Skip to main content
. 2023 Sep 14;109(12):4091–4100. doi: 10.1097/JS9.0000000000000721

Table 3.

Robustness to distorted images that occur in the real-world.

Corruption Backbone Methods Accuracy (%) Specificity (%) Sensitivity (%) AUROC
Blur ResNet Naive 67.53 83.66 66.92 0.878
DBA+DRP 76.62 88.31 76.46 0.891
ResNext Naive 62.34 81.15 62.00 0.826
DBA+DRP 72.73 86.43 72.72 0.917
WideResNet Naive 66.23 83.01 65.38 0.852
DBA+DRP 71.43 85.73 71.23 0.873
DenseNet Naive 72.73 86.34 72.72 0.858
DBA+DRP 64.94 82.42 64.67 0.848
EfficientNet Naive 51.95 75.83 51.49 0.708
DBA+DRP 51.95 75.87 51.59 0.714
High Contrast ResNet Naive 65.38 82.69 65.38 0.880
DBA+DRP 78.21 89.10 78.21 0.926
ResNext Naive 73.08 86.54 73.08 0.874
DBA+DRP 74.36 87.18 74.36 0.855
WideResNet Naive 66.67 83.33 66.67 0.821
DBA+DRP 70.51 85.26 70.51 0.868
DenseNet Naive 69.23 84.62 69.23 0.848
DBA+DRP 73.08 86.54 73.08 0.885
EfficientNet Naive 56.41 78.21 56.41 0.585
DBA+DRP 66.67 83.33 66.67 0.827
Low Contrast ResNet Naive 73.08 86.54 73.08 0.880
DBA+DRP 80.77 90.38 80.77 0.927
ResNext Naive 74.36 87.18 74.36 0.889
DBA+DRP 79.49 89.74 79.49 0.919
WideResNet Naive 62.82 81.41 62.82 0.856
DBA+DRP 75.64 87.82 75.64 0.887
DenseNet Naive 71.79 85.90 71.79 0.890
DBA+DRP 78.21 89.10 78.21 0.905
EfficientNet Naive 71.79 85.90 71.79 0.896
DBA+DRP 80.77 90.38 80.77 0.906

For each corruption type and backbone, DBA+DRP outperformed the naive method.