data
modalities [15].
For this study, we built a supervised multiscale

U-Net-based DL framework named smuLymphNet to
capture and quantify GCs and sinuses within LNs on
digitised H&E-stained WSIs of 5,228 cancer-free and
involved LN sections from both LN-negative and
LN-positive breast cancer patients, enriched for TNBC
cases. We benchmarked smuLymphNet performance
relative to manual LN assessments of four pathologists.
By applying smuLymphNet to a retrospective breast
cancer cohort and a clinical trial dataset, both with
extensive longitudinal outcome data, we have revealed
associations between smuLymphNet-predicted immune
features in LNs and the risk of subsequently developing
distant metastasis in TNBC patients, which could be
applied to tailor clinical therapy and to expand response
assessment aspects in future clinical trials for these
high-risk patients.
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Materials and methods

Research ethics approval was obtained from the respec-
tive local research ethics committees (KHP Cancer
Biobank REC reference 18/EE/0025, Barts Cancer
Institute REC reference 21/EE/0072 until January 2026,
Medical Ethics Committee of Tianjin Medical University
Cancer Institute and Hospital, Ek2020021), and the insti-
tutional review board of the Netherlands Cancer Institute,
clinical trial information: NCT03087409.

Study population
This is a retrospective study with a total of 345 patients
across four independent cohorts. The main cohort
consisted of 177 patients (122 LN-positive [metastasis
was reported in at least 1 LN] and 55 LN-negative
patients) with invasive breast carcinoma treated between
1984 and 2002 at Guy’s Hospital in London, UK. An ini-
tial 1,800 H&E slides were scanned and digitised at
magnification �40 (0.23 μm/pixel). After manually
assessing all WSIs, those of insufficient quality for anal-
ysis were removed (see Supplementary materials and
methods for details). This resulted in 1,143 high-quality
WSIs of 3,301 LN sections from 154 breast cancer
patients with extensive clinical-pathological data
(CONSORT diagram in Figure 1; see Supplementary
materials and methods for details). We also obtained
WSIs from five LNs of breast cancer patients from
(1) Barts Cancer Institute (London, UK) (referred to as
Barts); (2) Tianjin Medical University (Tianjin, PR
China) (referred to as Tianjin), and (3) 180 LN sections
from SLN biopsies from six Guy’s Hospital breast can-
cer patients. A set of 174 WSIs of H&E-stained LNs
(114 /174 involved LNs) of 95 LN-positive TNBC
patients from the Dutch-N4plus trial [16] was used as
an external validation cohort (supplementary material,
Table S1). We had previously assessed GC formation
in 1,803 cancer-free and involved H&E-stained LNs
from 161 LN-positive hormone receptor-negative breast
cancer patients (Tianjin cohort) [17]. A pathologist
(FL) manually assessed the subcapsular sinus (SCS) in
LNs of 99 of the 161 TNBC Tianjin cohort. In
14 patients, LNs had insufficient tissue for subscapular
measurement, resulting in a final cohort of 1,568 LNs
from 85 LN-positive TNBC patients (supplementary
material, Table S2).
Patient selection and data analyses are reported

according to Reporting Recommendations for Tumor
Marker Prognostic Studies (REMARK) criteria [18].

Study design
The smuLymphNet DL-based framework (Figure 2A) to
capture and quantify morphological perturbations in
axillary LNs from breast cancer patients consists of
(1) digitising the diagnostic LN glass slides (details of
data collection are provided in supplementary methods);
(2) a LN-detection algorithm to determine the bound-
aries of each LN section on theWSI using an Otsu-based

thresholding [19] and contouring algorithm; (3) a LN
metastasis classifier to determine involved or cancer-free
LNs [20]; (4) a supervised DL-pipeline for the segmen-
tation of GCs and sinuses (Figure 2B); and (5) the quan-
tification of the number, size, and shape of the predicted
features.

DL framework
For the segmentation of GCs and sinuses in LNs, we
tested three FCNs based on a U-Net architecture with
symmetrical encoder-decoder paths: (1) a standard
U-Net architecture with five convolution blocks and
skip connections (referred to as U-Net), (2) a U-Net
model with an attention mechanism that upweights
salient features during training (referred to as
AttenU-Net) [21], and (3) a multiscale U-Net approach
that assimilates semantic information from different
scales during training using atrous convolutions [22]
(referred to as MS U-Net) (see Supplementary mate-
rials and methods and supplementary material,
Figure S1). A single LN section was selected from
114 H&E-stained WSIs from Guy’s Hospital
(London, UK) and manually annotated for GCs and
sinuses by a pathologist (FL). Each annotated LN
was divided into a series of overlapping equally sized
tiles at magnifications of �2.5, �5, and �10. Models
were trained on tiles from 100 LN sections, with tiles
from nine LN sections used for validation and tiles
from five LN sections used as a holdout test set to eval-
uate model performance. Details for tile preprocessing
and the model training procedures are provided in
Supplementary materials and methods.

Morphological feature quantification
For each LN, we captured the (1) number, (2) mean
area, and (3) mean circularity of GCs (details of calcu-
lations are in Supplementary materials and methods).
To estimate the overall area of the sinuses within a
LN, the smuLymphNet-captured sinuses were summed
and normalised by overall LN size, due to a statisti-
cally significant correlation between the LN size
and overall sinus area (supplementary material,
Figure S2).

Interpathologist concordance
A single LN on 24WSIs was randomly selected for man-
ual annotation by four pathologists (FL, ASh, SR, PG)
using QuPath version 0.3.0. [23]. The ground-truth
binary masks of the 24 pathologist-annotated LNs were
compared for every pair of pathologists using the Dice
coefficient [24].

SCS quantification
A heuristic method was implemented to calculate the
width of the SCS. Four points were selected based on
a reference axis along the LN, chosen as the longest
diameter across the LN section. Two points were
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determined as the intersection of the axis with the
SCS on both sides and two at the intersection of the
SCS based on a second axis orthogonal to the first.

These four measurements were averaged to give the
final indication of the SCS width (Equation 1) for
each LN:

Figure 1. CONSORT diagram outlining data selection process. A retrospective dataset of 1,800 WSIs from 177 breast cancer patients from
Guy’s Hospital (London, UK) was retrieved. All WSIs were visually inspected, and WSIs with poor quality or pen marks were removed. Based
on the LN section level classification obtained from the patient’s histology report and after a visual assessment of all sections pertaining to a
single LN, a single LN section level for each LN was selected. WSIs from three LN-positive breast cancer patients were removed as the his-
tological subtypes for these carcinomas were missing. The final dataset was split into three groups based on histological breast cancer
subtype, namely in triple negative (TNBC), HER2-positive/ER-negative, and ER-positive (HER2-positive and HER2-negative) breast cancer
patients.
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Figure 2. smuLymphNet framework to capture GCs and sinuses on H&E-stained LNWSIs. (A) Schematic representation of implementation for
smuLymphNet framework: (1) digitising diagnostic LN glass slides from LN-positive and LN-negative patients diagnosed at Guy’s Hospital;
(2) LN-detection algorithm to determine boundaries of each individual LN section on a WSI using an Otsu-based thresholding method
and contouring algorithm; (3) Neural Condition Random Field (NCRF) LN cancer metastasis prediction model to determine LN status for each
LN section; (4) supervised deep learning pipeline using multiscale U-Net model that assimilates semantic information from multiple resolu-
tions to segment GCs and sinuses; (5) quantification of detected immune features, including number, mean area, and mean circularity of GCs
per LN and total area of sinuses in LN normalised by LN area; (6) outcome analyses with immune features as variates. (B) Segmentation DL-
based pipeline is divided into data preprocessing, model training, and inference. In the data preprocessing step, LN sections were manually
annotated for both GCs (marked in yellow) and sinuses (marked in blue) and split into tiles along with ground-truth binary masks. Tiles and
masks of 114 LN sections form the input to train and evaluate FCNs based on U-Net architecture. Three models were evaluated: U-Net, atten-
tion U-Net (AttenU-Net), and multiscale U-Net (MS U-Net). In the inference part, models were applied to 1,143 WSIs using the tile-based
approach, and predictions were stitched together to produce entire segmentation masks. (C) Two examples of MS U-Net model segmentation.
The MS U-Net pixel-wise prediction is overlaid on H&E image. True positives, i.e. GC or sinus pixels correctly predicted as GC or sinus, are
shown in green; false positives, i.e. background pixels were incorrectly predicted as GC or sinus in red; and false negatives, i.e. GC or sinus
pixels were incorrectly predicted as background in blue. (D) Bar plots show Dice coefficients of three CNNmodels at�2.5,�5, and�10 mag-
nification on Guy’s cohort test set. GC prediction is shown on left, sinuses on right. (E) To test models’ generalisability, bar plots display Dice
coefficients for MS U-Net on five LNs of breast cancer patients obtained from Guy’s (G), Barts (B), and Tianjin (T) hospitals.
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SCSwidth per node¼w1þw2þw3þw4

4
ð1Þ

where w is the diameter at each of the selected points on
the SCS.

Statistical analyses
Standard summary statistics were calculated to establish
associations between morphometric immune features
and patients’ prognosis. In the Guy’s and Tianjin
cohorts, the primary endpoints were distant metastasis-
free survival (DMFS), defined as the date of first inva-
sive recurrence or second primary tumour or death from
any cause. The endpoint in the Dutch-N4Plus series was
distant recurrence-free survival (DRFS). Given the large
number of LN sections per patient in the Guy’s cohort,
morphometric features were averaged across all assessed
LNs for outcome analyses. In the Dutch-N4Plus series,
the total number of GCs across all assessed LNs and
the LNwith the maximum sinus area were used to assess
outcome, as a much lower number of LNs was available
per patient. We performed an iterative process to deter-
mine the optimal cut-off points by a minimal p value
approach [25]. Kaplan–Meier methods were used to
compare survival curves across groups. Cox regression
proportional hazards models were performed to estimate
the hazard ratios according to clinicopathological and
histologically assessed features across all endpoints in
univariate and multivariate analyses. The statistical
significance of features was assessed using the log-
likelihood ratio test across all cohorts, whereby a
two-sided p < 0.05 was considered significant. We used
the statistical language R (version 4.1.1) to calculate the
statistics [26].

Results

A multiscale embedded DL framework to capture
immune responses in digitised LN WSIs
TheDL framework smuLymphNet is illustrated schemat-
ically in Figure 2A. Amongst the three FCN models
tested (Figure 2B, supplementary material, Figure S1),
the MS U-Net model performed the best at an input tile
magnification of �10 when features were learned at a
combined magnifications of �10, �5, and �2.5,
with 0.86 (standard error [SE] = 0.04) and 0.74
(SE = 0.05) Dice coefficients for GC and sinus segmen-
tation respectively. The highest Dice coefficients for the
single-scale U-Net and AttenU-Net models were 0.69
(SE = 0.17) and 0.62 (SE = 0.06) for GC and sinus seg-
mentation, respectively, at an input tile magnification of
�2.5 (Figure 2C). Given that we have previously dem-
onstrated the prognostic utility of GC number [7], we
calculated an F1 score of predicted GC count and
showed that the MS U-Net model achieved 91%. To test
the model’s ability to generalise across various staining
and acquisition protocols, we applied smuLymphNet to

five LN WSIs obtained from two other hospitals (Barts,
Tianjin). We observed that the Dice coefficients of GC
segmentation were 0.78 (SE = 0.02) and 0.64
(SE = 0.09) for the Barts and Tianjin scanned LNs,
respectively. For the smuLymphNet-captured sinuses,
the Dice coefficients decreased to an average of 0.55
(SE = 0.04) and 0.64 (SE = 0.05) for the Barts and
Tianjin LNs, respectively (Figure 2D). Next,
smuLymphNet was applied to digitised WSIs of LN sec-
tions from sentinel LN biopsies from six breast cancer
patients diagnosed at Guy’s Hospital, demonstrating its
capability to capture GCs and sinuses on SLNs, now
more commonly assessed in the current standard of
care management of invasive breast cancer patients
(supplementary material, Figure S3).

Interpathologist concordance assessment of GCs and
sinuses
Pathologist annotations provide the gold standard to
which DL models are compared. To contextualise
smuLymphNet’s performance, we determined the
interpathologist variability in assessing GC and sinuses.
For this purpose, four pathologists (FL, SR, PG, ASh)
manually annotated 24 LNs (Figure 3A, detailed in Sup-
plementary materials and methods). Based on pair-wise
Dice coefficients, the pathologists agreed at a slightly
worse level than the smuLymphNet performance of GC
annotation with mean Dice coefficients of 0.66
(SE = 0.013) for GC and 0.60 (SE = 0.006) for sinus
annotation (Figure 3B–D), supporting the finding that
our smuLymphNet framework can be utilised to analyse
large WSI data.

smuLymphNet-captured GCs show an association
with disease progression
Next, the smuLymphNet framework was applied to
1,143WSIs ofH&E-stained LN sections from 154 breast
cancer patients, encompassing (1) 2,096 LNs from
99 TNBC patients, (2) 991 LNs from 43 human epider-
mal growth factor receptor 2 (HER2)-positive/oestrogen
receptor (ER)-negative patients, and (3) 214 LNs from
12 ER-positive patients (see CONSORT diagram in
Figure 1). The number of smuLymphNet-captured GCs
per LN was independent of all assessed LNs per patient
(supplementary material, Figure S4). For TNBC
patients, LNs had a mean GC count of 2 (range, 0–92),
a mean area of 0.06 mm2 (range, 0.022–0.34 mm2),
and a mean circularity of 0.75 (range, 0.17–0.9). In
HER2-positive/ER-negative and ER-positive breast can-
cer patients, the mean GC area per LN of 0.05 mm2

(range, 0.022–0.24 mm2) and the mean GC circularity
of 0.75 and 0.76 (range, 0.22–0.9 and 0.34–0.87) were
comparable; however, only one GC per LN (range,
0–78 and 0–12) was on average observed in LNs
(supplementary material, Figure S5A,B). In TNBC
patients, the involved LNs had, on average, four GCs,
in contrast to cancer-free LNs (from both LN-positive
and LN-negative TNBC patients), where only one GC
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was found (range, 0–92, 0–39 and 0–87, Wilcoxon rank
sum test, p < 0.001, Figure 4). Involved LNs displayed
GCs with larger mean areas of 0.065 mm2 compared to
0.056 mm2 cancer-free LNs in LN-positive patients
(Wilcoxon rank sum test, p < 0.01, Figure 4), but this
did not differ significantly from the mean area in
cancer-free LNs of LN-negative patients. GC area was
highly correlated with mean GC numbers (Pearson’s
r = 0.83, p < 0.001, data not shown). The GC circular-
ity was highest in cancer-free LNs of LN-negative

TNBC, followed by cancer-free and then involved LNs
of LN-positive TNBC (Wilcoxon rank sum test,
p < 0.001, Figure 4). Overall, involved LNs had, on
average, more GCs, with larger surface areas and more
irregularities than cancer-free LNs.

Having previously shown that manual assessment of
GCs in LNs carries prognostic value in LN-positive
TNBC [7], we asked whether smuLymphNet-quantified
GCs held prognostic value for these high-risk patients.
In the Guy’s cohort, LN-positive TNBC patients had

Figure 3. Interpathologist concordance. (A) Four pathologists annotated GCs and sinus areas of the same LNs on 24 WSIs using QuPath ver-
sion 0.3.0. A binary mask was generated for each pathologist from the annotation files. Heatmaps illustrate the agreement between pathol-
ogists on a LN section as an example for GC (top) and sinus (bottom) annotation. The colour indicates how many pathologists marked a given
area. Blue shows where only one pathologist annotated the area as a GC or sinus, and orange, yellow, and red show areas where two, three, or
four pathologists agreed respectively. (B) Confusion matrix of Dice coefficient illustrates pairwise pathologists’ agreements for either GCs or
sinus annotation. (C) Four heatmaps of same LN; each heatmap shows areas marked by a different number of pathologists, referred to as
pathologist consensus. The model predictions are overlaid on the LN. Pathologist consensus colour scheme is as follows: four pathologists
(red), three pathologists (yellow), two pathologists (orange), and one pathologist (blue). Model prediction is highlighted by green contours.
(D) Bar plot shows Dice coefficient for model predictions versus different sets of annotations derived from different levels of pathologist con-
sensus (one to four pathologists agreeing) for the single LN seen in the heatmaps.
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longer DMFS when their involved and cancer-free LNs
displayed on average ≥2 GCs across all assessed (for
involved LNs, HR = 0.45, 95% CI: 0.23–0.95,
p = 0.04; and for cancer-free LNs HR = 0.28,
95% CI: 0.09–0.94, p = 0.02; Table 1 and supplemen-
tary material, Figure S5C). A similar association was

observed in LN-negative TNBC patients (cancer-free
LNs HR = 0.14, 95% CI: 0.03–0.63, p = 0.002;
Table 1 and supplementary material, Figure S5C). In
multivariate models, when adjusted for age at diagnosis,
histological grade, and number of involved LNs, the
binary cut-off for GCs in cancer-free LNs remained

Figure 4. Properties of smuLymphNet-captured GCs. The LN sections were separated into (1) involved LNs with GCs from LN-positive TNBC
patients, (2) cancer-free LNs with GCs from LN-positive TNBC patients, and (3) cancer-free LNs with GCs from LN-negative TNBC patients.
Left to right: boxplots display distribution per LN section for GC count, mean GC area (mm2), and mean GC circularity. Statistical significance
was assessed using a two-sided Wilcoxon rank sum test (**p ≤ 0.01, ***p ≤ 0.001, NS = not significant).

Table 1. Univariate and multivariate Cox proportional hazard analyses of germinal centre properties in LNs of patients from Guy’s TNBC
cohort.
Guy’s TNBC cohort Model P Hazard ratio 95% CI

Univariate distant metastasis free survival
LN-positive TNBC (N = 57), involved LNs

Mean GC number per patient (<2 versus ≥2) 0.04 0.454 0.23–0.95
Mean GC area per patient (≤0.015 mm2 versus >0.015 mm2) 0.03 0.441 0.21–0.92
Mean GC circularity per patient (≤0.69 versus >0.69) 0.03 0.335 0.13–0.85

LN-positive TNBC (N = 57), cancer-free LNs
Mean GC number per patient (<2 versus ≥2) 0.02 0.283 0.09–0.94
Mean GC area per patient (≤0.015 mm2 versus >0.015 mm2) 0.1 0.496 0.20–1.22
Mean GC circularity per patient (≤0.69 versus >0.69) 0.3 0.534 0.18–1.62

LN-negative TNBC (N = 39), cancer-free LNs
Mean GC number per patient (<2 versus ≥2) 0.002 0.14 0.03–0.63
Mean GC area per patient (≤0.015 mm2 versus >0.015 mm2) 0.02 0.22 0.05–0.98
Mean GC circularity per patient (≤0.69 versus >0.69) NA NA NA

Covariate P Model P Hazard ratio 95% CI

Multivariate distant metastasis-free survival
Adjusted for age at diagnosis, histological grade, and number of involved

LN-positive TNBC (N = 57), involved LNs
Mean GC number per patient (<2 versus ≥2) 0.05 0.03 0.431 0.18–1.01
Mean GC area per patient (≤0.015 mm2 versus >0.015 mm2) 0.04 0.02 0.422 0.19–0.94
Mean GC circularity per patient (≤0.69 versus >0.69) 0.03 0.04 0.262 0.08–0.86

LN-positive TNBC (N = 57), cancer-free LNs
Mean GC number per patient (<2 versus ≥2) 0.08 0.03 0.329 0.09–1.15
Mean GC area per patient (≤0.015 mm2 versus >0.015 mm2) 0.13 0.05 0.485 0.19–1.25
Mean GC circularity per patient (≤0.69 versus >0.69) 0.33 0.2 0.520 0.14–1.92

Adjusted for age at diagnosis, histological grade
LN-negative TNBC (N = 39), cancer-free LNs

Mean GC number per patient (<2 versus ≥2) 0.04 0.06 0.20 0.04–0.95
Mean GC area per patient (≤0.015 mm2 versus >0.015 mm2) 0.19 0.2 0.352 0.07–1.66
Mean GC circularity per patient (≤0.69 versus >0.69) NA NA NA NA

Statistical significance was assessed using likelihood ratio tests.
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statistically associated with DMFS in LN-negative
TNBC (HR = 0.2, 95% CI: 0.04–0.95, p = 0.04,
Table 1). An increased mean GC area in LNs was asso-
ciated with superior prognostic value in involved LNs
of LN-positive TNBC patients (univariate HR = 0.44,
95%CI: 0.21–0.92, p = 0.03, and adjusted for age at diag-
nosis, histological grade, and number of involved LNs
HR = 0.42, 95% CI: 0.19–0.94, p = 0.04, Table 1), and
in cancer-free LNs of LN-negative TNBC patients (uni-
variate HR = 0.22, 95% CI: 0.05–0.98, p = 0.02,
Table 1; supplementary material, Figure S5C). When
assessing GC circularity, regular GC formation in
involved LNs of LN-positive TNBC patients was asso-
ciated with a superior prognosis (univariate
HR = 0.34, 95% CI: 0.13–0.85, p = 0.03, and adjusted
for age at diagnosis, histological grade, and number
of involved LNs HR = 0.26, 95% CI: 0.08–0.86,
p = 0.03; Table 1). Taken together, patients with LNs
harbouring fewer GCs, and as such smaller areas and
of irregular shapes, had a higher risk of developing dis-
tant metastases.
To reduce the risk of biased performance estimation

[27] of our smuLymphNet methodology, we next evalu-
ated its performance in an external cohort of
174 involved and cancer-free LNs from 95 LN-positive
TNBC patients of the Dutch-N4plus trial [28]. In this
trial, breast cancer patients with at least four involved
LNs but without distant metastases at diagnosis had been
randomised to conventional 5-fluorouracil-epirubicin-
cyclophosphamide (FEC) chemotherapy or the same
therapy but whose last course was replaced by high-dose
cyclophosphamide-thiotepa-carboplatin (CTC) chemo-
therapy with autologous stem cell support. Although
only 18/95 (19%) TNBC patients of the Dutch-N4plus
trial had >2 GCs in all of their patients’ available LNs,
these had a superior DRFS; however, due to the limited
cohort size, this did not reach statistical significance
(HR = 0.52, 95% CI: 0.24–1.13, p = 0.097; supple-
mentary material, Table S3A and Figure S5D).

Increased smuLymphNet-captured sinus areas are
present in LNs of patients with longer time to distant
recurrence
Utilising the smuLymphNet framework, we assessed the
sinus areas in cancer-free and involved LNs. Amongst
all assessed LNs of TNBC patients, the normalised sinus
area was on average 0.14 mm2 (range, 0–0.41 mm2)
(Figure 5A); however, this increased significantly when
LNs displayed any GC formation (Figure 5B, Wilcoxon
rank sum test, false discovery rate-adjusted p < 0.001).
In HER2-positive/ER-negative and ER-positive breast
cancer patients, normalised sinus areas were more vari-
able, which may be inflated due to the small cohort sizes
(supplementary material, Figure S6A,B). Nevertheless,
LNs with GCs displayed larger normalised sinus areas
(supplementary material, Figure S6C).
Next, we tested whether a normalised sinus area

across all assessed LNs was associated with prognosis
in TNBC patients. As shown in Figure 5C, in the Guy’s

cohort LN-positive TNBC patients with involved LNs
with normalised sinus area >0.13 mm2 had a better
DMFS in univariate analyses (HR = 0.32; 95% CI:
0.15–0.67, p = 0.002; Table 2A; the optimal cut-off
curves are shown in supplementary material,
Figure S7). In multivariate models, when adjusted for
mean GC count, age at diagnosis, histological grade,
and number of involved LNs, this binary cut-off for
sinus area in involved LNs remained statistically associ-
ated with DMFS (HR = 0.391; 95% CI: 0.16–0.95;
p = 0.039, Table 2A). In the Dutch-N4plus trial, exter-
nal validation cohort, TNBC patients with LNs
displaying smuLymphNet-quantified sinus area greater
than 0.13 mm2 had an overall superior DRFS in univar-
iate analyses (HR = 0.44; 95% CI: 0.22–0.90,
p = 0.024; supplementary material, Table S3B,
Figure 5D) and added prognostic value to stromal TILs
in multivariate analyses (HR = 0.50, CI: 0.25–1.02,
covariate p = 0.056 and likelihood p = 0.043; supple-
mentary material, Table S3B). Of note, the predefined
cut-off of 0.13 mm2 sinus area derived originally from
LNs of the Guy’s cohort was used for sinus area assess-
ment in the LNs of the Dutch-N4plus trial.

Pathologists’ assessment validates prognostic value
of sinus area
To orthogonally validate the prognostic value of
smuLymphNet-captured sinuses, the width of the SCS,
as a surrogate of the sinus area, was manually assessed
by a pathologist in an independent set of LN-positive
TNBC patients from the previously examined Tianjin
cohort [7]. SCS located beneath the LN capsule reflects
on the overall LN conduit activities. A width heuristic
was calculated using four positions of the LN to establish
an average SCS width for each LN (Figure 5E). The sta-
tistics of the manual assessment of SCS are shown in
supplementary material, Table S2, and detailed in the
methods. An increased SCS width of ≥20 μm across all
the assessed LNs was associated with a superior progno-
sis (Table 2B, Figure 5F). In multivariate models, when
adjusted for total GC count, patient age, pathological
tumour size (pT), LN stage (pN), the presence of
lymphovascular invasion and of tertiary lymphoid struc-
ture, and stromal tumour-infiltrating lymphocytes,
which had been shown to be associated with DMFS in
this cohort [7], the binary cut-off for SCS widths
remained statistically associated with DMFS in involved
LNs (HR = 0.33, 95% CI: 0.13–0.89, p = 0.029,
Table 2B) and cancer-free LNs (HR = 0.21, 95% CI:
0.06–0.69, p = 0.01, Table 2B).

Discussion

In this retrospective study, we developed a fully super-
vised DL framework, smuLymphNet, demonstrating that
a multiscale U-Net architecture could robustly capture
morphological immune structures from digitised images
of routine H&E-stained slides from both axillary and
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sentinel LNs with high accuracy comparable to
interpathological assessments. In alignment with our
published studies [7,8], our smuLymphNet framework
recapitulated the finding of the prognostic value of the
assessment of GC formation in LN-positive TNBC and
has now extended this association to LN-negative TNBC

patients. We revealed, for the first time, the prognostic
significance of the morphological assessment of
intranodal lymphatic sinuses in involved LNs in two
independent TNBC cohorts, both by our DL-based
methodology and by manual assessment. Lastly, we
demonstrated that these morphological features in LNs

Figure 5. smuLymphNet-captured sinuses, their quantification, and association with disease progression. (A) The LN sections were separated
into (1) involved LNs, (2) cancer-free LNs from LN-positive TNBC patients, and (3) cancer-free LNs from LN-negative TNBC patients.
Normalised sinus areas per LN were determined by calculating the total smuLymphNet-based sinus area divided by the LN section area. Den-
sity plots show distribution of normalised sinus area per LN section. Statistical significance was assessed by false discovery rate (FDR)-
adjusted Kruskal–Wallis tests. (B) Boxplots showing normalised sinus area per LN section separated by LNs in which GCs were present or
absent. Statistical significance was assessed using a two-sided Wilcoxon rank sum test (***p < 0.001). (C) Kaplan–Meier analyses of distant
metastasis-free survival (DMFS) for LN-positive TNBC patients of Guy’s cohort. (D) Kaplan–Meier curve of distant recurrence-free survival
(DRFS) for TNBC patients of Dutch-N4plus trial. Patients for both cohorts were dichotomised based on their normalised sinus area of LNs.
P values correspond to likelihood ratio tests. Hazard ratio (HR) and 95% confidence intervals (95% CI) are listed. (E) To capture the SCS area
by visually assessing H&E-stained LN section. A heuristic measure of SCS width was implemented by assessing SCS at four points in a LN, and
their average resulted in the final SCS width. (F) Kaplan–Meier curves of DMFS for LN-positive TNBC patients of Tianjin cohort. Patients were
dichotomised based on their SCS width in all assessed involved or cancer-free LNs as categorical variables. P values correspond to likelihood
ratio tests. HR and 95% CIs are listed.
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added prognostic value in a clinical trial TNBC cohort.
This underscores the significant clinical potential of the
relevance of immune responses reflected by LN
morphology.
During cancer-induced immune responses, LNs enlarge

and remodel, featuring GC formation and growth of lym-
phatic sinuses (lymphangiogenesis), even beforemetastatic
deposits are detected [7,29]. In our study, both increased
total sinus surface area and SCS width in LNs were associ-
ated with a better prognosis. A layer of CD169+ macro-
phages lines the SCS and is strategically positioned at the
lymph–tissue interface to capture pathogens as they enter
the LN [30]. This impedes the systemic dissemination of
pathogens [31] and allows the presentation of intact anti-
gens to B cells that reside directly underneath the SCSmac-
rophage layer for the initiation of humoral immune
responses and, in turn, to initiate GC formation. A high
density of CD169+macrophages in the LN sinus has been

shown to be predictive of better clinical prognosis in some
tumours [32]. During tumour progression, SCS
macrophages become depleted and dissociate from the
SCS [33]. Consequently, the width of the SCS narrows,
in alignment with our observation that the SCS width was
narrower in involved compared to cancer-free LNs.
Exploring the lymphatic sinus further with computational
pathology approaches could provide additional clinically
relevant diagnostic information and complement micro-
CT-guided lymphangiography in breast and other cancers.

Segmentation of substructure-specific morphological
properties, such as sinuses, from H&E-stained images
is challenging for artificial intelligence (AI)-based
methods. The multiscale CNNs are trained by integrat-
ing surrounding context, morphology, and cellular
information originating from different magnification
levels in the learned feature representation of the net-
work [34]. We showed that the multiscale architecture

Table 2. Univariate and multivariate Cox proportional hazard analyses of sinus area in LNs of TNBC patients.
A. Guy’s TNBC cohort Covariate P Model P Hazard ratio 95% CI

Univariate distant metastasis-free survival
LN-positive TNBC (N = 57), involved LNs

Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.002 0.318 0.15–0.67
LN-positive TNBC (N = 57), cancer-free LNs

Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.5 0.793 0.38–1.64
LN-negative TNBC (N = 39), cancer-free LNs

Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.7 0.802 0.27–2.35
Multivariate distant metastasis-free survival

LN-positive TNBC (N = 57), involved LNs
Normalised sinus area (≤ 0.13 mm2 versus >0.13 mm2) 0.008 0.003 0.357 0.17–0.77

LN-positive TNBC (N = 57), cancer-free LNs
Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.063 0.05 0.837 0.40–1.74

LN-negative TNBC (N = 39), cancer-free LNs
Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.781 0.007 1.167 0.39–3.46

Multivariate distant metastasis-free survival
Adjusted for mean GC count, age at diagnosis, histological grade, and involved LN number

LN-positive TNBC (N = 57), involved LNs
Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.039 0.01 0.391 0.16–0.95

LN-positive TNBC (N = 57), cancer-free LNs
Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.528 0.05 0.752 0.31–1.83

Adjusted for mean GC count, age at diagnosis, and histological grade
LN-negative TNBC (N = 39), cancer-free LNs

Normalised sinus area (≤0.13 mm2 versus >0.13 mm2) 0.681 0.1 1.349 0.32–5.63

B. Tianjin TNBC cohort Covariate P Model P Hazard ratio 95% CI

Univariate distant metastasis-free survival
LN-positive TNBC (N = 85), involved LNs

SCS width (≤ 20 μm versus >20 μm) <0.001 0.130 0.06–0.30
LN-positive TNBC (N = 85), cancer-free LNs

SCS width (≤20 μm versus >20 μm) <0.001 0.246 0.10–0.59
Multivariate distant metastasis-free survival
Adjusted for total GC count

LN-positive TNBC (N = 85), involved LNs
SCS width (≤20 μm versus >20 μm) <0.001 <0.001 0.241 0.10–0.57

LN-positive TNBC (N = 85), cancer-free LNs
SCS width (≤20 μm versus >20 μm) <0.001 <0.001 0.201 0.08–0.50

Multivariate distant metastasis-free survival
Adjusted for total GC count, age, pTstage, pNstage, LVI, sTILs, and TILs

LN-positive TNBC (N = 85), involved LNs
SCS width (≤20 μm versus >20 μm) 0.029 <0.001 0.334 0.13–0.89

LN-positive TNBC (N = 85), cancer-free LNs
SCS width (≤20 μm versus >20 μm) 0.010 <0.001 0.211 0.06–0.69

Statistical significance was assessed using likelihood ratio test.
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outperformed the single-magnification FCNs for the
segmentation task andmimics the actual assessment pro-
cess applied by pathologists by integrating information
from different scales. Despite this improved perfor-
mance, a small number of necrotic and cancerous
regions still led to false positive predictions of GCs,
largely due to the computational resource trade-off
between image resolution and image size, limiting the
amount of cell and nuclear semantics included in the
learned model latent space. Another key challenge in
computational pathology, which has slowed the adop-
tion of this new paradigm in a clinical context, is the
curation of large-scale datasets that capture the inherent
technical variability of WSIs from multiple institutes.
This is particularly challenging in the face of supervised
methods where the necessity of obtaining detailed anno-
tated data for the development and validation of neural
networks is not feasible [25]. As such, methods that
use weak supervision to obviate the laborious task of
obtaining detailed pathologists’ annotations may pro-
vide a more efficient way to train these models on
large scale datasets. To evaluate our model’s perfor-
mance fairly, we included the subjectivity of four
pathologists’ manual assessments and observed moder-
ate interobserver agreement to recognise these polymor-
phic substructures, illustrating the difficulty of defining
the ground truth for such tasks. Potentially, methods
for generating crowd-sourced noisy labels at scale and
more sophisticated machine learning techniques to
leverage them may provide new opportunities [35].

Since the detection of LN metastasis is critical for the
diagnosis and staging of many solid tumours, pathology
modernisation programmes in hospitals have started to
evaluate AI-based software tools with the aim of
supporting pathologists’ workload and improving the
speed of assessment of microscopic examination. In the
era of immunotherapy as a treatment choice for TNBC
[36], the LN can potentially be used as an observation
window for the patient’s systemic immune responses of
prognostic value [7,8]. Currently, computational assess-
ment of TIL counts is proposed as a prognostic biomarker
for TNBC [37] by themselves or integrated into nomo-
grams with established prognostic variables [38] through
a public Grand Challenge organised by the International
Immuno-Oncology Biomarker Working Group (www.
tilsinbreastcancer.org). Although we have demonstrated
the generalisation of our models and have orthogonally
validated our observations in an external cohort, further
large-scale validation of these findings, ideally in clinical
trials in neoadjuvant and adjuvant settings, potentially
facilitated at scale by federated or swarm-learning-based
approaches [6,39,40], would be invaluable.

Conclusions

Multiscale DL approaches are well suited to capture and
quantify cancer-associated alterations in axillary LNs on
digitised WSIs. By assessing LNs above and beyond the

presence and size of cancer cell deposits, our end-to-end
smuLymphNet framework provides a tool to advance
TNBC patient stratification, management, and prognos-
tication and has the potential to benefit clinical practice.
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