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Abstract

Heterogeneous treatment effect estimation is an essential element in the practice of tailoring 

treatment to suit the characteristics of individual patients. Most existing methods are not 

sufficiently robust against data irregularities. To enhance the robustness of the existing methods, 

we recently put forward a general estimating equation that unifies many existing learners. But 

the performance of model-based learners depends heavily on the correctness of the underlying 

treatment effect model. This paper addresses this vulnerability by converting the treatment 

effect estimation to a weighted supervised learning problem. We combine the general estimating 

equation with supervised learning algorithms, such as the gradient boosting machine, random 

forest, and artificial neural network, with appropriate modifications. This extension retains the 

estimators’ robustness while enhancing their flexibility and scalability. Simulation shows that the 

algorithm-based estimation methods outperform their model-based counterparts in the presence of 

nonlinearity and non-additivity. We developed an R package, RCATE, for public access to the 

proposed methods. To illustrate the methods, we present a real data example to compare the blood 

pressure-lowering effects of two classes of antihypertensive agents.
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1 Introduction

The practice of precision medicine relies on a sound causal understanding of treatment 

effects varying with patient characteristics. Estimating such effects, known as the 

heterogeneous treatment effects, from observational data is typically done within the 

Neyman-Rubin causal framework with appropriate assumptions (Sekhon, 2008). Popular 

approaches include the Quality or Q-learning that directly regresses the outcomes on patient 
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characteristics (Watkins and Dayan, 1992; Watkins, 1989) and the Advantage or A-learning 

that models the contrasts among treatments (Murphy, 2003; Robins, 2004).

Despite the general applicability of these estimation methods, practical challenges abound: 

(1) Few existing estimators are designed to deal with data irregularities and high 

dimensionality. (2) Model-based methods remain vulnerable to model misspecification. (3) 

Few software packages are available for practical use in an off-the-shelf fashion and can 

handle the above issues. The lack of ready-made robust analytical tools has hindered the 

practical use of these methods because practitioners are rarely in a position to implement 

and test sophisticated causal inference methods.

Efforts have been made to alleviate the impact of data irregularities. For example, Xiao 

et al. (2019) extended the L2-based R-learner (Nie and Wager, 2017), a method under 

the general A-learning umbrella, to the pinball loss function. More recently, our research 

team has put forward a general estimating equation for robust estimation of heterogeneous 

treatment effects, supported by strong theoretical and empirical evidence (Li et al., 2021). 

This estimating equation unifies many of the existing methods, including the R-learner 

(Nie and Wager, 2017), inverse propensity weighting (Hirano et al., 2003; Horvitz and 

Thompson, 1952), various modified outcome and covariate methods (with and without 

efficiency augmentation) (Chen et al., 2017; Tian et al., 2014), and the augmented inverse 

propensity weighting method (Robins and Rotnitzky, 1995). We showed that under fairly 

general regularity conditions, the robust estimators ascertained from the general estimating 

equation are asymptotic normal to allow for valid inference. Despite its broad coverage and 

good theoretical properties, the general estimating equation estimators are not robust against 

model misspecifications, nor are they easy to implement in practical data analyses.

This paper extends our previous work by combining the A-learner from the general 

estimating equation with supervised learning algorithms to further enhance its robustness 

again model misspecifications. This modification also frees analysts from the tedious and 

error-prone work of model building. We implement the causal inferences tools in the form of 

an R package - RCATE, short for Robust Estimation of the Conditional Average Treatment 

Effects, for a scalable solution to heterogeneous treatment estimation.

2 Methods

2.1 Notation and assumptions

Let T be a binary variable for treatment assignment: T = 1 if a patient is in the treatment 

group, and T = −1 otherwise. We define Y(1) and Y(−1) as the potential outcomes under 

treatments T = 1 and T = −1, respectively. Here, Y(1) and Y(−1) are assumed to be univariate 

and continuous. Let X be the p-dimensional pre-treatment covariates. In an observational 

study, one observes T, X, and Y = I(T = 1)Y(1) + I(T = −1)Y(−1), where I(·) is an 

indicator function. We assume that the data Y i, T i, Xi i = 1
n  are independent and identically 

distributed (i.i.d.). The estimation target is the treatment effect τ0(x), commonly known as 

the conditional average treatment effect (CATE)
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τ0(x) = E Y (1) − Y ( − 1) ∣ X = x = E[Y ∣ X = x, T = 1] − E[Y ∣ X = x, T = − 1],

where the last part follows from the ignorability assumption below. With a binary 

treatment indicator, one can always express the conditional mean outcome as 

E(Y ∣ X, T ) = b0(X) + T
2 τ0(X), with b0(x) = 1

2 E Y (1) ∣ X = x + E Y ( − 1) ∣ X = x . This leads to 

a general interaction model

Y i = b0 Xi + T i

2 τ0 Xi + εi . (1)

We further define μ(x) = E[Y|X = x], μ(1)(x) = E[Y|X = x, T = 1], and μ(−1)(x) = E[Y|X = x, 
T = −1].

To estimate τ0(Xi), we operate under the following assumptions: (1) Ignorability — 

Treatment assignment Ti is independent of the potential outcomes (Y i
(1), Y i

( − 1)) given the 

covariates Xi, i.e., {Y i
(1), Y i

( − 1) ⫫ T i ∣ Xi}; (2) Positivity — The propensity score is strictly 

between 0 and 1, i.e., p(x) := P(T = 1|X = x) ∈ (0, 1); (3) Stable Unit Treatment Values 
Assumption (SUTVA) – the potential outcome in one individual is only affected by the 

treatment he receives; (4) Conditional Independence Error – The error is independent of the 

treatment assignment, conditional on the covariates, i.e., {εi ⫫ Ti|Xi}. We further assume 

that the conditional expectation of the error exists. The commonly seen assumption of E[ε] = 

0 is sufficient but not necessary.

2.2 The existing methods

There is a sizable literature on the estimation of CATE using observational data. Caron 

et al. (2020) and Zhang et al. (2020) provided state-of-the-art reviews of the methods for 

CATE estimation. We summarize the existing methods in Table 1, along with the available 

analytical software. Importantly, most of these methods are based on the L2-loss function, 

whose performance deteriorates with data irregularity.

The estimating equation that we proposed (Li et al., 2021), while not covering all methods in 

Table 1, does accommodate many loss functions, including the L1-loss, Huber loss, and Bi-

square loss, and thus greatly enhancing the estimators’ robustness against data irregularities. 

In the next section, we briefly review this formulation and the methods it covers.

2.3 A unified estimating equation for CATE

We previously described the general estimating equation that covers many of the existing 

methods for CATE estimation. An important feature of the estimating equation is that it 

readily accommodates the L1 loss function so that robust estimation can be derived; see Li 

et al. (2021) for detailed derivation and theoretical development. Briefly, we consider the 

following estimating equation
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min
τ( ⋅ ) ∈ ℱ

1
n ∑

i = 1

n
w Xi, T i M Y i − g Xi − c Xi, T i τ Xi , (2)

where ℱ is the treatment effect function space subject to predefined assumptions such as 

smoothness, M(·) is a user-specified loss function, and the two weight functions w(x, t) and 

c(x, t) are subject to the following constraints:

C1.p x w x, 1 c x, 1 + 1 − p x w x, − 1 c x, − 1 = 0;

C2.c x, 1 − c x, − 1 = 1;

C3.w x, t c x, t ≠ 0.

Equation (2) covers many existing popular methods for heterogeneous treatment effect 

estimation, including the modified covariate methods (MCM) (Chen et al., 2017; Tian et 

al., 2014), MCM with efficiency augmentation (MCM-EA) (Chen et al., 2017; Tian et 

al., 2014), inverse propensity score weighting (IPW) (Hirano et al., 2003; Horvitz and 

Thompson, 1952), augmented inverse propensity score weighting (AIPW) (Robins and 

Rotnitzky, 1995), and the R-learner (RL) (Nie and Wager, 2017). In Table 2, we list the 

functions c, w, and g that meet the constraints for popular A-learning methods.

An important appeal of the general formulation is its flexibility in specifying M, a feature 

that enhances the robustness against various forms of data irregularities through the use of 

L1 and Huber loss functions. Here, we used the L1-loss for illustration purpose. With the 

L1-loss and under the above conditions, we have

τ0( ⋅ ) = argmin
τ( ⋅ )

E w Xi, T i ⋅ Y i − g Xi − c Xi, T i τ Xi Xi . (3)

In the present research, we estimate τ(X) using modified supervised learning algorithms, 

which side-step the need to specify τ, and thus enhancing the method’s flexibility and 

scalability without sacrificing its robustness against data irregularities.

2.4 Supervised learning algorithms for robust CATE Estimation

Through a transformation, CATE estimation in (3) under the L1-loss function can be seen as 

an optimization problem of ordinary least absolute deviation (LAD),

τ( ⋅ ) = arg min
τ( ⋅ ) ∈ ℱ

1
n ∑

i = 1

n
wi

* Xi, T i ∣ Y i
* − τ Xi ) ∣ , (4)

where Y i
* = Y i − g Xi

c Xi, T i
 and wi

* Xi, T i = wi Xi, T i c Xi, T i . We now show how to adapt three 

supervised learning algorithms for this purpose.
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Depending on the structured assumptions one chooses for ℱ, one can select an appropriate 

learning algorithm for estimation, while taking care of the high dimensionality in X. In 

Section 3, we compare the L1 and L2-based algorithms. For the L2-based methods, the 

transformed weight is wi
* Xi, T i = wi Xi, T i c Xi, T i

2.

With the objective function in (4), different supervised learning algorithms can be used to 

estimate CATE - the optimization becomes a weighted supervised learning problem, where 

Y i
* and wi

* are the new outcome and new weight of each sample. The nuisance quantities in 

Y i
* and wi

* need to be pre-estimated and plugged in. Here we use L1-based gradient boosting 

machine (GBM) with Y|T = −1, Y|T = 1, Y as outcomes to estimate μ(−1)(x), μ(1)(x), and 

μ(x). Note that μ(1)(x) and μ(−1)(x) are only needed for AIPW. And we use L2-based GBM 

with D = (T + 1)/2 to estimate p(x). Any supervised learning algorithm with a weighted L1 

loss can be used to optimize (4) for robust CATE estimation. In this section, we describe 

three different algorithms for this purpose. The algorithms we describe are based on Random 

Forest (RF), GBM, and artificial neural network (ANN). The common process underlying 

these algorithms is graphically depicted in the following figure.

To achieve robust estimates of τ, we modified the existing supervised learning algorithms by 

incorporating the L2-loss function. For example in RF, we used a weighted LAD splitting 

rule and the mean-of-medians to aggregate the trees, as opposed to the L2-loss function and 

mean-of-means in the standard RF. Similarly in GBM, we used the L1-loss to compute the 

working response and we calculated the weighted medians for prediction of the terminal 

nodes. In ANN, we used weighted LAD in back-propagation, and an L1 regularization 

in high-dimensional situations to ascertain the sparse weights; here we used the adaptive 

moment estimation (Adam) to avoid being stuck at a local optimum (Kingma and Ba, 2014). 

We describe the algorithmic details in the following subsections.

2.4.1 A Robust Random Forest Learner—We first use RF for robust estimation of 

CATE. The building blocks of random forests are regression trees (Breiman et al., 1984). 

The tree structure comes from the recursively partitioning of the sample by covariates to 

minimize heterogeneity in the outcomes. The partition that minimizes the heterogeneity in 

child nodes is chosen, so that variables reducing heterogeneity most have the best chance of 

being selected than the background noise variables (Biau, 2012). Binary splits lead to trees, 

and then aggregated results within the terminal nodes are used for prediction. The random 

forest creates a more stable structure and reduces the variance by combining a large number 

of de-correlated regression trees (Breiman, 2001).

The standard regression trees minimize the mean squared error (MSE) in child nodes (i.e., 

MSE = ∑i ∈ Ll yi − yl
2 + ∑i ∈ Lr yi − yr

2, where yl and yr are the average values within the 

left and right child nodes) (Hastie et al., 2009). And robust random forests for regression 

have been studied to gain robustness against outliers, including using mean-of-medians 

(Meinshausen and Ridgeway, 2006) or median-of-means as estimators, and the LAD-based 

splitting rule (Roy and Larocque, 2012). Empirical studies have demonstrated that these 

modifications offer more protection against outliers than the standard RF.
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The robust RF-based CATE estimation splits the samples by using the weighted LAD 

(WLAD) rule, a variant of the LAD rule. The WLAD rule is

W LAD = ∑
i ∈ Ll

wi
*|yi

* − yl
*′| + ∑

i ∈ Lr

wi
*|yi

* − yr
*′|, (5)

where yl
*′ and yr

*′ are the leaf node medians to increase robustness and wi
* is the transformed 

weight of each observation. For prediction, we use the mean-of-medians that is consistant 

with the WLAD rule (Meinshausen and Ridgeway, 2006) instead of the median of means as 

advocated by Roy and Larocque (2012).

Algorithm 1: Robust RF-based CATE estimating algorithm: Input: Data Y i, T i, Xi i = 1
n , 

number of trees T, fraction of features used in splitting pfraction ∈ (0, 1), minimum node size 

k, and bootstrap sample size N.

Estimate nuisance quantities p(x), μ(x), μ(1)(x), μ(−1)(x) using (robust) GBM;

Calculate wi
* and yi

* according to Table 2 and Formulation (4);

for t in 1,…,T do

a. Randomly select N observations with replacement from the dataset as the 

bootstrap sample and randomly select a subset of variables with size pfraction 

× p;

b. Fit a regression tree by repeating following steps until we reach the minimum 

node size k:

b.1 Find the variable and the cutoff value that best split the data into two child 

nodes based on (5);

b.2 Split the current node into two child nodes;

c. Calculate the median of the transformed outcomes in each terminal node as 

CATE estimator;

end

Output: Mean-of-medians as the final CATE estimation τ(x) and splitting criterion of trees.

The tuning parameters T, pfraction, k, and N can be selected by cross validation.

2.4.2 The robust gradient boosting machine learner—Gradient boosting machine 

is a supervised learning technique that produces a prediction model f(x) in the form 

of sequential weak-learners, typically regression trees, so that it performs better in high-

dimensional settings (Friedman et al., 2000; Friedman, 2001, 2002). GBM builds the 

model in a step-wise fashion by allowing optimization of a differentiable loss function 

Ψ(y, f). The principle idea behind this algorithm is to construct weak-learners that are 

maximally correlated with the negative gradient of the loss function, associated with the 

whole ensemble.
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Friedman’s GBM algorithm initializes f(x) to be a constant. Then, in each iteration, it 

computes the negative gradient as the working response

zi = − ∂
∂f xi

Ψ yi, f xi
f xi = f xi .

A regression model g(x) is fitted to predict z from the covariates x. Finally, it updates the 

estimate of f(x) as f(x) f(x) + λg(x), where λ is the step size. Friedman also proposed 

the LAD-TreeBoost algorithm (Friedman, 2001), a variation of GBM, which is highly 

robust against outliers. Ridgeway (2007) later extended the LAD-TreeBoost algorithm to a 

weighted version.

In the proposed robust GBM for CATE estimation, we further extended Ridgeway’s 

algorithm by combining it with the unified CATE estimation formulation as follows:

Algorithm 2: Robust GBM-based CATE estimating algorithm: Input: Data 

Y i, T i, Xi i = 1
n , number of trees T, fraction of observations used in splitting psample ∈ (0, 1), 

interaction depth c, and step size λ.

Estimate nuisance quantities p(x), μ(x), μ(1)(x), μ(−1)(x) using (robust) GBM;

Calculate wi
* and yi

* according to Table 2 and Formulation (4);

Initialize τ(x) to be a constant,τ(x) = medianw* y* ;

for t in 1,…,T do

a. Compute the negative gradient as the working response zi = − sign yi
* − τ xi ;

b. Randomly select psample × n observations without replacement from the dataset;

c. Fit a regression tree to predict zi using covariates xi with interaction depth c and 

the number of leaf nodes K;

d. Compute the optimal predictions for feature x as 

ρk(x) = argminρ∑xi ∈ Sk Ψ yi
*, τ xi + ρ, wi

* , where Ψ(y, x, w) = w|y − x| and k 

indicates the index of the terminal node Sk into which an observation with 

feature x would fall;

e. Update τ(x) as τ(x) τ(x) + λρk(x), where λ is step size.

end

Output: Splitting criterion and CATE estimates as the resulted τ(x) from the above iteration.

For robust estimation, the terminal node estimate is the weighted median medianw*(z), defined 

as the solution ρ to the equation 
∑wi

*I yi
* ≤ ρ

∑wi
* = 1

2 . Tuning parameters T, λ, c, and K can be 

selected via cross validation.
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2.4.3 A robust artificial neural network learner—Artificial neural network (ANN) 

is a computer program designed to simulate the way the human brain processes information 

(Goodfellow et al., 2016). A no-hidden-layer ANN with identity activation function is 

similar to linear regression in its modeling structure. But an ANN with multiple hidden 

layers offers more enhanced modeling flexibility. A feed-forward neural network with two 

hidden layers can be written as g(x) := f3(W3f2(W2f1(W1x))), where W l = (wjk
l ) are the 

weights between layer l − 1 and l, and wjk
l  is the weight between the k-th node in layer l − 1 

and the j-th node in layer l, and fl is the activation function at layer l.

Multi-layer networks use a variety of techniques to learn the weights. The most popular 

approach is backpropagation (Rumelhart et al., 1986). In training, the loss of the model is 

defined based on the difference between the outcome y and the predicted output y. The 

most popular loss function is the Root Mean Squared Error (RMSE) (i.e., 1
n ∑i = 1

n yi − y i
2). 

However, numerous studies have shown that the presence of outliers poses a serious threat to 

the standard least squares analysis (Liano, 1996). The L1-loss provides an effective remedy 

that can be applied to ANN (i.e.,1
n ∑i = 1

n yi − y i ). An empirical study shows that L1-based 

estimator had an improved performance than that of the L2-based algorithm when outliers 

exist (El-Melegy et al., 2009).

As typical for CATE estimation, the activation functions of the hidden layers are rectified 

linear activation unis (ReLUs) and the last activation function is the identity function (Nair 

and Hinton, 2010). ReLU is a piecewise linear function that outputs the input directly if it 

is positive; otherwise, it outputs zero. Models that uses ReLUs are easier to train and often 

have better performance.

To ensure robustness, we propose to use the weighted Mean Absolute Error (MAE) 
1
n ∑i = 1

n wi
* yi

* − y i
*  as the loss function, where w* and y* are the transformed weight and 

outcome in the unified formulation (4). We use the adaptive moment estimation (Adam), a 

gradient-based optimization algorithm, which runs averages of both the gradients and the 

second moments of the gradients (Kingma and Ba, 2014), to train the ANN. We add an L1 

regularization term λ∥W∥1 to the loss function in high-dimensional settings in the first layer 

to achieve sparsity by driving some weights to zero (Feng and Simon, 2017; Girosi et al., 

1995), where λ is the tuning parameter.

The algorithm is as follows:

Algorithm 3: Robust ANN-based CATE estimating algorithm: Input: Data 

Y i, T i, Xi i = 1
n , number of iterations T, batch size ℬ, Adam parameters β1, β2, η, and ε, 

and L1 regularization parameter λ in high-dimensional case.

Estimate nuisance quantities p(x), μ(x), μ(1)(x), μ(−1)(x) using (robust) GBM;

Calculate wi
* and yi

* according to Table 2 and Formulation (4);
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Initialize an ANN with weights W, the decaying average of past gradients m to a zero vector, 

and the decaying average of past squared gradients v to a zero vector;

for t in 1,…,T do

a. Sample a mini-batch of data yi
*, xi, wi

*  without replacement with size ℬ;

b. Compute the negative gradients g(t) based on weighted MAE;

c. Update m and v by m(t) = β1m(t−1) + (1 − β1)g(t),v(t) = β2v(t − 1) + 1 − β2 g(t)2;

d. Compute bias correction terms m(t) = m(t)
1 − β1

t ,v
(t) = v(t)

1 − β2
t ;

e.
Update the weights by W (t) = W (t − 1) − η m(t)

v(t) + ε
.

end

Output: Weights W in the ANN and the resulted τ(x) represented by the network.

Key advantages of the algorithm-based CATE estimators, in comparison with their model-

based counterparts, are their automated implementation and scalability, as well as their 

accommodation of the non-additive effects and the high-dimensionality of X. For different 

algorithm-based CATE learners, we summarize the advantages and disadvantages in Table 3. 

Generally speaking, RF is easier to tune and it performs well in low dimensional cases. But a 

well-tuned GBM tends to outperforms RF in a high-dimensional data situation. ANN usually 

outperforms GBM and RF for image and text data because ANN is more flexible. For CATE 

estimation, however, when we have structured non-image or non-text data, the representation 

problem is easier to solve, and ANN might not offer added advantages.

2.4.4 An R package for implementation—To make the proposed algorithms more 

accessible, we implemented the three CATE-learning algorithms in an R package RCATE. 

Each of the algorithms can be combined with MCM-EA, RL, and AIPW to achieve robust 

CATE estimation. For input data, we only require specification of the outcome, treatment 

assignment, and pre-treatment covariates. There is no need for users to estimate the nuisance 

quantities. A more detailed description of the R package RCATE and example code are 

provided in Appendix A.

3 Simulation Studies

3.1 Design and implementation

We conducted three sets of simulations to evaluate the performance of the proposed 

methods.

Simulation Study 1: We compared the additive-model-based and algorithm-based 

learners under both L1 and L2 loss functions when the true treatment effect model involved 

interactions, i.e., non-additive.
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Simulation Study 2: We compared the proposed L1-based algorithms with other machine 

learning algorithms in high-dimensional settings.

Supplemental Simulation Study (S): We compared the algorithm-based robust 

estimators against model-based ones when the true treatment effect models were indeed 

additive; see details in Appendix B.

The methods considered in each of the three simulation studies are described in Table 4, 

where the numbers in the parentheses indicate the specific simulation studies.

We designed the simulation settings followed the structure of the real data in Section 4. The 

binary treatment levels (i.e., T ∈ {−1, 1}) and continuous outcome were used throughout. 

And we set the number of replications to R = 1, 000 and the size of the validation set to nν = 

1, 000.

We assessed the performance of these methods using mean squared error (MSE), mean 

absolute error (MAE), and coverage probability (CP). The MSE and MAE were defined as 

follows:

MAEv = 1
R ∑

r = 1

R
τ(r) xv − τ0 xv , MSEv = 1

R ∑
r = 1

R
[τ(r) xv − τ0 xv ]2,

where xv is the v-th observation from the validation set, τ (r)(x) is the estimator of τ(x) based 

on the r-th data replicate. We summarized the performance over the whole validation set by 

taking the average (i.e.,MSE = 1
nv

∑v = 1
nv MSEv). For simplicity, we reported MSE and MAE.

We calculated the CP as the proportion of the times that 95% bootstrap percentile intervals 

contained the true value of interest, out of the total number of simulating iterations (R = 1, 

000), i.e.,

CP = 1
R ∑

i = 1

R
I(C . I . covers the true value),

The tuning parameters were summarized in Appendix B.

3.1.1 Simulation 1: ML vs. model-based methods when τ0 is not additive—We 

generated the outcome from the following model

Y i = b0 Xi + T i
2 τ0 Xi + εi, εi 1 − po N(0, 1) + poP .

We used two different error distributions P = N(0, 100) and P = Laplace(0, 50). The 

covariates were continuous variables (Xi ~ N10(0, 1)). The treatment assignment followed a 

logistic model
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Di ∣ Xi Bernoulli p Xi , T i = 2Di − 1, logit p Xi = Xi1 − Xi2 .

Functions b0(Xi) and τ0(Xi) in the response surface were

b0 Xi = 100 + 4Xi1 + Xi2 − 3Xi3,

τ0 Xi = 6sin 2Xi1 + 3 Xi2 + 3 Xi3 + 9tanℎ 0.5Xi4 + 3Xi5 2I Xi4 − 1 ,

where the true treatment effect function included an interaction term, and thus violating the 

additive model assumption.

We compared all methods indicated by “(1)” in Table 4 while altering two design factors: 

The proportions of outliers po and the outlier generating mechanisms: (1) po ∈ {0, 0.05, 0.1, 

0.15, 0.2, 0.3, 0.5}, n = 1000, and P = N(0, 100), and (2) po ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.3, 

0.5}, n = 1000, and P = Laplace(0, 50).

We reported the MSE and MAE of the CATE estimators graphically in Figure 1. The 

figure showed that all L1-based algorithms outperformed the L2-based ones. Advantage of 

the robust algorithms, as measured by MSE and MAE, increased with the proportion of 

outliers. Because the true treatment effect function was non-additive, when po < 0.2, the 

proposed machine learning algorithms outperformed additive models in MSE and CP; CPs 

were summarized in tabular form in Appendix Table B.3. The performance of robust GAMs 

was better than robust QL when the proportion of outliers was close to the breakdown point 

of LAD regression, i.e., po = 0.5.

There were little practical differences among the robust GBM, robust ANN and robust RF 

when combined with MCM-EA and R-learning. But the robust GBM didn’t work well 

together with AIPW transformation because AIPW tended to generate transformed weights 

with a large variability, and GBM was more likely to overfit when the data were noisy (Park 

and Ho, 2019).

3.1.2 Simulation 2: Performance in high-dimensional settings—Here, we only 

considered the methods that performed well in Simulation Study 1, and we focused on the 

methods’ performance in high-dimensional settings and when outliers existed.

We generated data sets with the same outlier distributions P, baseline function, and 

propensity score function as in Simulation Study 1. And we fixed the proportion of outliers 

at 0.15, sample size at n = 1, 000, and the data dimension at p ∈ {100, 2000}.

The true treatment effect functions when p = 100 and p = 2000 were

τ0 Xi = 6sin 2Xi1 + 3 Xi2 + 3 Xi3 + 9tanℎ 0.5Xi4 + 3Xi5 2I Xi4 − 1 +
3Xi6 + 2Xi7 + Xi8 − 2Xi9 − 4Xi10,
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and

τ0 Xi = 6sin 2Xi1 + 3 Xi2 + 3 Xi3 + 9tanℎ 0.5Xi4 + 3Xi5 2I Xi4 − 1 +

∑
j = 6

50
βjXij, βj Unif( − 2, 2),

.

Figure 2 (A) and (C) showed that when p = 100, the robust GBM and robust ANN combined 

with AIPW and MCM-EA outperformed all other methods when outliers exist. Among the 

existing algorithms, causal MARS had the best performance. The performance of robust 

RF and robust ANN combined with RL tied with that of the causal MARS. The boosting 

algorithms generally performed better than RFs, because a single deep tree tended to 

struggle to reduce bias on high dimensional data, so did the forests. When we increased 

the dimension to p = 2000 Figure 2 (B) and (D) showed that the robust GBMs had the best 

performance when the data dimension was much larger than the sample size.

We additionally compared the computational speed of the proposed algorithms and additive 

models under difference sample sizes and dimensions of data. The robust RF was 

implemented in R, so that the speed was relatively slow and was not included in the 

comparisons here. The CPU time was collected on a personal computer with Intel Core 

i7–7700 CPU @3.60Ghz and 32 GB RAM. Table 5 showed that the robust GBM was the 

most efficient algorithms among all those considered in the comparison. Its advantage was 

most prominent when the sample size or dimension was high.

4 Real data application

To illustrate the use of the proposed algorithms, we assessed the treatment effects of two 

different antihypertensive therapies by analyzing recorded clinical data set from the “All 

of Us” research program. Sponsored by NIH, the program collected research data from 

multiple sources, including health surveys, health records, and digital health technologies 

(All of Us Research Program Investigators, 2019). Research data are publicly accessible at 

https://workbench.researchallofus.org/ through web-based Jupyter Notebook.

In this analysis, we compared the monotherapeutic effects of angiotensin-converting-enzyme 

inhibitors (ACEI) and thiazide diuretics on systolic blood pressure (SBP). We considered 

those receiving thiazide as in treatment group A (n = 504), and those receiving ACEI as 

in group B (n = 1040). The primary outcome of interest is the clinically recorded SBP in 

response to these therapies. Covariates of interest included the demographic and clinical 

characteristics of the participants; see Table 6.

We expressed the treatment effect as a function of the patient characteristics x

τ0(x) = E Y (B) − Y (A) ∣ X = x ,

where Y(A) and Y(B) represented the potential outcome of the two treatment groups. Since 

the treatment effect of a therapy is measured by its ability to lower SBP, a positive τ(x)
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indicates a superior effect of the thiazide diuretics, for a given x. An important covariate is 

the baseline SBP.

In this analysis, we included individuals that were only on thiazide diuretic or ACEI for 

at least a month. Their first SBP within three months after the initiation of thiazide or 

ACEI was used as the outcome. The pre-treatment characteristics were measured within 

three months before the initiation of thiazide or ACEI, and they were presented in Table 6. 

Missing lab values were imputed by multiple imputation (Rubin, 2004).

Preliminary data examination showed that the observed outcome was right-skewed. See 

Figure 3. The Shapiro–Wilk’s test confirmed that the SBP was not normally distributed 

(thiazide diuretic: W = 0.9739, p = 8.011e − 08; ACEI: W = 0.9763, p = 5.422e − 

12). We, therefore, used the L1-based algorithms to analyze the data. Here the weighted 

supervised learning algorithms were used to accommodate the possible complex treatment 

effect function.

A closer examination of the patient characteristics revealed that patients on thiazide had 

higher sodium and high density lipid (HDL) levels, lower albumin level and glomerular 

filtration rate (GFR), and more likely to be female. Using GBM, we examined the mean 

function of SBP μ(x), μ(1)(x), μ( − 1)(x) and the propensity of patient receiving ACEI p(x). 
The estimated propensity score distributions were clearly different for the two treatment 

groups, whereas the mean functions were similar. See Figure 4. The different propensity 

score distributions of the two groups clearly showed the non-random nature of treatment 

assignment, and that a naive comparison should not be trusted.

We then analyzed the data with the proposed algorithms: the robust RF and robust GBM 

combined with MCM-EA and R-learning. We use these four methods to estimate the CATE. 

Estimated treatment effects conditioning on pre-treatment SBP were shown graphically in 

Figure 5. To plot these marginal effects, we fixed the continuous covariates at their mean 

values, and categorical covariates at their mode levels.

Results showed that the SBP lowering effects of thiazide diuretics and ACEI were similar 

when the pre-treatment SBP were below 160 mmHg. But for individuals with baseline 

SBP greater than 160 mmHg, diuretics tended to have a stronger SBP-lowering effect. 

This observation was largely consistent with the findings of the Antihypertensive and Lipid-

Lowering Treatment to Prevent Heart Attack Trial (ALLHAT), which showed a comparable 

effect of thiazide-like diuretic chlorthalidone and ACEI lisinopril (The ALLHAT Officers 

and Coordinators for the ALLHAT Collaborative Research Group, 2002). Diuretics reduce 

blood pressure through their natriuretic actions – increase urinary excretion of sodium and 

reduce extracellular fluid volume (ECFV). It works particularly well in patients with greatly 

expanded ECFV, and thus explaining the greater SBP reduction in patients with higher 

pre-treatment SBP (Duarte and Cooper-DeHoff, 2010).

To verify the conditional independence error assumption, we performed the invariant 

residual distribution test (IRD-test), invariant environment prediction test (IEP-test), 

invariant conditional quantile prediction test (ICQP-test), invariant targeted prediction test 
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(ITP-test) (Heinze-Deml et al., 2018). The conditional independence error assumption held 

for both proposed methods at the significant level of 0.05.

5 Discussion

The practice of precision medicine relies on a sound understanding of the causal effects 

of specific treatments in patients with different characteristics. By expressing the treatment 

effect as a function of patient characteristics, the heterogeneous treatment effect provides 

a useful quantification of the unknown causal effect. Among the existing methods for 

estimating heterogeneous treatment effects, few have considered the conditions of the data 

from which the estimates are derived - outliers and other forms of data irregularities could 

severely undermine the validity of the causal estimation. We described a general estimating 

equation that produces robust estimates against such data irregularities in recent work. 

However, the method requires the correct specification of the treatment effect function. From 

a practical perspective, such a requirement represents a significant constraint. Even when 

flexible additive models are used to accommodate the potential nonlinear effects, there is 

no assurance that such an additive structure would be adequate. To address this issue, we 

introduced a set of modified machine learning algorithms for treatment effect estimation. We 

also presented the necessary computational tools for practical data analysis.

When implemented within the framework of the previously proposed estimating equation 

for heterogeneous causal effects, we show that supervised learning algorithms could 

significantly reduce the risk of model misspecification without losing the method’s 

robustness. In a sense, the work presents a data-driven analytical approach that reduces 

the users’ burden of model specification while retaining good theoretical properties of the 

general estimating equation. A critical ingredient of this approach is the use of machine 

learning techniques to optimize the objective function. Simulation results confirmed that 

the new procedures’ good performance. As a result of this development, we improved the 

general estimating equation’s scalability in real data applications, making the methods more 

readily usable in practical data analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Results of Simulation Study 1 - MSE and MAE of different methods under various 

proportions of outliers and error generating mechanisms. The robust GBMs were indicated 

by red solid lines, the robust RFs were indicated by blue solid lines, the robust ANNs were 

indicated by green solid lines. The GBMs, RFs, and ANNs were indicated by dashed red, 

blue, and green lines. The robust GAMs were indicated by blue dotted line, and robust QL 

was indicated by brown dotted line.
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Figure 2: 
Simulation Study 2 - Mean squared error (MSE) of different algorithms when outliers exist. 

Figures A and C show the results when p = 100, Figures B and D show the results when p = 

2000.
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Figure 3: 
Heavy-tailed and Skewed Systolic Blood Pressure Distribution.
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Figure 4: 
Data example: Estimated nuisance parameters by treatment group.
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Figure 5: 
Data example: Marginal treatment effect of pre-treatment SBP. If the empirical 95% 

pointwise C.I. does not cover zero, the interval segment is colored in orange.

Li et al. Page 21

Commun Stat Simul Comput. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 22

Table 1:

Summary of existing popular CATE estimation algorithms

Base-learner/
Algorithm Description Pros(+) and Cons(−) Available R 

packages

The single-learner (or 
S-learner)

Fits a single-model for the outcome 
with the covariates and treatment 
assignment indicator.

(+) If the treatment effect is simple, then pooling 
the data together will be beneficial.
(−) Performs bad if the treatment effect is strongly 
heterogeneous and the response surfaces of two 
groups are very different.

rlearner 
causalToolbox

The two-learner (or T-
learner)

Fits two models for the outcome of 
two treatment groups separately with 
the covariates.

(+) Performs well if the treatment effect is strongly 
heterogeneous and the response surfaces of two 
groups are very different.
(−) Uses the data inefficiently.

rlearner 
causalToolbox

The X-learner (Künzel 
et al., 2019)

A three step approach to crossover the 
information in the control and treated 
subjects.

(+) Has the advantages of both S and T-learner.
(−) The three-step estimator increases the risk of 
over-fitting and the difficulty in tuning parameter.

rlearner 
causalToolbox

Inverse propensity 
score weighting (IPW)

Transforms the outcome by inverse 
propensity score weighting, then 
the conditional expectation of the 
transformed outcome is the treatment 
effect.

(+) After transformation, the IPW provides the 
flexibility in choosing off-the-shelf supervised 
learning algorithms.
(−) Relies on the accurate estimation of the 
propensity score.

Augmented inverse 
propensity score 
weighting (AIPW)

Augmented IPW is robust to mis-
specified mean or propensity score 
model.

(+) In addition to the advantage of IPW, AIPW has 
the property of double robustness. RCATE

The R-learner (RL)
Decomposes the outcome by 
subtracting the mean model and gets 
an estimating equation.

(+) In addition to the advantage of IPW, R-learner 
has quasi-oracle property. rlearner RCATE

The modified covariate 
method with efficiency 
augmentation (MCM-
EA)

Transforms the covariates to get an 
estimating equation.

(+) Same as IPW.
(−) Relies on the accurate estimation of mean and 
propensity score.

RCATE

The Q-learner Fits the interaction model and the 
slope is the treatment effect function.

(+) No nuisance parameter need to be estimated.
(−) Lacks of flexibility in algorithm choosing and 
sensitive to model mis-specification.

Causal tree (Athey and 
Imbens, 2016)

Uses regression tree that splits by 
maximizing the difference between 
treatment effects in child nodes to fit 
the outcome.

(+) Easy to interpret and provides the grouping of 
subjects.
(−) Suffers from the problem of high variance.

causalTree

Causal forest (Athey et 
al., 2019)

Uses randomly selected subsample 
and covariates to build causal trees, 
then aggregate the results.

(+) Addresses the high variance problem.
(−) Lose the interpretability. grf

Causal boosting 
(Powers et al., 2018)

An adaption of gradient boosting 
algorithm with causal trees as weak-
learner.

(+) Well-tuned causal boosting outperforms the 
causal forest.
(−) Takes longer to train than causal forest and 
could overfit the training data.

causalLearning

Causal MARS (Powers 
et al., 2018)

Fits two multivariate adaptive 
regression spline models in parallel in 
two arms of the data. In each step, 
it chooses the same basis function to 
add to each model.

(+) Alleviates the bias problem of tree-based 
algorithms because they use the average treatment 
effect within each leaf as the prediction for that 
leaf.

causalLearning

Commun Stat Simul Comput. Author manuscript; available in PMC 2024 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 23

Table 2:

Parameters of some popular methods in the framework

Method w(Xi, Ti) g(Xi) c(Xi, Ti)

MCM {Tip(Xi) + (1 − Ti)/2}−1 0
T i
2

MCM-EA {Tip(Xi) + (1 − Ti)/2}−1 μ(Xi)
T i
2

RL 1 μ(Xi) {Ti − 2p(Xi) + 1}/2

IPW
T i − 2p Xi + 1

2p Xi 1 − p Xi

2
0

2p Xi 1 − p Xi
T i − 2p Xi + 1

AIPW
T i − 2p Xi + 1

2p Xi 1 − p Xi

2
(1 − p(Xi))μ1(Xi)+ p(Xi)μ−1(Xi)

2p Xi 1 − p Xi
T i − 2p Xi + 1
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Table 3:

Supervised learning algorithms for CATE estimation

Algorithm Advantages Disadvantages Main Hyperparameters

Random Forests Hard to overfit, easy to tune, 
good for parallel computing

Model can get large Number of trees, number of features used in 
splitting

GBM High-performing in high-
dimensional case

Harder to tune than RF, take longer 
to train than RF

Number of trees, depth of trees, learning rate

Neural Network Can handle extremely complex 
task

Hard and slow to train Number of neurons in the hidden layer, number 
of epochs, learning rate
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Table 4:

Methods considered in the simulation studies. Numbers in the parentheses indicate the specific simulation 

studies in which the methods were assessed.

Methods under the Unified Formulation Other Candidate Methods

MCM-EA RL AIPW Method

Robust RF (1)(2)(S) (1)(2)(S) (1)(2)(S) Robust QL (1)

Robust GBM (1)(2)(S) (1)(2)(S) (1)(2)(S) Causal BART (2)

Robust ANN (1)(2)(S) (1)(2)(S) (1)(2)(S) Causal Boosting (2)

RF (1) (1) (1) Causal Forest (2)

GBM (1) (1) (1) Causal MARS (2)

ANN (1) (1) (1) X-learner+RF (2)

Robust GAM (1)(S) (1)(S) (1)(S)
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Table 5:

Comparison of the CPU time (s) of RF/GBM/ANN and additive model

Dimension Algorithm n = 1000 n = 3000 n = 5000 n = 8000

p = 10

Random Forests 0.30 1.67 3.34 7.41

GBM 0.28 0.79 1.29 2.13

Robust GBM 0.29 0.99 1.63 2.58

ANN 4.72 12.87 21.43 35.89

Robust ANN 4.51 12.63 20.90 35.25

Robust GAM 1.65 18.94 38.23 86.18

p = 100

Random Forests 2.54 12.99 28.71 60.51

GBM 2.27 6.64 11.33 18.75

Robust GBM 2.29 7.13 12.13 19.02

ANN 5.24 14.29 25.05 39.13

Robust ANN 5.24 14.22 24.63 42.04

Robust GAM 33.65 243.24 N/A N/A
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Table 6:

Demographic and Clinical Characteristics of Study Subjects

Variable Thiazide diuretic (n=504) ACEI (n=1040) p-value

mean (sd)

Systolic BP (mmHg) 134.19 (17.22) 133.97 (21.61) 0.838

Pre-treatment Systolic BP (mmHg) 140.17 (18.46) 138.46 (21.96) 0.131

Age (year) 54.10 (12.19) 54.08 (11.94) 0.975

BMI 38.97 (9.26) 37.57 (33.09) 0.350

Potassium (mmol/L) 4.06 (0.45) 4.03 (0.47) 0.375

Sodium (mmol/L) 139.06 (2.78) 138.60 (3.08) 0.005*

Cholesterol in LDL (mg/dL) 111.44 (42.24) 111.15 (53.06) 0.914

Cholesterol in HDL (mg/dL) 47.51 (13.89) 45.32 (16.68) 0.011*

Albumim (g/dL) 11.21 (14.09) 20.00 (17.24) <0.001*

Triglyceride (mg/dL) 171.03 (114.82) 181.31 (188.53) 0.260

Hemoglobin A1c (%) 7.25 (2.03) 7.25 (1.99) 0.993

Glomerular filtration rate (ml/min/1.73m2) 58.49 (18.56) 63.12 (18.04) <0.001*

n (percentage)

Female 324 (64.3) 589 (56.6)

Male 174 (34.5) 425 (40.9) 0.008*

Not answered 6 (1.2) 26 (2.5)

Black 113 (22.4) 366 (35.2)

White 279 (55.4) 415 (39.9) <0.001*

More than one race or not answered 112 (22.2) 259 (24.9)

Hispanic 91 (18.1) 215 (20.7) 0.254
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Table 7:

Conditional independence test results (p-value)

Method IRD-test IEP-test ICQP-test ITP-test

Robust RF + MCM-EA 0.17 0.50 1.00 0.38

Robust RF + RL 0.22 0.54 0.95 0.49

Robust GBM + MCM-EA 0.06 0.57 0.69 0.29

Robust GBM + RL 0.29 0.50 0.32 0.55
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