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Background: Diagnosing pancreatic lesions, including chronic pancreatitis, autoimmune pancreatitis, and pancreatic cancer,
poses a challenge and, as a result, is time-consuming. To tackle this issue, artificial intelligence (AI) has been increasingly utilized over
the years. AI can analyze large data sets with heightened accuracy, reduce interobserver variability, and can standardize the
interpretation of radiologic and histopathologic lesions. Therefore, this study aims to review the use of AI in the detection and
differentiation of pancreatic space-occupying lesions and to compare AI-assisted endoscopic ultrasound (EUS) with conventional
EUS in terms of their detection capabilities.
Methods: Literature searcheswere conducted through PubMed/Medline, SCOPUS, and Embase to identify studies eligible for inclusion.
Original articles, including observational studies, randomized control trials, systematic reviews, meta-analyses, and case series specifically
focused on AI-assisted EUS in adults, were included. Data were extracted and pooled, and ameta-analysis was conducted usingMeta-xl.
For results exhibiting significant heterogeneity, a random-effects model was employed; otherwise, a fixed-effects model was utilized.
Results: A total of 21 studies were included in the review with four studies pooled for a meta-analysis. A pooled accuracy of 93.6% (CI
90.4–96.8%) was found using the random-effects model on four studies that showed significant heterogeneity (P<0.05) in the
Cochrane’s Q test. Further, a pooled sensitivity of 93.9% (CI 92.4–95.3%) was found using a fixed-effects model on seven studies that
showed no significant heterogeneity in the Cochrane’s Q test. When it came to pooled specificity, a fixed-effects model was utilized in six
studies that showed no significant heterogeneity in the Cochrane’s Q test and determined as 93.1% (CI 90.7–95.4%). The pooled positive
predictive value which was done using the random-effects model on six studies that showed significant heterogeneity was 91.6% (CI
87.3–95.8%). The pooled negative predictive value whichwas done using the random-effectsmodel on six studies that showed significant
heterogeneity was 93.6% (CI 90.4–96.8%).
Conclusion: AI-assisted EUS shows a high degree of accuracy in the detection and differentiation of pancreatic space-occupying lesions
over conventional EUS. Its application may promote prompt and accurate diagnosis of pancreatic pathologies.
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Introduction

The pancreas is a retroperitoneal organ that has both digestive
and hormonal functions. Pathologies, including acute and
chronic pancreatitis, autoimmune pancreatitis, and pancreatic
cancer, affect the pancreas. These diseases are pretty lethal and
have significant morbidity. For example, pancreatic cancer is the
seventh leading cause of cancer-related deaths worldwide[1,2].
More so, pancreatic cancer’s overall 5-year survival rate stands
at 11.5%. In addition, diagnosing chronic pancreatitis, auto-
immune pancreatitis, and pancreatic cancer is challenging as they
closely resemble each other. This mimicry has led to late diagnosis
of these diseases, affecting overall patient outcomes. Addi-
tionally, there is a considerable risk of confusion between auto-
immune pancreatitis from pancreatic cancers, two pathologies
with very different management strategies[3,4].

Imaging modalities for diagnosing pancreatic pathologies
include computed tomography scans, MRIs, and endoscopies
(EUS). EUS is the gold standard in diagnosing pancreatic
pathologies due to its high specificity, sensitivity, and negative
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predictive value. In differentiating between the three disease
entities (pancreatic cancer, chronic pancreatitis, and autoimmune
pancreatitis), cytological analysis is preferred. Due to this, EUS
with fine needle aspirates or biopsies has been developed[1,5].
However, EUS/FNA/B requires additional training and is quite
challenging due to its steep learning curve. The equipment cost
and the need for anaesthesia make this procedure difficult. It
also relies heavily on the operator leading to quite significant
interobserver variability[1]. These disadvantages are substantial
in resource-poor settings due to the scarcity of skilled personnel
and the operating costs.

Artificial intelligence (AI) integrates computer systems and
software designs to display the properties of critical thinking and
intelligence. AI strives to replicate human intelligence with
learning abilities and complex problem-solving skills[6]. As a
result, AI has been incorporated into clinical practice with the
advent of computer-aided diagnosis (CAD)[7]. There are three
branches of AI beneficial to clinical practice. These are machine
learning, deep learning, and expert systems. Over the years, a
shift has shifted frommachine learning to deep learning (artificial
neuronal networks and convolutional neuronal networks),
whose functioning resembles human neurophysiology[8].

Deep learning is a machine-learning technique miming the
human neuronal network. It uses multiple layers of nonlinear
processing units to abstract data hierarchically, extracting abstract
features for tasks like target detection, classification, or segmen-
tation. Artificial neural networks (ANNs) imitate the structure and
functioning of biological neural networks. They consist of inter-
connected neurons organized into layers, learning from data
and making predictions based on patterns. Convolutional neural
networks (CNNs) are specialized ANNs for image recognition and
processing. They excel at processing pixel data using convolu-
tional layers, extracting features from local regions. By stacking
these layers, CNNs capture local and global image information for
tasks like image generation and description[3,8].

Expert systems, on the other hand, are designed to solve
complex problems by utilizing reasoning based on existing
knowledge. They aim to emulate human experts by capturing
their expertise in a computer program. Expert systems typically
consist of a knowledge base that stores relevant information and a
reasoning engine that uses this knowledge to draw conclusions or
make recommendations. The findings or decisions made by expert
systems are often expressed as probabilities based on input data[1].

AI is slowly being incorporated into clinical practice since it has
many benefits. It can analyze large data sets with increased accu-
racy, decrease interobserver variability, decrease the rate of mis-
diagnosis, and standardize the interpretation of radiologic and
histopathologic lesions. These benefits have come in handy in
aiding the diagnosis of pancreatic pathologies. A study by Marya
et al.[3] depicted the benefits of utilizing convolutional neuronal
networks in diagnosing autoimmune pancreatitis. Dahiya et al.[1]

carried out a systematic review portraying the help of AI in diag-
nosing pancreatic cancer and differentiating it from chronic pan-
creatitis and autoimmune pancreatitis. The benefits of utilizing AI
are valuable, especially in resource-poor settings, as it helps miti-
gate the number of gastroenterology centres by reducing the level
of specialized knowledge needed to detect ambiguous results[7].

AI, however, comes with its disadvantages and shortcomings.
These include inadequate standardization of input data used to
train the AI algorithm. Currently, there is no standardized proto-
col; for data collection, processing, and storage for the AI-assisted

model[7]. In addition to this, the quality of input data utilized is not
optimum. Therefore, this can lead to selection bias since most of
the input focuses on only a particular population[1]. There is also
the issue of a black box whereby the user cannot interpret and
determine the reasoning behind how a specific variable was
weighed within the AI algorithm[1]. Lastly, there is the issue of
ethics, where input data acquisition can prove challenging.

We reviewed the use of AI in the detection of pancreatic space-
occupying lesions in our study. We also compared the AI-assisted
EUS over conventional EUS in the detection of pancreatic space-
occupying lesions and the efficacy of differentiating between
different pancreatic pathologies.

Methodology

Study protocol and registration

This systematic review and meta-analysis were conducted in
accordance with the Preferred Reporting Items for Systematic
Review and Meta-Analysis Protocols (PRISMA-P) (Fig. 1)[9] and
Assessing the methodological quality of systematic reviews

Figure 1. Preferred Reporting Items for Systematic Review and Meta-Analysis
(PRISMA) flowchart for included studies. EUS, endoscopic ultrasound.

HIGHLIGHTS

• Endoscopic ultrasound (EUS) is the gold standard in
diagnosing pancreatic pathologies.

• It has high specificity, sensitivity, and negative predictive
value.

• AI-assisted EUS shows a high degree of accuracy in the
detection and differentiation of pancreatic space-occupy-
ing lesions over conventional EUS.
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(AMSTAR)[10] guidelines. The protocol for the study was regis-
tered in the International Prospective Register of Systematic
Reviews (PROSPERO).

Data sources and search strategy

Literature searches were performed through PubMed/Medline,
SCOPUS, and Embasse to identify studies eligible for inclusion.
All publications up to April 2023, the latest search date, were
included. Search terms used for the three databases are outlined in
Table 1. No restrictions on language, or study type were specified
on the search protocol. The PubMed function ‘related articles’
was used to extend the search to provide a reference list of all
included studies. A backward citation was used when appro-
priate to include pertinent articles. The following PICOS criteria
were used as a framework to design the study question and for-
mulate the literature search strategies to ensure comprehensive
and bias-free searches:

P (Population): adults (>18) with pancreatic lesions.
I (Intervention): AI-assisted endoscopic ultrasound.
C (Comparison): conventional endoscopic ultrasound.
O (Outcomes): detection of pancreatic carcinoma, cystic

neoplasms, SPEN.
S (Studies): original articles (including observational studies,

randomized control trials) systematic reviews, meta-analyses, and
case series.

Eligibility criteria and screening of articles

Rayyan citation manager was used to facilitate the screening of
articles obtained from the search process. Duplicate citations
were cross-checked manually and removed after careful evalua-
tion of the data. The title and abstract of the remaining articles

were screened for relevance and full texts were obtained for those
that passed the inclusion criteria. For repeat articles from the
same group containing a search period overlap and similar data
sets, only the most recent article was included to avoid duplica-
tion of data.

Studies were considered eligible for inclusion if they contained
relevant information on the use of AI-assisted machine-learning
algorithms in endoscopic ultrasound for the detection of pan-
creatic space-occupying lesions in adults. Particularly, the follow-
ing criteria were used to establish the eligibility of studies. Inclusion
criteria: original articles (including observational studies, rando-
mized control trials) systematic reviews, meta-analyses, and case
series specific to AI-assisted EUS in adults. Exclusion criteria:
narrative reviews, editorials, short communications, case studies,
and articles for which full text was not retrievable. Non-English
articles were excluded at this stage, as were studies with incomplete
or irrelevant information. Any disagreements about eligibility were
settled through consensus.

Data extraction and outcomes of interest

All relevant articles that passed the screening and inclusion cri-
teria were considered for analysis. Data extractionwas conducted
by two independent reviewers. Data extraction was done using a
standard template based on the Cochrane Consumers and
Communication Review group’s extraction template for quality
assessment and evidence synthesis.

From each study, the following information was extracted:
Study characteristics: authors, database, journal, DOI, original
title, full article abstract, publication year, country and continent,
study design, sample size, and study period; Participant demo-
graphics: age, sex, and clinical characteristics (e.g. symptoms, risk

Table 1
Search strategy for the databases utilized in the study.

Database Search strategy

Pubmed ((AI OR “artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network“OR “digital image analysis”) AND (“pancreatic carcinoma” OR “pancreatic ca”
OR “cystic neoplasm” OR SPEN OR “Solid pseudopapillary epithelial neoplasm” OR mass OR masses) AND (endoscopic OR endoscopy OR EUS) AND (ultrasound OR
ultrasonography) AND (detection OR diagnosis OR diagnosing) AND (pancreas OR pancreatic))

Scopus TITLE-ABS-KEY ( ( ( ai OR “artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “digital image analysis” ) AND ( “pancreatic carcinoma”
OR “pancreatic ca” OR “cystic neoplasm” OR spen OR “Solid pseudopapillary epithelial neoplasm” OR mass OR masses ) AND ( endoscopic OR endoscopy OR eus ) AND (
ultrasound OR ultrasonography ) AND ( detection OR diagnosis OR diagnosing ) AND ( pancreas OR pancreatic ) ) )

Embase ((AI OR “artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network“OR “digital image analysis”) AND (“pancreatic carcinoma” OR “pancreatic ca”
OR “cystic neoplasm” OR SPEN OR “Solid pseudopapillary epithelial neoplasm” OR mass OR masses) AND (endoscopic OR endoscopy OR EUS) AND (ultrasound OR
ultrasonography) AND (detection OR diagnosis OR diagnosing) AND (pancreas OR pancreatic))

AI, artificial intelligence; EUS, endoscopic ultrasound.

Figure 2. Pooled accuracy of studies.
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factors, and comorbidities); Intervention details: Description of
the AI-assisted EUS system (e.g. type of algorithm, training data)
and the standard EUS procedures; Outcome measures:
Diagnostic accuracy (sensitivity, specificity, positive predictive
value, and negative predictive value), procedure time, complica-
tions, and interobserver agreement

Data summary and synthesis

The data were entered in an Excel sheet for cleaning, valida-
tion, and coding. The information will be classified into pan-
creatic cancer detection, cystic neoplasm (including IPMN)
detection, SPEN detection, and false negative rates. Studies
containing other information other than the mentioned groups
will be included in the miscellaneous category. Data were
presented using a summary of findings table and variables
assessed for their suitability for a meta-analysis. The extracted
data were pooled, and a meta-analysis was performed for the
appropriate variables, considering the clinical and methodo-
logical heterogeneity among the included studies. Meta-xl was
used for the analysis of the data.

Meta-analysis of diagnostic test accuracy

Pooled accuracy, sensitivity (se), specificity (sp), positive pre-
dictive value, and negative predictive value were determined for
all AI-assisted EUS procedures. Meta-analysis was conducted

only on full-text articles that provided complete descriptive sta-
tistical data including confidence intervals. Forest plots with a
95% CI were calculated and pooled as well as pooled interval
data were assessed. Heterogeneity among the outcomes of
included studies in this meta-analysis was evaluated using
Cochrane’s Q test. Significant heterogeneity was indicated by P
less than 0.05 in Cochrane’s Q test. For results with significant
heterogeneity,
a random-effects model was utilized. And those with non-
significant heterogeneity a fixed-effects model was performed.
Statistical analyses were performed using Python programming
language v3.4 (Python Software Foundation, Wilmington,
Delaware). Data analysis and visualization were completed using
Comprehensive Meta-Analysis v4.0 (Biostat Inc.).

Risk of bias assessment

The quality of the included studies will be assessed using the
appropriate tools for each study design. For observational stu-
dies, the Newcastle-Ottawa Scale will be used, while the
Cochrane Risk of Bias tool (ROB2) will be employed for ran-
domized controlled trials (RCTs). Two independent reviewers
(V.K. and C.D.) will assess the quality of each study, with dis-
agreements resolved through discussion or consultation with a
third reviewer if necessary.

Figure 3. Pooled sensitivity of studies.

Figure 4. Pooled specificity of studies.
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Results

Summary of study characteristics

A Total of 21 studies out of the 94 retrieved were included in the
review after identification and screening using the PRISMA
guidelines (Fig. 1). A random-effects model was utilized to assess
the pooled accuracy. A total of 4 studies were included in the
meta-analysis[11–14]. Significant heterogeneity was observed with
a P less than 0.05 in Cochrane’s Q test. The pooled accuracy was
93.6% (CI 90.4–96.8%) (Fig. 2).

A fixed-effects model was utilized to assess the pooled
sensitivity. A total of seven studies were included in the meta-
analysis[3,12–16]. No significant heterogeneity was observedwith a
P greater than 0.05 in the Cochrane’s Q test. The pooled accuracy
was 93.9% (CI 92.4–95.3%) (Fig. 3).

A fixed-effects model was utilized to assess the pooled
specificity. A total of six studies were included in the meta-
analysis[3,12–16]. No significant heterogeneity was observedwith a
P greater than 0.05 in the Cochrane’s Q test. The pooled accuracy
was 93.1% (CI 90.7–95.4%) (Fig. 4).

A random-effects model was utilized to assess the pooled
positive predictive value. A total of six studies were included in
the meta-analysis[3,12–16]. Significant heterogeneity was observed
with a P less than 0.05 in Cochrane’s Q test. The pooled accuracy
was 91.6% (CI 87.3–95.8%) (Fig. 5).

A random-effects model was utilized to assess the pooled
negative predictive value. A total of six studies were included in
the meta-analysis[3,12–16]. Significant heterogeneity was observed

with a P less than 0.05 in Cochrane’s Q test. The pooled accuracy
was 93.6% (CI 90.4–96.8%) (Fig. 6).

Quality assessment

Non-randomized studies were assessed using the RoBANS tool.
Figure 7 provides a visual depiction of the risk of bias analysis of
non-randomized trials. Overall, the risk of bias for non-rando-
mized trials was low. The domainwith the highest risk of bias was
in the intervention (exposure) measurement while selective out-
come reporting was the domain with the lowest risk of bias. The
revised Cochrane risk-of-bias tool for randomized trials (RoB2)
was used to assess the risk of bias in RCT and results are provided
in Table 2. Some concerns in domains 2 and 4 were noted in 2 out
of the five RCTs.

Discussion

Utilization of AI in endoscopic ultrasound for the detection of
pancreatic space-occupying lesion (SOL)

Pancreatic masses consist of various types, including pancreatic
adenosquamous carcinoma, pancreatic acinar cell carcinoma,
metastatic pancreatic tumour, neoplasm, solid pseudopapillary
neoplasm, as well as benign causes such as chronic and auto-
immune pancreatitis (Table 3)[29].

EUS is an important diagnostic tool for pancreatic diseases, but
its specificity for diagnosing pancreatic malignancies is limited,
reaching as low as 58%[30]. Traditional EUS requires additional

Figure 5. Pooled positive predictive value.

Figure 6. Pooled negative predictive value.
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training and hence is operator dependent leading to quite sig-
nificant interobserver variability, more pronounced in resource-
poor settings, due to the scarcity of skilled personnel and the high
operating costs. AI-based EUS, however, shows significantly
higher sensitivities and specificities of up to 0.93 and 0.78,
respectively, with diagnostic odds ratio of 36.74 and area under
the receiver operating characteristic curve of 0.94[31]. Other
studies comparing traditional and AI-assisted EUS further report
superior performance of AI with sensitivities of 0.93 versus 0.71,
specificities of 0.81 versus 0.69, and area under the curve of 0.94
versus 0.75, respectively[32].

Standard EUS has limitations in diagnosing pancreatic malig-
nancies, such as low specificity and operator dependence, leading
to increased interest in AI-assisted EUS. It has been shown that
AI-based EUS improves diagnostic accuracy and reduces inter-
observer variability. Studies have shown that AI algorithms are
capable of achieving significantly higher sensitivity and specificity
than traditional EUS, with diagnostic odds ratios and area under
the receiver operating characteristic curve indicating superior
performance[33,34]. Advances in diagnostic capabilities could
revolutionize pancreatic lesion detection and diagnosis, especially
in settings lacking skilled personnel and resources. EUS can be

Figure 7. Risk of bias assessment output using the ROBANS tool.

Table 2
Risk of bias assessment output using the ROB2 tool.

Study ID Experimental Comparator Outcome Weight D1 D2 D3 D4 D1 Overall

Carrara
et al.[12]

Fractal-based quantitative analysis EUS elastography Differentiation of SPL 1 + ! + + + +

Săftoiu
et al.[17]

Real-time EUS elastography using CAD by artificial
neural network analysis

Positive Cytology Accuracy 1 + + + + + +

Tang
et al.[14]

Images with AI annotation Images without AI
annotation

Accuracy of CH-EUS diagnosis system 1 + + + + + +

Tang
et al.[14]

Contrast-enhanced harmonic endoscopic ultrasound
MASTER

Histopathology Accuracy of Contrast-enhanced harmonic
endoscopic ultrasound MASTER

1 + + + + + +

Zhu
et al.[18]

Computer-Aided Diagnosis of EUS images Positive Cytology Accuracy in differentiation of pancreatic cancer
(PC), chronic pancreatitis (CP).

1 + + + ! + +

D1: Randomisation process, D2: Deviations from the intended interventions, D3: Missing outcome data, D4: Measurement of the outcome, D5: Selection of the reported result, + : Low risk, !: Some concern, –:
High risk.
AI, artificial intelligence; CP, chronic pancreatitis CAD, computer-aided diagnosis; EUS, endoscopic ultrasound; PC, pancreatic cancer.
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Table 3
Comprehensive review of the studies included in our review.

Author, year Study design Sample size (n) Image type Type of algorithm Accuracy (%) Sensitivity (%) Specificity (%)
Positive predictive value

(%)
Negative predictive value

(%)

Lee et al.,
2023[19]

Retrospective
cross-
sectional

22 424 nCLE video frames (50 videos) as the
training/validation set and 11 047 nCLE
video frames (18 videos) as the test set

NR Deep learning
algorithm, U-Net.
Deep learning
algorithm, VGG19

NR 46 94.3 CNN1 Pseudocyst 70.1,
CNN2 Pseudocyst
43.69, CNN3
Pseudocyst 39.50

CNN1 Pseudocyst 93.26,
CNN2 Pseudocyst 83.24,
CNN3 Pseudocyst 84.38

Levy et al.,
2007[11]

Cohort 39 EUS images digital image analysis
and fluorescence in
situ hybridization

98 (93–100) 97 (90–100) 100 (100–100) No false-positive results
occurred for DIA or FISH.

1 failed diagnosis for DIA/
FISH in a patient with a
malignant GI stromal
tumour.

Carrara et al,
2018[12]

RCT 100 EUS
elastography

Fractal-based
quantitative analysis

84.31 (76.47–90.20) 86.96 (78.26–94.20) 78.79 (63.64–90.91) 89.71 (83.10–95.38) 74.29 (62.86–86.67)

Das, 2008[15] Retrospective,
cross-
sectional

n=56; 11 099 images EUS images Neural network 100 93 (89-97) 92 (88-96) 87 (82–92) 96 (93-99)

Marya, 2020[3] Cohort n=583; 1 174 461 (EUS images), 955 (EUS
frames per second) (video data)

EUS images/
videos

Neural network NR 95 (91-98) 91 (86-94) 87 (82-91) 97 (93-98)

Norton et al.,
2001[20]

Retrospective,
cross-
sectional

35 EUS images Neural network 80 100 50 75 100

Ozkan et al.,
2016[21]

Retrospective,
cross-
sectional

n=172; 332 images (202 cancer and 130
noncancer)

EUS images Neural network 87.5±0.04 83.3±0.11 93.33±0.07 NR NR

Săftoiu et al.,
2008[22]

Prospective,
cross-
sectional

68 EUS
elastography

Neural network 89.70 91.40 87.90 88.90 90.60

Săftoiu et al.,
2012[17]

RCT n=258; 774 images EUS
elastography

Neural network 84.27(83.09-85.44) 87.59 82.94 96.25 57.22

Saftoiu,
2015[16]

Prospective,
observational
trial

n= 129; 167 videos Contrast-
enhanced
harmonic
EUS

Neural network NR 94.64 (88.22-97.8 ) 94.44 (83.93-98.58) 97.24 (91.57-99.28) 89.47 (78.165-95.72)

Tonozuka et al.,
2020[23]

Prospective,
cross-
sectional

n= 139; 920 images (endosonographic
images), 470 (images were independently
tested)

EUS images Neural network NR 92.40 84.10 86.80 90.70

Zhang et al.,
2010[24]

retrospective
cross-
sectional

216 EUS images SVM support vector
machine.

97.98±1.23 94.32±0.03 99.45±0.01 98.65±0.02 97.77±0.01

Zhu et al.,
2013[18]

RCT 388 EUS images SVM 94.20±0.17 96.25±0.4 93.38±0.2 92.21±0.42 96.68±0.14

Naito 2021[13] Retrospective
cross-
sectional

594 NR deep learning model 94.17(89.17–97.5) 93.02(86.02–975.3) 97.06(90.91–100) 98.77 (95.71–100) 84.62 (72.97–95.12)

Nguon et al.
2021[25]

Cross-sectional 47 MCN and 31 SCN patients at the 1st
hospital and 13 MCN and 18 SCN patients
at the 2nd hospital. MCN, SCN

EUS images deep learning network
model.

82.76 81.46 84.36 NR NR

Tang, 2023[26] RCT 4530 images and 270 videos Contrast-
enhanced
harmonic
EUS

deep learning 93.80 90.90 100 100 83.30
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further optimized with AI to provide more accurate and reliable
assessments, leading to improved patient outcomes[35].

AI is a mathematical technique used for classification or
regression, and deep learning, which is an advanced machine-
learning method utilizing neural networks, falls under the
category of AI algorithms[33,34]. AI has been successfully applied
in the detection and classification of various tumours, such as
oesophageal tumours[34], gastric tumours[33], colon polyps[34],
and subepithelial lesions[35]. Its potential for improving the
diagnostic accuracy of pancreatic masses has also been explored.

In our study, we observed a significant improvement in the
overall diagnostic accuracy when using AI assistance for diag-
nosing pancreatic masses compared to conventional EUS,
achieving a rate of 93%. However, there were no significant
differences in sensitivity and specificity. Additionally, AI-assisted
EUS showed better positive and negative predictive values com-
pared to conventional EUS.

The development of an AI system that can accurately diagnose
pancreatic masses may have the potential to replace EUS-FNA/B
in the future, reducing adverse events and decreasing dependence
on operator expertise in diagnosing pancreatic masses. However,
according to Kuwahara et al., the current 90% accuracy of AI
may not be high enough to fully replace EUS-FNA, but it can still
be valuable in diagnosing pancreatic masses[36,37].

Utilization of AI in endoscopic ultrasound to differentiate
pancreatic SOL from chronic pancreatitis

Marya et al.[3] in 2020, demonstrated that an AI model using a
convolutional neural network on EUS images effectively differ-
entiated chronic pancreatitis from other pancreatic masses. The
model achieved a sensitivity and specificity of 81% and had an
area under receiver operating characteristic curve of 0.847 (95%
CI 0.770 to 0.911) when distinguishing chronic pancreatitis from
all other pancreatic masses.

Utilization of AI in endoscopic ultrasound to differentiate
pancreatic SOL from autoimmune pancreatitis

AI has been used in endoscopic ultrasound (EUS) to aid in dis-
tinguishing pancreatic SOL from autoimmune pancreatitis.
Distinguishing autoimmune pancreatitis from other SOLs is
particularly challenging due to overlapping clinical and radi-
ological features. Misdiagnosis can lead to unnecessary inter-
ventions, delayed treatment, or inappropriate management plans.
However, this differentiation is crucial since the treatment
approaches for these diseases vary significantly.

Marya et al.[3] 2020 developed an AI model using CNN on
EUS images that effectively differentiated autoimmune pancrea-
titis from pancreatic ductal adenocarcinoma. The AI model
achieved a sensitivity of 93%, a specificity of 90%, and an area
under the receiver operating characteristic curve of 0.95. The
sensitivity and specificity of the AImodel were significantly higher
compared to conventional diagnostic methods. This suggests that
AI can serve as a valuable adjunct tool to endoscopy in making
more accurate and timely diagnoses, with the potential for better
patient outcomes.

The utilization of AI in EUS can enhance the efficiency and
workflow of endoscopy units. With the increasing demand for
EUS procedures, AI can assist in streamlining the interpretation
process and reduce the burden on practitioners. By providing
rapid and accurate analyses of EUS images, AI can save time andTa
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resources, allowing clinicians to focus on patient care and com-
plex decision-making.

Limitations of AI in endoscopic ultrasound for the detection
of pancreatic SOL

Despite the promising results and potential benefits of AI in EUS,
there are several challenges and limitations that need to be
addressed. First, the development and validation of AI models
require large and diverse data sets that adequately represent the
target population. The availability of such data sets can be a
limitation, particularly for rare pancreatic conditions. Most stu-
dies that have been done are retrospective and use a limited
number of images from single-centre studies[19,26,36–38]. Due to
limited data availability and concerns related to model over-fit-
ting, the effectiveness of these systems remains insufficient,
emphasizing the need for comprehensive external validation[39].
Collaborative efforts and data sharing among hospitals and
academic institutions are necessary to overcome this limitation
and ensure the robustness and generalizability of AI models.
Robust multicenter trials are necessary to increase the sample size
and increase the clinical significance of study results. Well-
designed randomized controlled trials (RCTs) are warranted to
provide higher-quality evidence and enhance the level of con-
fidence in the findings. The inclusion of more RCTs in future
systematic reviews andmeta-analyses would contribute to a more
robust evidence base and further elucidate the potential benefits
of AI-assisted EUS in clinical practice.

Second, the diagnosis performance of AI algorithms may be
limited in data sets where there is heterogeneity of image
contents[36]. Although deep learning models can achieve high
accuracy, there is potential for selection bias and misclassification
resulting in suboptimal performance of CNNs. Additionally,
there is a lack of studies that perform external validation of the AI
models used in the EUS of the pancreas. In the absence of external
validation, there is a lack of assurance regarding the model’s

generalizability, which may result in the possibility of over-
estimating the outcomes[27,28,40]. Efforts are underway to develop
techniques and methods that enhance the reliability and inter-
pretability of AI models, allowing technicians and clinicians to
understand and trust the results generated by AI algorithms.

Lastly, the integration of AI into clinical workflows requires
careful consideration of ethical, legal, and regulatory aspects. The
use of real-time training for learning models has been difficult due
to the possibility of ethical and safety issues[41,42]. Data privacy
and patient consent are critical concerns that need to be addressed
before adopting the use of AI in clinical practice. Transparent
guidelines and regulations should be established to govern the use
of AI in healthcare and ensure its responsible and ethical
implementation.

Future directions of AI in endoscopic ultrasound for
pancreatic SOL

The use of AI in clinical practice is still in its preliminary stages.
There is a lot of promise in utilizing AI and incorporating com-
puters in aiding clinical diagnosis. Various AI algorithms can be
used as a second set of eyes by specialists to diagnose multiple
pancreatic pathologies. AI-assisted EUS (Fig. 8), from our study,
has shown to have higher diagnostic accuracy than conventional
EUS. However, both methods do not have a diagnostic accuracy
of 100%.However, AI can be used by specialists, and in so doing,
it can help reduce interobserver variability while also learning
from them. Over time, standardization in diagnosis can be
achieved, improving patient outcomes[1].

AI can also be used to augment other diagnostic techniques.
For example, in endoscopies, AI can augment capsule endosco-
pies, increasing their efficiency. In diagnosing pancreatic pathol-
ogies, AI-assisted algorithms can merge the use of different
imaging modalities such as computed tomography scans, MRI
and EUS. Lastly, AI algorithms can be utilized to interpret bio-
markers and diagnostic enzymology to differentiate further

Figure 8. An illustration of the use artificial intelligence assisted endoscopic ultrasound for detection of pancreatic space-occupying lesion.
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chronic pancreatitis, autoimmune pancreatitis, and pancreatic
cancer[7].

Developing an expert system in clinical practice will go a long
way in improving patient outcomes. Expert systems solve pro-
blems with reasoning based on current knowledge, emulating a
human expert. This algorithm can also draw conclusions based
on the input data. Incorporation of this into diagnosing pan-
creatic pathologies can help augment the current challenges as
well as augment the scarcity of skilled personnel[1].

Conclusion

AI-assisted EUS has emerged as a highly accurate method for
detecting and differentiating pancreatic space-occupying lesions,
surpassing the capabilities of conventional EUS. By leveraging
advanced computational algorithms, AI enables clinicians to
achieve a prompt and precise diagnosis of various pancreatic
pathologies. The integration of AI in EUS holds great promise in
revolutionizing the field of pancreatic imaging, enhancing the
efficiency of diagnostic workflows, and ultimately improving
patient outcomes. However, the current meta-analysis is limited
based on the few studies included. Future studies including high-
quality RCTs and implementation of AI-assisted EUS in clinical
practice can potentially unlock new avenues for early detection,
personalized treatment strategies, and improved prognostication
in pancreatic diseases.
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