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Abstract

The hierarchical deep-learning neural network (HiDeNN) (Zhang et al, Computational Mechanics, 

67:207–230) provides a systematic approach to constructing numerical approximations that can be 

incorporated into a wide variety of Partial differential equations (PDE) and/or Ordinary differential 

equations (ODE) solvers. This paper presents a framework of the nonlinear finite element based 

on HiDeNN approximation (nonlinear HiDeNN-FEM). This is enabled by three basic building 

blocks employing structured deep neural networks: 1) A partial derivative operator block that 

performs the differentiation of the shape functions with respect to the element coordinates, 2) An 

r-adaptivity block that improves the local and global convergence properties and 3) A materials 

derivative block that evaluates the material derivatives of the shape function. While these building 

blocks can be applied to any element, specific implementations are presented in 1D and 2D to 

illustrate the application of the deep learning neural network. Two-step optimization schemes are 

further developed to allow for the capabilities of r-adaptivity and easy integration with any existing 

FE solver. Numerical examples of 2D and 3D demonstrate that the proposed nonlinear HiDeNN-

FEM with r-adaptivity provides much higher accuracy than regular FEM. It also significantly 

reduces element distortion and suppresses the hourglass mode.
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1 Introduction

As a major branch of artificial intelligence, Machine Learning (ML) involves the 

development of algorithms to “learn” based on given information (typically known as 

training data) and then make predictions by applying the “knowledge” that is learned. 
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Such type of knowledge can be cast in different forms, e.g., using neural networks (NN). 

NN mimics the biological structure of a neuron network and consists of combinations of 

neurons as the fundamental unit that interacts with the other neurons through information 

passage. Each neuron processes the information passed through by first assigning the weight 

to each connection, summing up the weighted inputs, and adding a bias. It will then process 

this input through a so-called activation function and pass the processed result to the other 

neurons that connect to it. Deep Neural Network (DNN) [1] is a special case of NN in which 

neurons are arranged in multiple layers: there is an input layer that feeds the training data, an 

output layer that provides the prediction, and in between, there are multiple internal layers 

that process the data using combinations of weights, biases, and activation functions.

DNN has found its applications in areas such as image analysis [2–5], language processing 

[6], medical assistance [7–10], strategic decision-making [11], and material design [12, 13] 

and demonstrated its outstanding data processing capabilities. There is a continuing interest 

in applying DNN to solve ordinary and partial differential equations (ODE/PDE) [14–18] 

that govern broad engineering and science applications. The main motivations are two folds: 

first, DNN is capable of establishing the so-called universal approximation [19], which 

can be employed to build nonlinear approximations with arbitrary orders of resolution. 

These are generally difficult to construct using single-scale approaches such as the finite 

element method (FEM). Second, DNN employs back and forward propagation to “learn” 

and “predict”. Advanced algorithms and hardware based on parallel computing architectures 

are widely available to accelerate these processes and are continuously being improved. The 

existing approaches can be generally divided into two categories based on whether they are 

purely data-driven or not. In a purely data-driven approach, data collected from experiments 

or simulations are fed to the DNN to capture the nonlinear mapping between the input and 

output [20–23]. In most cases, large amounts of data are required for accomplishing good 

prediction accuracy. This is a limiting factor due to the cost or time it takes to generate the 

data. On the other hand, the method may also suffer from overfitting if the data provided 

does not fully represent the whole spectrum of features. Although regularization methods 

have been established to alleviate the overfitting issue to some extent, there are no general 

approaches available. In addition, general training algorithms [24–26] such as those based 

on the gradient descent approach are not always robust due to the lack of insight into the 

physics of the problem.

Given the difficulties in directly applying a purely data-driven approach, there has been 

a continuing interest in integrating DNN with mechanistic principles that govern the 

application. One of the successful examples is the physics-informed neural network (PINN) 

in which loss functions based on evaluating the residual errors associated with the governing 

differential equations are introduced to accelerate the convergence of data training [27]. 

For general science and engineering applications, the application of DNN remains a great 

challenge for problems that are featured by: 1) High computational cost of purely physics-

based model; 2) Lack of insight on the physics governing the application, and 3) High 

volume of data that is beyond the reach of the existing data processing capability. In light of 

these challenges, Zhang et al have recently proposed the Hierarchical Deep Learning Neural 

Network (HiDeNN) framework[28]. Unlike most of the existing approaches, HiDeNN 

establishes a hierarchical and structured framework to directly integrate the neural network 
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structure with the numerical approximation. Three elementary building blocks that perform 

the operations of linear transformation, multiplication, and inversion are introduced to 

generate the DNN representations of the commonly used interpolation functions, such as 

those based on FEM, Lagrangian polynomial, spline functions, reproducing kernel meshfree 

shape functions, NURBS, and Isogeometric analysis (IGA).

One of the key features of HiDeNN is that the weights and biases of DNN are functions 

of the nodal positions. As such, training of the HiDeNN leads to optimized nodal positions. 

This is also known as r-adaptivity in the context of finite element-based interpolations 

(HiDeNN-FEM). When combined with a physics-based loss function such as the potential 

energy of the system, the robustness of HiDeNN-FEM has been illustrated for 1D and 

2D linear elasticity problems [29]. It was also shown that HiDeNN-FEM can be further 

enhanced with reduced-order modeling using proper generalized decomposition (PGD), 

leading to HiDeNN-PGD [30, 31]. In this work, we present the application of HiDeNN-

FEM to nonlinear problems in solid mechanics. For these types of problems, Lagrangian 

meshes are commonly used in which nonlinearity arises due to large deformation and/or 

material nonlinearity. The shape functions are typically constructed in the parent (element) 

configuration and expressed in terms of the parent (element) coordinates. Correspondingly, 

three building blocks employing HiDeNN are introduced: 1) A partial derivative operator 

block that performs the differentiation of the shape functions with respect to the element 

coordinate, 2) An r-adaptivity block that improves the local and global convergence 

properties and 3) A materials derivative block that evaluates the material derivatives of the 

shape function (in the case of total Lagrangian formulation). While these building blocks are 

generally applicable for any type of finite element shape functions, specific cases in 1D and 

2D are presented to illustrate the application. We further show through 2D and 3D examples 

that convergence can be enhanced with a physics-based loss function that employs either 

potential energy or out-of-balance force.

The rest of the paper is organized as follows. In Section 2, the basic formulation of 

HiDeNN-FEM is reviewed. In Section 3, we outline the three building blocks and the 

process to construct the HiDeNN-FEM shape functions. This is followed by a discussion on 

the general solution processes for nonlinear problems in section 4. Section 5 presents results 

and discussions on several benchmark problems in both 2D and 3D. Finally, conclusions are 

drawn in Section 6.

2 The Basic Formulation of HiDeNN-FEM

We first introduce the basic notations that are commonly used for representing DNN. The 

basic unit of the DNN is an artificial neuron that is also known as perceptron as shown in 

Figure 1. Perceptron takes multiple inputs given as x1, x2, …, xn. Each input is multiplied by 

a weight, i.e., wi with i = 1, …, n. The weighted inputs are then summed and a bias b is added 

to give wx + b, which serves as an input to the activation function A. The result A wx + b
is assigned as the output of the artificial neuron. Many choices of the activation function 

A have been proposed based on the applications. For details we refer to the introduction in 

[32]. A DNN consists of an arrangement of the perceptrons in multiple layers including at 

least one internal (hidden) layer (Figure 1). To describe the information passing within the 
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DNN, we introduce the notation wj, k
l − 1, l as the weight from the j-th neuron in the l − 1 -th 

layer to the k-th neuron in the l-th layer and bj
l as the bias of the j-th neuron in the l-th layer.

In HiDeNN-FEM, a structured DNN is developed to realize the interpolation of the shape 

functions. This is accomplished by establishing three basic building blocks as shown in 

Figure 2, i.e., linear, multiplication, and inversion. The linear building block establishes the 

piecewise linear function, defined as

L(x; xA, xB, yA, yB)

=

yA, x < xA,
yB − yA
xB − xA

(x − xA) + yA, xA ≤ x ≤ xB,

yB, x > xB,

The multiplication building block M performs the multiplication of two functions F1, F2 that 

are represented in DNN, i.e., M F1, F2 = F1 · F2. The inversion building block V  provides the 

quotient of two DNN-represented functions F1, F2, i.e., V F1, F2 = F2/F1. For the detailed 

implementation of using DNN to establish these building blocks, we refer to [28].

3 Nonlinear HiDeNN-FEM

3.1 A brief introduction to nonlinear FEM

The method outlined below applies to both total Lagrangian (TL) and updated Lagrangian 

formulation (UL). In this work we adopted the total Lagrangian (TL) formulation [33] to 

illustrate the application of HiDeNN. We first introduce X as the material coordinate and x
as the spatial coordinate. The weak form of the momentum equation is given as

∫
Ω0

ρ0ü ⋅ δudΩ + ∫
Ω0

P:δFTdΩ − ∫
Ω0

b ⋅ δudΩ − ∫
Γ t0

T ⋅ δudΓ = 0 (1)

in which u = x − X is the displacement and the superimposed dot denotes the time derivative. 

The symbol δ represents variational operator and δu is the virtual displacement, ρ0 is the 

mass density defined in the initial configuration Ω0, P is the 1st Piola-Kirchhoff (nominal) 

stress and F is deformation gradient, b is the body force and T is traction applied on 

boundary Γ t0.

To solve Eq.(1) using FEM, we introduce Lagrangian mesh and three configurations (Figure 

3):

1. The parent element domain □ on which the shape function approximation is 

built. The element coordinates are given as ξe with e the element index;

2. The initial (reference) configuration Ω0
e with material coordinate X;

3. The current configuration Ωe with spatial coordinate x;

To describe the motion, the mapping from the initial to the current configuration is 

introduced as x = ϕ X, t . Additionally, the initial and current configurations are mapped 
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from the parent domain, given as X = X ξ  and x = x ξ, t , respectively. With the shape 

functions constructed in the parent domain, these last two mappings are approximated as 

X ξ = XINI ξ  and x ξ = xINI ξ  with NI ξ  the shape function defined at the node I and 

evaluated at coordinate ξ. Repeated nodal index of I indicates the summation within the 

element. Substitution of the shape function approximation into the weak form of the TL 

formulation in Eq.(1) gives the discretized form of the momentum equation, given as

Mü = fext − fint (2)

with

fint = fiI
int = ∫

Ω0

∂NI

∂Xj
P jidΩ0 = ∫

Ω0

BIj
0 TP jidΩ0 (3)

fext = fiI
ext = ∫

Ω0

NIρ0bidΩ0 + ∫
Γ ti

0

NIt i
0dΓ0

(4)

M = MijIJ = δij ∫
Ω0

ρ0NINJdΩ0 (5)

in which ρ0 is the mass density in the initial configuration, bi is the body force, t i
0 is the 

traction applied over the natural boundary Γ ti
0 and the shape function derivative matrix is 

defined through ℬjI
0 = ∂NI

∂Xj
 in Eq.(3). In this paper, we will focus on application of HiDeNN-

FEM to nonlinear static problems so that the inertia terms in Eq.(2) are neglected. Extension 

to nonlinear dynamic problems will be described in a separate publication.

3.2 HiDeNN-FEM building blocks for nonlinear FEM

Computing the internal force term in Eq.(3) requires evaluation of the shape function 

derivative. This is carried through the chain rule,

ℬjI
0 = ∂NI

∂Xj
= ∂NI

∂X = ∂NI

∂ξ
∂X
∂ξ

−1
(6)

The matrix notation of Eq.(6) is shown here for the case of a general 2D element in which 

the element coordinates are given as ξ, η and material coordinates are X, Y . For a given nodal 

index I, we have

∂NI

∂X = NI, X
T = NI, X NI, Y = NI, ξ NI, η

X′ξ X′η

Y ′ξ Y ′ξ

−1
(7)

Or equivalently
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NI, X = NI, X

NI, Y
= X′ξ X′η

Y ′ξ Y ′η

−T NI, ξ

NI, η
= X′ξ Y ′ξ

X′η Y ′η

−1 NI, ξ

NI, η
(8)

Once the shape function derivatives are evaluated from Eq.(8) for each nodal index I, the 

matrix notation of Eq.(6) is given as

ℬjI
0 = N1, X N2, X … (9)

For implementation in HiDeNN-FEM, the operations outlined above to evaluate ℬjI
0  can 

be realized with three building blocks as shown in Figure 4. Using the element coordinate 

as inputs, the block of partial derivative operator evaluates the matrix DN that contains the 

shape function derivatives with respect to the element coordinates. The r-adaptive block 

computes the Jacobian of the mapping X = X ξ . Subsequently, the material derivatives 

are evaluated in the third block, which gives the matrix that contains the shape function 

derivative ℬjI
0 .

3.2.1 Construction of shape functions and derivatives in 1D elements—We 

first illustrate the construction of the shape functions and derivatives using the three building 

blocks for the case of 1D linear element. Configurations of the element in the physical 

and parent domain are shown in Figure 5a. The shape functions at nodes 1 and 2 are 

N1 = 1
2 1 − ξ , N2 = 1

2 1 + ξ  with −1 ≤ ξ ≤ 1. Figure 5b illustrates the DNN representation of 

the linear shape function in which two hidden layers are introduced. The element coordinate 

ξ is employed as the input and the activation function A1 x = x is introduced. The output 

of the DNN are the values of the shape functions defined at the two nodes and evaluated 

at the element coordinate ξ. According to Figure 5a, the DNN representations of the shape 

functions are given as

N1 ξ; W, b, A = W 11
23A1(W 11

12ξ + b))
N2 ξ; W, b, A = W 22

23A1(W 12
12ξ + b)) (10)

These representations can be combined with additional layers of NN to provide 

interpolations of the displacement. For details we refer to [28].

Figure 5c shows the three building blocks for evaluating the 1D shape function derivatives. 

To explain the function of each building block, we recall that the 1D version of Eq.(6) is 

ℬI
0 = ∂NI

∂X = ∂NI
∂ξ

∂X
∂ξ

−1
. For the 2-node element, we introduce

ℬ = ℬ1
0 ℬ2

0 = ∂N1

∂X
∂N2

∂X = ∂X
∂ξ

−1 ∂N1

∂ξ
∂N2

∂ξ = J−1DN (11)

where J = ∂X
∂ξ  is the Jacobian for the coordinate transformation, DN = ∂N1

∂X
∂N2
∂X = − 1

2
1
2 . 

The Jacobian is evaluated through
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J = ∂X
∂ξ = ∂N1

∂ξ
∂N2

∂ξ
X1

X2
= DNX* (12)

where X* = X1 X2
T  provides the physical coordinates of the nodes.

Based on Eqs. (11) and (12), the first building block in Figure 5c employs a single layer 

of NN to evaluate DN. Since DN is a constant matrix for the 1D linear element, the input 

to NN is a constant as well. It is called a partial derivative operator block because the 

block performs differentiation (in general partial differentiation) of the shape functions with 

respect to the element coordinates. Subsequently, another two layers are added to construct 

the second building block to compute J. This block is called an r-adaptivity block since 

the weights connecting these two layers are the physical coordinates of the nodes and 

can be trained by optimizing the loss function. This is generally regarded as a learning 

process through which NN arrives at the optimum nodal positions. As will be shown 

later, we establish physics-based loss functions based on nonlinear FEM. The last block is 

called a materials derivative block that evaluates ℬ based on Eq.(11). This block takes the 

computed J from the r-adaptivity block and inverts it using the inversion building block V  as 

established in [28]. Another layer is then added to compute ℬ = J−1DN. The computed shape 

function derivatives can be employed to evaluate the deformation gradient given as

F ξ; W, b, A = u1A1(W 11
56

⋅ (W 11
45(A1(W 11

34A1(W 11
23A1(W 11

12))) + A1(W 21
34A1(W 22

23A1(W 12
12)))))−1) + u2A1(W 11

56

⋅ (W 11
45(A1(W 11

34A1(W 11
23A1(W 11

12))) + A1(W 21
34A1(W 22

23A1(W 12
12)))))−1) + I

(13)

Figure 6 illustrates the construction of the shape functions and their derivatives for the 

case of 1D quadratic element. Configurations of the element in the physical and parent 

domain are shown in Figure 6a. The shape functions at nodes 1, 2 and 3 are derived from 

the well-known 2nd order Lagrange polynomials, given as N1 = 1
2ξ 1 − ξ , N2 = 1 − ξ2 and 

N3 = 1
2ξ 1 + ξ . Two internal layers are introduced in building the shape function using the 

given element coordinate as an input. The multiplication building block is introduced in the 

second layer to realize the product form of the shape functions. The DNN representations of 

the shape functions are given as

N1 ξ; W, b, A = W 11
34 M (W 23A1(W 11

12ξ + b1
2)), (W 23A1(W 12

12ξ + b2
2))

N2 ξ; W, b, A = W 22
34 M (W 23A1(W 13

12ξ + b3
2)), (W 23A1(W 14

12ξ + b4
2))

N3 ξ; W, b, A = W 33
34 M (W 23A1(W 12

12ξ + b2
2)), (W 23A1(W 14

12ξ + b4
2))

(14)

with the specific weights and biases shown in Figure 6b.

The shape function derivatives can be constructed using the same three building blocks as 

in the case of 1D linear element and detailed NN structures are shown in Figure 6c. Unlike 

the linear element case, neither the Jacobian nor the shape function derivative is constant. To 

evaluate the shape function derivative, the element coordinate is used as the input. Based on 
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Figure 6c, the shape function derivatives are evaluated according to B = J−1DN in which the 

building blocks for evaluating DN, J and B are shown. The material coordinates are used as 

weights in constructing J and can be optimized through training. The deformation gradient is 

given as

F ξ; W, b, A = u1M W 11
67J−1, W 11

37A1(W 11
23A1(W 11

12ξ + b1
2))

+ u2M W 12
67J−1, W 22

37A1(W 22
23A1(W 12

12ξ + b2
2))

+ u3M W 13
67J−1, W 33

37A1(W 33
23A1(W 13

12ξ + b3
2))

(15)

with

J−1 = W 11
56A1

W 11
45A1(W 11

34A1(W 11
23A1(W 11

12ξ + b1
2))) +

W 21
45A1(W 22

34A1(W 22
23A1(W 12

12ξ + b2
2))) +

W 31
45A1(W 33

34A1(W 33
23A1(W 13

12ξ + b3
2)))

(16)

3.2.2 DNN Construction of the shape functions and derivatives in 2D 
elements—We consider the 2D 4-node quadrilateral element. Configurations of the parent 

and material configurations are shown in Figure 7.

The shape functions are given as

N = N1 N2 N3 N4

N1 = 1
4(1 − ξ)(1 − η),     N2 = 1

4(1 + ξ)(1 − η)

N3 = 1
4(1 + ξ)(1 + η),    N4 = 1

4(1 − ξ)(1 + η)
(17)

Figure 8 shows the construction of the shape functions using DNN and the corresponding 

representations are expressed as

N1 ξ, η; W, b, A = W 11
34 M (W 23A1(W 12

12ξ + b2
2)), (W 23A1(W 24

12ξ + b4
2))

N2 ξ, η; W, b, A = W 22
34 M (W 23A1(W 11

12ξ + b1
2)), (W 23A1(W 24

12ξ + b4
2))

N3 ξ, η; W, b, A = W 33
34 M (W 23A1(W 11

12ξ + b1
2)), (W 23A1(W 23

12ξ + b3
2))

N4 ξ, η; W, b, A = W 44
34 M (W 23A1(W 12

12ξ + b2
2)), (W 23A1(W 23

12ξ + b3
2))

(18)

To establish the DNN for the shape function derivative, we define

DN =

∂N1

∂ξ
∂N2

∂ξ
∂N3

∂ξ
∂N4

∂ξ
∂N1

∂η
∂N2

∂η
∂N3

∂η
∂N4

∂η

= DN
1

DN
2 = 1

4
−(1 − η) (1 − η) (1 + η) −(1 + η)
−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ) (19)
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X* =

X1 Y 1

X2 Y 2

X3 Y 3

X4 Y 4

(20)

J = DN ⋅ X* = DN
1 ⋅ X*

DN
2 ⋅ X*

(21)

Figure 9a provides the building blocks for obtaining DN, J based on Eqs. (19)) to (21) 

and eventually shape function derivative matrix B0 that is used to compute the deformation 

gradient in 2D. Note that the HiDeNN multiplication and inversion blocks have been used 

extensively. For instance, computing J−1 requires evaluating the determinant det J  and the 

detailed DNN is shown in Figure 9b with the application of the multiplication block M. To 

further evaluate J−1 the matrix inversion block V  is applied as shown in Figure 9c.

4 Training of DNN in HiDeNN-FEM and Solution Method

With the shape functions established in section 3 using DNN, the general expression for the 

displacement is given as

uℎ = N ξ; W, b, A d (22)

in which N is the shape function matrix and d is the nodal displacement vector. Unlike the 

conventional FEM approximation, this DNN-constructed approximation contains additional 

NN parameters such as the weights W, the biases b and the activation functions A. In 

particular, the weights for the r-adaptivity block are functions of the material coordinates of 

the nodes. Thus, we rewrite Eq.(22) as

uℎ = N ξ; X*, b, A d (23)

in which X* is the vector that contains all the material coordinates of the nodes as part of the 

weight in the DNN. For the given choices of the activation functions A, X* can be trained 

to achieve optimum accuracy. This is equivalent to the r-adaptivity in FEM that is realized 

through a learning process in DNN in HiDeNN-FEM.

The learning process in the general field of ML can be categorized into supervised and 

unsupervised learning, depending on whether any data that correlates the input (feature) to 

the output (label) is used for the training process. In this work, an unsupervised learning 

approach is established in which the NN parameters are optimized by defining a loss 

function without using training data. For nonlinear FEM the loss function is formulated 

based on the residual while using Newton’s method. Here we focus on static problems 

so that the inertia terms in Eq.(2) are neglected. In Newton’s method, Eq.(2) is linearized 

and solved through iteration. The iterative step starts with the residual vector r for the υ-th 

iteration that is expressed as
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rυ = r dυ, Xυ
* = fυ

int − fυ
ext

(24)

Setting the conditions that rυ + 1 = 0 and performing a first-order Taylor expansion of the 

values at the υ-th iteration gives

rυ + 1 = rυ + ∂r dυ, Xυ
*

∂d Δd + ∂r dυ, Xυ
*

∂X* ΔX = 0 (25)

We define

A = ∂r
∂d   and   A* = ∂r

∂X* (26)

which represents the tangent stiffness associated with the system itself and the mesh, 

respectively. Correspondingly, A and A* are called the system Jacobian matrix and mesh 

Jacobian matrix, respectively. It can be shown that the matrix components of A are given as

AIJ = ∂rI

∂dJ
= ∂fI

mat

∂dJ
+ ∂fI

geo

∂dJ
− ∂fI

ext

∂dJ

= ∫
Ω0

B0I
T [CSE]B0JdΩ0 + I ∫

Ω0

ℬ0I
T Sℬ0JdΩ0 − ∂fI

ext

∂dJ

(27)

in which fI
mat and fI

geo represents the contribution to the internal nodal force due to the material 

and geometric nonlinearity, respectively. ∂fI
ext

∂dJ
 is denoted as the external load stiffness due 

to loads that are changing with the configuration of the body. This term is neglected in the 

current work. B0I is the Voigt form of the B0 matrix for the shape function defined at node I. 

The detailed step to form B0I can be found in ref [33]. CSE is the material tangent stiffness 

tensor that relates the 2nd Piola-Kirchhoff stress S to Green-Lagrangian strain E through 

Ṡ = CSE: Ė. I is the 2nd order identity tensor.

The mesh Jacobian matrix is given as

A* = ∂r
∂X* = ∂fint − ∂fext

∂X* (28)

We assume that fext is independent of the nodal coordinates and thus

A* = ∂fint

∂X* = ∫
Ω0

∂ℬ0

∂X*
T

PdΩ0 (29)

With the system and mesh Jacobian matrix evaluated based on Eqs.(27) and (29), the nodal 

displacement and coordinates are updated by solving Eq.(25). Since this equation can yield 
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multiple sets of solutions due to the additional unknowns of the nodal coordinate, the 

computational implementation seeks to improve the accuracy without sacrificing efficiency 

by establishing a two-step process: In the first step, the nodal displacements are updated 

from solving Δd = A−1r while the nodal coordinates are being held fixed. In the second 

step, nodal coordinates are updated by solving ΔX = A* −1r and neglecting the contribution 

from the system Jacobian matrix. The Lagrangian mesh is then updated. This process will 

continue iteratively until the loss function (residual error) r is within the given tolerance. 

Figure 10 provides the detailed algorithm (Algorithm 1) for this implementation.

For conservative systems, setting the residual in Eq.(25) to be zero is equivalent to the 

application of the stationary potential energy principle. Based on this, we can introduce the 

potential energy Π and solve the minimization problem given below

Find d, X*, s . t .   Π d,  X* = W int − W ext is minimized (30)

Here W int and W ext are the internal (strain) energy and external work respectively. 

The specific expression for W int depends on the material model used, as long as it is 

conservative. For instance, we have used hyperelastic material in which the strain energy 

density function w is introduced. The internal energy is then given as W int = ∫
Ω0

wdΩ0. The 

specific form of w has been provided in the example problems in section 5. W ext can be 

derived based on Eq.(4) assuming the external forcing terms are conservative. Using indicial 

notation, we have

W ext = fiI
extuiI = uiI ∫

Ω0

NIρ0bidΩ0 + ∫
Γ ti

0

NIt i
0dΓ0 (31)

Based on Eq. (30), one can define the loss function to be the potential energy of the system 

and systematically minimize it to solve for equilibrium and realize the mesh update.

Figure 11 provides the detailed algorithm (Algorithm 2) used for solving the conservative 

system using DNN. A two-step nested loops optimization scheme is developed. The outer 

loop resolves the nodal displacement while keeping mesh fixed and the inner loop then 

further provides the mesh update. In both loops, the variables (the weight of DNN) are 

updated using the gradient descent approach with associated learning rate parameters α and γ
as shown in Figure 11.

5 Nonlinear HiDeNN-FEM Numerical Examples

In this section, we provide several numerical examples to demonstrate the performance of 

nonlinear HiDeNN-FEM and compare it with regular FEM. An in-house code has been 

developed for this purpose. It should be noted that the degrees of freedom (DoFs) referred 

in the following example problems are the nodal DoFs only. In HiDeNN-FEM, there are 
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additional DoFs associated with the nodal coordinates that are also being optimized through 

r-adaptivity. Therefore, the total DoFs in HiDeNN-FEM will be twice of that in regular FEM 

if all the nodal coordinates are being optimized. In addition, the commercial code ABAQUS 

has been employed to obtain reference solutions for validation. As described in section 

4, we have established two classes of algorithms, one for the general nonlinear problems 

(Algorithm 1) and one for the conservative systems (Algorithm 2). In the first 4 examples 

to be described below, we focus on conservative systems using Algorithm 2 and the last 2 

examples dealing with the general nonlinear plasticity problems are solved using Algorithm 

1. All computations were performed on a workstation with Intel(R) Core(TM) i7-9750H 

CPU @ 2.60GHz and 32 GB memory.

5.1 Plane stress problem of a hyperelastic plate with a hole under tension

We consider a plane stress problem of a square plate of dimension 1 m by 1 m with the 

center hole of radius of 0.1m. As shown in Figure 12, the plate is modeled as Neo-Hookean 

material with the strain energy density function w given as

w=C10(I1 − 3) + 1
D1

(J‐1)2
(32)

with I1 = J‐2/3I1, J = det F  and I1 is the first invariant of the right Cauchy-

Green deformation tensor. The material parameters are given as C10 = 115.385 kPa, 

D1 = 4 × 10−6Pa−1, and the plate is subjected to a traction of 100 kPa on the top surface 

while the bottom surface is constrained.

Figure 13 and Table 1 show the result for the given traction and boundary condition. The 

converged result in Figure 13 (dashed line) is obtained from a very fine mesh of ~10M 

degrees of freedom (DoFs) using the CPS4 (4-node plane stress) element in ABAQUS. 

HiDeNN-FEM achieves much faster convergence than the standard FEM using ABAQUS. 

For the same FE model using the standard 4-node quadrilateral element with 13,840 degrees 

of freedom, the error from HiDeNN-FEM is 0.36% in terms of the maximum Mises stress 

whereas the corresponding is 3.87% from ABAQUS.

5.2 Compression of a rectangular plate with 2 different aspect ratios

We consider a plane strain case of a rectangular plate with the dimension of 0.02 m 

by 0.01 m as shown in Figure 14. The plate is modeled as nearly incompressible Neo-

Hookean material using the same form of strain energy density function as in the previous 

cases. The material parameters are given as C10 = 100.341 kPa, D1 = 1.02 × 10−7Pa−1. These 

constants provide an equivalent Poisson’s ratio of 0.4949. In terms of the loading condition, 

displacement is applied on the top surface while the bottom surface is constrained.

This case aims to test the ability of HiDeNN-FEM method in capturing large deformation 

and alleviating the issue of mesh distortion with r-adaptivity. The initial domain was 

discretized using a standard 4-node quadrilateral element with different mesh densities 

(40×10, 80×20, 160×40). For the same mesh, both the standard FEM using ABAQUS 

and HiDeNN-FEM with r-adaptivity were employed to capture the compression response. 
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Reduced integration with hourglass control was used to avoid mesh locking as well as 

spurious modes. Figure 15 and Table 2 show the maximum percentage of compression that 

has been reached for each case. It is observed that the maximum compression ratio reached 

in the case of HiDeNN-FEM with r-adaptivity is consistently higher than the corresponding 

FEM with the same initial mesh by ~66% to 75%. Figure 16 shows undeformed and 

deformed mesh obtained from regular FEM and HiDeNN-FEM with r-adaptivity for the case 

of mesh with total of 13,202 DoFs. The maximum compression ratio was 33.11% for the 

regular FEM case and 55.08% for the HiDeNN-FEM. Mesh updates were observed at the 

four corners in the HiDeNN-FEM case and are responsible for the higher compression ratio 

achieved using HiDeNN-FEM.

In the next example, as shown in Figure 17, the plate dimensions were changed to a width 

of 0.1 m and height of 0.01 m, leading to an aspect ratio of 10:1. The plate shown is 

discretized using the same 4-node quadrilateral element with 160×40 elements. The material 

model remains the same as in the last example. Figure 18 shows the initial and deformed 

mesh before the simulation terminates due to mesh distortion for the cases of regular FEM 

and HiDeNN-FEM. It is observed that the maximum compression ratio nearly doubles from 

FEM (20.6%) to HiDeNN-FEM (40.3%). A comparison between the HiDeNN-FEM mesh 

and the normal stress in the Y direction shows a correlation between the area of high stress 

gradient and the area where mesh has been updated to alleviate the mesh distortion in these 

areas and capture the high stress gradient.

5.3 Compression for a 3D cubic block

We consider a 3D cubic block with dimensions of 1 m × 1 m × 1 m as shown in Figure 20. 

The block is modeled as hyperelastic Neo-Hookean material with the same set of material 

parameters as in Section 5.1. In terms of the boundary condition, the block is subjected to a 

0.1 m displacement on the top surface while the bottom surface is constrained.

For this example, we have run 4 different cases depending on whether regular FEM (using 

ABAQUS) or HiDeNN-FEM with r-adaptivity is used and whether hourglass control is 

implemented, as indicated in Table 3 below.

All four cases are discretized using 8 nodes hexahedron element. To assess the accuracy of 

the results, a reference solution is obtained by prescribing a very fine mesh with 10,155,231 

degrees of freedom using the C3D8R element (3,310,008 elements) with hourglass control. 

Figure 21 compares the maximum transversal displacement obtained from cases a and b in 

Table 3. Each case was run with three different mesh densities with 768, 8670 and 42471 

DoFs. It can be observed that the maximum displacement solved from regular FEM does 

not converge to the reference solution. On the other hand, results from HiDeNN-FEM with 

r-adaptivity converge to the reference solution as the mesh is refined, indicating that the 

hourglass mode effect is suppressed. The specific values of the maximum displacements 

obtained from the mesh configuration and the reference solution are provided in Table 4.

To further verify whether hourglass mode is present, Figure 22 shows the deformed mesh 

from the case a and b in Table 3 for a total DoF of 42,471. The hourglass mode is visible 

from the regular FEM results, whereas HiDeNN-FEM does not exhibit any. Figure 23 
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provides the cross-sectional view from the two cases where the cross-sections are located 

at 0.3m, 0.5m, and 0.8m from the bottom surface. Again, the hourglass mode is seen in the 

regular FEM case. Finally, Figure 24 compares von Mises stress distribution along the left 

edge of the top surface of the cubic block. Hourglass mode leads to stress oscillations in the 

cases of regular FEM, whereas HiDeNN-FEM converges to the reference solution.

Since no hourglass mode is present for the applied displacement of 0.1m (compression ratio 

of 10%), we continue to apply compression and observe the onset of hourglass mode at a 

compression ratio of 30.6% for HiDeNN-FEM (case b) with total DoFs of 42,471, whereas 

regular FEM (case a) exhibited hourglass mode at a compression ratio of 12% with the 

same mesh. These results indicate the proposed HiDeNN-FEM can significantly suppress 

the hourglass mode effect in the case of large deformation.

In cases c and d in Table 3, hourglass control was implemented in both regular FEM and 

HiDeNN-FEM. As described in section 4, a 2-step optimization scheme is introduced in 

HiDeNN-FEM. To assess the computational efficiency of this implementation, the time 

consumption for nodal position optimization was monitored and shown in Table 5 for 

the different iterative steps. Table 5 shows that the r-adaptivity realized through the nodal 

position update loop adds a moderately less than 5% overhead to the overall computational 

time. The detailed mesh updates are shown in Figure 25 with the cross-sectional view of the 

mesh at the 1st, 3rd, and 5th iterative steps.

Figure 26 compares the deformed shape between regular FEM mesh and HiDeNN-FEM 

mesh and the cross-section view. Results show that even with hourglass control, spurious 

mode emerges in regular FEM at 24.50% compression ratio and the computation stopped 

at 31.62% compression ratio due to mesh distortion. On the other hand, the HiDeNN-FEM 

mesh result does not show apparent hourglass mode at the same compression ratio (24.50%) 

and can be further compressed to 35.97% before the simulation terminates.

Figure 27 compares the Z direction stress distribution at the line along the Y direction 

(X=1, Z=1) between cases c and d in Table 3 and with the reference solution at 24.50% 

compression ratio. Since the model with C3D8R element in ABAQUS can not reach such a 

high compression ratio, a different model using 12,288 C3D20RH elements (20 node hybrid 

quadratic element with reduced integration) was run to obtain the reference solution. These 

results show that HiDeNN-FEM can better capture stress distribution and matches well with 

the reference solution.

5.4 3D analysis of spot weld in a hat-stiffened panel

In this case, we consider a hat-stiffened panel with one stiffener. Spot weld was applied 

to connect the panel skin with the stiffener as shown in Figure 28. A quarter of the part 

was modeled due to symmetry. The dimension and boundary conditions are also shown in 

Figure 28. The spot welds are 0.07 inches in radius and 0.0005 inches thick. The thickness 

values of the panel and the hat stiffener are 0.0625 inches and 0.032 inches respectively. We 

assume the same Neo-Hookean material model with material constants of C10 = 9.6154 × 108

psi and D1 = 4.8 × 10−10psi−1. For this problem, a refined mesh is needed in regular FEM for 
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modeling the stress accurately in the local spot weld area due to the small dimension, while 

HiDeNN-FEM is shown to provide improved accuracy with the same initial mesh density.

The model is meshed by an 8-node hexahedron element with four mesh densities that 

contain 5177, 8791, 10843, 18919 elements, respectively. The reference solution is obtained 

by solving the same problem with C3D8R with hourglass control in ABAQUS. A total of 

2,871,396 elements and 10,044,327 degrees of freedom were used. The results are assessed 

in terms of the stress concentration as measured by the maximum effective (von Mises) 

stress as shown in Table 6 and Figure 29. It is observed that for the case of 18,919 elements 

HiDeNN-FEM yields Max Mises stress value that is within 0.29% error when compared 

with the reference solution, whereas the error was 2.53% for regular FEM. This accuracy 

improvement only adds 7.3% overhead in computing time to implement r-adaptivity. The 

resolved effective stress distribution from HiDeNN-FEM is shown in Figure 30.

5.5 A 2D elastoplastic block subjected to nonuniform body force

We consider a 2D rectangular block with dimensions of 0.2 m by 2 m as shown in Figure 30. 

The block is subjected to nonuniform body force while being fixed on the left end. The body 

force distribution is given as bx = b0 − 4π2(10(X − 0.25))2 − 2π

eπ(10(X − 0.25))2
 and by = b0sin(10Y ) with b0 = 65

MPa/m. An elastoplastic constitutive model is introduced for the block. Before it reaches 

plasticity, the material is assumed to be linear elastic with Young’s modulus of E = 200GPa 

and Poisson’s ratio of 0.3. To describe the plastic response, we introduce the standard von 

Mises yield surface with linear hardening, given as f = σ − σY  in which σ is the effective 

stress. Furthermore, σY = σY
0 + Hεp with σY

0 = 100 MPa as the initial yield stress, H = 100 MPa 

is the hardening modulus, εp is the effective plastic strain. A standard radial return method is 

employed to resolve the stress and strain when material enters plasticity.

Since the system is no longer conservative, we have applied Algorithm 1 in HiDeNN-FEM 

implementation. A reference solution is obtained by solving the same problem in ABAQUS 

using a refined mesh of 5,017,600 CPS4 (4 node plane stress) elements with ~ 10 million 

DoFs. Table 7 compares the solution and time consumption for different implementations. 

Four different meshes were tested in comparing regular FEM with HiDeNN-FEM. As can 

be seen, regular FEM fails to converge in the case of 100 elements, whereas HiDeNN-FEM 

converges and yields a maximum von Mises stress within 0.2% of the reference solution. 

Regular FEM does not yield comparable accuracy until it uses 6,400 elements while 

HiDeNN-FEM consistently maintains high accuracy as the mesh is refined. In terms of 

time consumption, it takes HiDeNN 8.86 seconds to arrive at a prediction within 0.1% of the 

reference solution, whereas the same for regular FEM was 107.92 seconds. The last column 

in Table 7 shows the overhead time used for performing r-adaptivity and this operation 

consumes ~10% of the overall computing time. Figure 32 shows the effective stress contour 

along with the mesh from both the regular FEM and HiDeNN-FEM.

5.6 An elastoplastic plate with a hole subjected to tension

In this example, we consider a 2D plane strain problem of a square plate of dimension 1m 

by 1m with a hole of radius of 0.1 m located in the center as shown in Figure 33. The 

Liu et al. Page 15

Comput Mech. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



left side of the plate is fixed and the right side is subjected to uniform traction of 37 MPa. 

The same elastoplasticity model as described in section 5.5 is employed for modeling the 

plate with the same material constants. Reference solutions are obtained using ABAQUS 

by discretizing the problem domain with 5,054,756 CPE4 (4-node plane strain) elements 

and total DoFs of 10,120,464. For comparison between regular FEM and HiDeNN-FEM, 

the domain is discretized with 4-node quadrilateral elements with two different mesh 

densities. The number of elements for the two meshes is respectively 436, and 1700 with the 

corresponding DoFs of 972 and 3600 respectively. For each mesh, simulations using regular 

FEM and HiDeNN-FEM are performed to compare the predictions as well as the execution 

time. Similar to the last case, Algorithm 1 was implemented in HiDeNN-FEM to perform 

r-adaptivity.

Table 8 provides the computed maximum von Mises stress from regular FEM and HiDeNN-

FEM for the two meshes and the difference when compared with the reference solution. 

It is observed that HiDeNN-FEM yields high accuracy even with a relatively coarse mesh, 

whereas for the same mesh density the regular FEM prediction differs from the reference 

solution by more than 10%. The total computing time from HiDeNN-FEM is relatively 

higher due to the time it takes to perform the r-adaptivity. When the mesh is further refined 

to a total number of elements of 1700, both regular FEM and HiDeNN-FEM converge 

while HiDeNN-FEM demonstrates better accuracy with r-adaptivity. The computing time of 

HiDeNN-FEM is also higher than the regular FEM by ~ 17%, much of which is due to the 

r-adaptivity as shown in the last column. As can be seen from Figure 34, the nodes in the 

regions of high stress concentration are moved based on Algorithm 1 and are responsible 

for the accurate prediction without the use of a large number of elements as in regular 

FEM. A separate simulation (not shown here) using regular FEM shows that ~ 4 times the 

elements (6400) are needed to accomplish the same order of accuracy in the prediction when 

compared to the case of HiDeNN-FEM with 1700 elements.

6 Conclusion

In summary, we have presented a general framework of hierarchical deep-learning Neural 

Network for nonlinear finite element (nonlinear HiDeNN-FEM) by building on the prior 

work by Zhang et al [28] on linear HiDeNN-FEM and basic building blocks. In nonlinear 

HiDeNN-FEM, the shape function approximations and material derivatives are constructed 

through three new basic building blocks: The first building block differentiates the shape 

functions with respect to the element coordinates. The second building block evaluates the 

Jacobian of the coordinate transformation and its inverse. It also incorporates the material 

coordinates as the weights of the DNN, thus enabling r-adaptivity through training. The third 

building block evaluates the material derivatives of the shape functions, which can then be 

used to form the shape function derivative matrix as commonly used in nonlinear FE. Since 

the building blocks are described independently of the specific element formulation, it can 

be generally applied to any 2D and 3D elements.

Aside from the HiDeNN-FEM approximation, implementations of the nonlinear solution 

scheme based on Newton’s methods are also presented. A general linearization approach 

was adopted and it is shown that this leads to an iterative scheme that involves the 
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optimization of the nodal solutions as well as the nodal coordinates, i.e., r-adaptivity. For 

practical implementation and ease of integration with existing FE codes, a 2-step iterative 

scheme is proposed to improve computational efficiency, and this solution scheme is termed 

Algorithm 1. For conservative systems, the problem can be generalized into minimizing a 

loss function that represents the potential of the system. A solution scheme featuring the 

2-step nested loop is proposed for these types of problems and is termed Algorithm 2. Both 

Algorithms 1 and 2 have been implemented on multiple problems involving geometric and 

material nonlinearities. These benchmark problems demonstrate that nonlinear HiDeNN-

FEM achieves much better accuracy than regular FEM without adding significant overhead 

to the computational cost. In addition, it is also shown that r-adaptivity can effectively 

reduce element distortion and suppress the hourglass mode, which are some of the main 

issues faced in the application of nonlinear FEM.

The work presented has focused on nonlinear static equilibrium problems and will be 

extended to incorporate inertia effects and time-dependent properties by introducing a 

space-time framework [34–36]. It is worth noting that the integration with DNN offers 

a very interesting perspective on nonlinear HiDeNN-FEM, as both advanced algorithms 

and computing platforms are being developed for machine learning applications. These 

integrations are expected to significantly enhance the predictive capabilities of nonlinear 

HiDeNN-FEM and will be the focus of future research.
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Figure 1. 
An illustration of perceptron and Deep Neural Network (DNN)
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Figure 2. 
An illustration of (a) piecewise linear function (b) linear building block (c) multiplication 

block and (d) inversion block.
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Figure 3. 
An illustration of the three configurations in nonlinear FE and mapping relation.
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Figure 4. 
Flowchart showing the three building blocks for performing shape function derivative.
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Figure 5. 
(a) Mapping between physical domain and parent domain for 1D linear element. (b) 

Construction of the shape function and (c) Construction of the shape function derivative 

using HiDeNN.
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Figure 6. 
(a) Mapping between physical domain and parent domain for 1D quadratic element. (b) 

Construction of the 1D quadratic shape function and (c) Construction of the shape function 

derivatives using HiDeNN.
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Figure 7. 
An illustration of the 2D 4-node element.
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Figure 8. 
Construction of the 2D 4-node element shape function.
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Figure 9. 
(a) Construction of the shape function derivatives for the 2D 4-node quadrilateral element 

using HiDeNN. (b) DNN representation of the determinant det J  and (c) the inverse of J.
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Figure 10. 
A general algorithm (Algorithm 1) for solving nonlinear FEM with r-adaptivity.
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Figure 11. 
Algorithm 2 for solving conservative systems with r-adaptivity.
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Figure 12. 
2D plane stress problem of a square plate with a hole under tension.
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Figure 13. 
Normalized maximum von Mises stress as a function of degrees of freedom.
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Figure 14. 
2D Plane strain model of a rectangular plate under compression.
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Figure 15. 
Compression percentage as a function of the degrees of freedom.
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Figure 16. 
Mesh of 160 by 40 case: Incompressible material compression percentage.

Liu et al. Page 35

Comput Mech. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 17. 
Plane strain incompressible material compression case problem statement (Aspect ratio 

10:1).
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Figure 18. 
Aspect ratio 10:1 plate incompressible material case compression result.
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Figure 19. 
Aspect ratio 10:1 plate incompressible material case compression stress-Y-Y distribution.
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Figure 20. 
Configuration of the 3D cubic block under compression
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Figure 21. 
Compression results between HiDeNN mesh and regular mesh.
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Figure 22. 
Results of deformed shape with DoF 42,471 between (a) regular mesh and, (b) HiDeNN-

FEM mesh.
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Figure 23. 
Cross-sectional view of deformed shape with DoF of 42,471. The top row shows the results 

from Regular FEM at (a). Z=0.3m, (b). Z=0.5m, (c). Z=0.8m. The bottom row shows the 

corresponding from HiDeNN-FEM at (d). Z=0.3m, (e). Z=0.5m, (f). Z=0.8m.
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Figure 24. 
von Mises stress distribution along the left side of the top surface for the case of 42,471 

DoFs.

Liu et al. Page 43

Comput Mech. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 25. 
X-Z Plane cross-section view of mesh update at different iterative steps.
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Figure 26. 
Results from 32×32×12 mesh with hourglass control at 24.50% compression ratio. The 

deformed shape and cross-section view from regular FEM are shown in a, b, and c and the 

corresponding from HiDeNN-FEM are shown in d, e, and f.
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Figure 27. 
Stress Z-Z distribution result at the top surface of mesh 32×32×12 case (24.50% 

compression ratio).
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Figure 28. 
Geometry and loading/boundary conditions for a hat-stiffened panel with spot weld.

Liu et al. Page 47

Comput Mech. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 29. 
Comparison of normalized maximum Mises stress as a function of degrees of freedom in 

spot weld region.
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Figure 30. 
Distribution of effective stress in the spot weld application.
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Figure 31. 
A rectangular elastoplastic block subjected to non-uniform body force.
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Figure 32. 
A comparison between regular FEM mesh (a. 40×10) and HiDeNN-FEM mesh (b. 40×10) 

on the prediction of effective stress.
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Figure 33. 
FE model for a rectangular plate with a hole subjected to tension.

Liu et al. Page 52

Comput Mech. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 34. 
Predicted von Mises stress from (left) reference solution (middle) regular FEM and 

(right) HiDeNN-FEM. Meshes from regular FEM (436 elements) and HiDeNN-FEM (436 

elements) are shown to demonstrate the differences.
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Table 1.

Plane stress tension problem results.

Analysis Degrees of freedom σmax
von  (Pa) Difference

Converged solution 10,120,464 320,120 -

FEM
284

241,941 24.42%

HiDeNN-FEM 260,080 18.76%

FEM
972

277,043 13.46%

HiDeNN-FEM 303,170 5.29%

FEM
3,600

296,765 7.30%

HiDeNN-FEM 315,540 1.43%

FEM
13,840

307,722 3.87%

HiDeNN-FEM 318,980 0.36%
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Table 2.

Compression percentage result of the incompressible material plate.

Analysis Degrees of freedom Max compression Percentage (%) Compression Capacity Improve

FEM
902

37.69
75.21%

HiDeNN-FEM 66.51

FEM
3,402

36.80
66.47%

HiDeNN-FEM 61.26

FEM
13,202

33.11
66.14%

HiDeNN-FEM 55.08
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Table 3.

Four cases on the 3D cubic block problem.

Simulation Case Regular FEM or HiDeNN-FEM Hourglass control

a Regular FEM N

b HiDeNN-FEM N

c Regular FEM Y

d HiDeNN-FEM Y
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Table 4.

Compression results between HiDeNN mesh and regular mesh.

Analysis Degrees of freedom Max Transverse Displacement Difference

FEM
10,155,213 0.016693

HiDeNN-FEM

FEM
768

0.0582458 248.92%

HiDeNN-FEM 0.0215659 29.19%

FEM
8,670

0.0587635 252.02%

HiDeNN-FEM 0.0178751 7.08%

FEM
42,471

0.0541853 224.60%

HiDeNN-FEM 0.0172213 3.16%
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Table 5.

Time consumption of 5 load steps to 10% compression ratio.

Iteration number 1st 2nd 3rd 4th 5th

Displacement solution loop 61.02s 60.69s 64.80s 61.92s 61.72s

Nodal position optimization loop 2.77s
(4.54%)

2.73s
(4.50%)

2.72s
(4.20%)

2.71s
(4.38%)

2.73s
(4.42%)
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Table 6.

Computational results from the hat-stiffened panel with spot weld.

Analysis Degrees of freedom σmax
von  (psi) Difference Time Consumption (FEM time plus r-adaptivity time)

Converged solution 10,044,327
(2,871,396 Elements) 44,689 ------ 5506s

FEM 26,235
(5,177 Elements)

48,148 7.74% 47s

HiDeNN-FEM 45,848 2.59% 47+4.54s

FEM 47,391
(8,791 Elements)

47,130 5.46% 135s

HiDeNN-FEM 45,166 1.07% 135+8.25s

FEM 59,922
(10,843 Elements)

46,051 3.05% 172s

HiDeNN-FEM 45,029 0.76% 172+10.43s

FEM 109,158
(18,919 Elements)

45,818 2.53% 203s

HiDeNN-FEM 44,829 0.29% 203+14.87s
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Table 7.

A comparison of the prediction results with the reference solution.

Type of analysis Number of 
elements

Degrees of 
freedom σmax

von  (Pa) Difference CPU-based 
computational time (s) Adaptivity time (s)

ABAQUS (reference 
solution) 5,017,600 10,046,402 1.000e8 ------ 16501 ------

FEM
100 252

Diverge 100% 1.95 ------

HiDeNN-FEM 1.002e8 0.2% 2.41 0.27(13.7%)

FEM
400 902

6.778e7 32.2% 7.47 -----

HiDeNN-FEM 1.001e8 0.1% 8.86 0.83(11.0%)

FEM
1,600 3402

9.305e7 6.9% 28.63 -----

HiDeNN-FEM 1.001e8 0.1% 33.79 3.09(10.8%)

FEM
6,400 13202

1.001e8 0.1% 107.92 -----

HiDeNN-FEM 1.001e8 0.1% 126.64 11.22(10.4%)
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Table 8.

A comparison of the prediction results with the reference solution.

Type of analysis Number of 
elements

Degrees of 
freedom σmax

von  (Pa) Difference CPU-based 
computational time (s) Adaptivity time (s)

ABAQUS (reference 
solution) 5,054,756 10,120,464 1.001e8 ------ 15894 ------

FEM
436 972

8.886e7 11.23% 8.76 ------

HiDeNN-FEM 1.014e8 1.3% 10.32 0.94(10.7%)

FEM
1,700 3,600

9.512e7 4.98% 30.81 -----

HiDeNN-FEM 1.007e8 0.6% 35.94 3.22(10.46%)
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