Table 3.
Corruption | Backbone | Methods | Accuracy (%) | Specificity (%) | Sensitivity (%) | AUROC |
---|---|---|---|---|---|---|
Blur | ResNet | Naive | 67.53 | 83.66 | 66.92 | 0.878 |
DBA+DRP | 76.62 | 88.31 | 76.46 | 0.891 | ||
ResNext | Naive | 62.34 | 81.15 | 62.00 | 0.826 | |
DBA+DRP | 72.73 | 86.43 | 72.72 | 0.917 | ||
WideResNet | Naive | 66.23 | 83.01 | 65.38 | 0.852 | |
DBA+DRP | 71.43 | 85.73 | 71.23 | 0.873 | ||
DenseNet | Naive | 72.73 | 86.34 | 72.72 | 0.858 | |
DBA+DRP | 64.94 | 82.42 | 64.67 | 0.848 | ||
EfficientNet | Naive | 51.95 | 75.83 | 51.49 | 0.708 | |
DBA+DRP | 51.95 | 75.87 | 51.59 | 0.714 | ||
High Contrast | ResNet | Naive | 65.38 | 82.69 | 65.38 | 0.880 |
DBA+DRP | 78.21 | 89.10 | 78.21 | 0.926 | ||
ResNext | Naive | 73.08 | 86.54 | 73.08 | 0.874 | |
DBA+DRP | 74.36 | 87.18 | 74.36 | 0.855 | ||
WideResNet | Naive | 66.67 | 83.33 | 66.67 | 0.821 | |
DBA+DRP | 70.51 | 85.26 | 70.51 | 0.868 | ||
DenseNet | Naive | 69.23 | 84.62 | 69.23 | 0.848 | |
DBA+DRP | 73.08 | 86.54 | 73.08 | 0.885 | ||
EfficientNet | Naive | 56.41 | 78.21 | 56.41 | 0.585 | |
DBA+DRP | 66.67 | 83.33 | 66.67 | 0.827 | ||
Low Contrast | ResNet | Naive | 73.08 | 86.54 | 73.08 | 0.880 |
DBA+DRP | 80.77 | 90.38 | 80.77 | 0.927 | ||
ResNext | Naive | 74.36 | 87.18 | 74.36 | 0.889 | |
DBA+DRP | 79.49 | 89.74 | 79.49 | 0.919 | ||
WideResNet | Naive | 62.82 | 81.41 | 62.82 | 0.856 | |
DBA+DRP | 75.64 | 87.82 | 75.64 | 0.887 | ||
DenseNet | Naive | 71.79 | 85.90 | 71.79 | 0.890 | |
DBA+DRP | 78.21 | 89.10 | 78.21 | 0.905 | ||
EfficientNet | Naive | 71.79 | 85.90 | 71.79 | 0.896 | |
DBA+DRP | 80.77 | 90.38 | 80.77 | 0.906 |
For each corruption type and backbone, DBA+DRP outperformed the naive method.