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Abstract

Accurate velocity reconstruction is essential for assessing coronary artery disease. We pro-

pose a Gaussian process method to reconstruct the velocity profile using the sparse data of

the positron emission particle tracking (PEPT) in a biological environment, which allows the

measurement of tracer particle velocity to infer fluid velocity fields. We investigated the influ-

ence of tracer particle quantity and detection time interval on flow reconstruction accuracy.

Three models were used to represent different levels of stenosis and anatomical complexity:

a narrowed straight tube, an idealized coronary bifurcation with stenosis, and patient-spe-

cific coronary arteries with a stenotic left circumflex artery. Computational fluid dynamics

(CFD), particle tracking, and the Gaussian process of kriging were employed to simulate

and reconstruct the pulsatile flow field. The study examined the error and uncertainty in

velocity profile reconstruction after stenosis by comparing particle-derived flow velocity with

the CFD solution. Using 600 particles (15 batches of 40 particles) released in the main coro-

nary artery, the time-averaged error in velocity reconstruction ranged from 13.4% (no occlu-

sion) to 161% (70% occlusion) in patient-specific anatomy. The error in maximum cross-

sectional velocity at peak flow was consistently below 10% in all cases. PEPT and kriging

tended to overestimate area-averaged velocity in higher occlusion cases but accurately pre-

dicted maximum cross-sectional velocity, particularly at peak flow. Kriging was shown to be

useful to estimate the maximum velocity after the stenosis in the absence of negative near-

wall velocity.

Introduction

Blood flow reconstruction based on measured data in coronary arteries is crucial to calculate

the measures used for estimating the severity of coronary artery disease. Using quantified

velocity and pressure distributions guides clinicians to identify the exact location of the lesion

and the suitable treatment procedure. Invasively, one can measure the pressure difference
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along a lesion during coronary angiography [1] to calculate the Fractional Flow Reserve (FFR),

which links to the severity of the disease. To avoid invasive procedures, techniques such as cor-

onary computed tomography (CT) [2,3], 4D MRI [4,5], and cardiac Positron Emission

Tomography (PET) [6] have been used. However, all the current techniques are associated

with various uncertainties and challenges.

Positron Emission Particle Tracking (PEPT) is a technique that enables us to track tracer

particles in opaque environments [7] with novel medical applications [8–11]. PEPT is based

on PET and benefits from high spatial and temporal resolution [12].

Tracer particles are labeled with positron emission radionuclides such as 18F, 61Cu, 89Zr,

and 66Ga [12,13] and then the particles are injected into the system. When the particles are in

the field of view, the positron-emitting traces are tracked, and the trajectories are recon-

structed using the gamma rays detected by the gamma cameras and corresponding lines of

response (LORs). PEPT particle tracking methods started with the Birmingham method

[14,15], and have been expanded to include the line-density method [16], multiple location-

allocation algorithm (MLAA) [17,18], K-Medoids [19], clustering methods [20], the feature

point identification (FPI) method [21], Odo triangulation method [22], Voronoi-based multi-

ple particle tracking (VMPT) [23], the time-of-flight PEPT (TOF-PEPT) algorithm to do

motion correction in medical imaging [24,25] and recently-developed method of PEPT

machine learning (PEPT-ML) which tracks multiple particles and does not require frame

tracking [26].

PEPT was initially used in industrial applications with opaque and fast-moving environ-

ments such as industrial powder mixing systems [27] and complex deformation such as extru-

sion [28,29]. PEPT has also been used for the characterization and measurement of physical

behaviors such as diffusion [30] and convection [31]. However, PEPTs ability to track fluid

flow in opaque systems has yet to be widely exploited in medical applications.

To accelerate the development of flow reconstruction methods and optimize PEPT experi-

mental designs, Computational Fluid Dynamics (CFD) is advantageous. CFD can encode

inherent physical constraints to reconstruct flow fields to distinguish the effects of various

sources of uncertainties in this novel technology. Previously, CFD-PEPT studies have focused

on industrial applications. The location of tracers in turbulent flow was predicted in a 3D tube

with an obstacle using PEPT and Large Eddy Simulation (LES) models [32]. Experimental

investigations were also performed to trace a single particle moving through a bend in a pneu-

matic system [33], in a hydro-cyclone with a turbulent flow for industrial applications [34],

and in a tube with a pulsatile flow [35]. PEPT was also used as an experimental validation for a

granular dynamics model coupled with CFD [36].

Recently, PEPT has been adopted for biomedical research and applications. Such applica-

tions include the improvement of radiation therapy [37] and tracking cells in the body [8,11].

For the clinical application of PEPT, the main advantage is that it enables us to track parti-

cles in vivo, i.e., inside the patient’s body [9]. In contrast to conventional particle tracking

imaging techniques, e.g., PIV, PEPT does not require a transparent environment. The second

advantage is that PEPT uses a PET scanner to collect the particle data. By improving the PEPT

technology, one can use the existing and standard PET scanner to image and diagnose new

conditions.

By injecting the tracer in the blood flow upstream of the location of interest, using PEPT

one can relate the blood velocity to the measured tracing particles and can estimate the blood

velocity in different locations in vessels. Using PEPT enables researchers and clinicians to

reconstruct the velocity profile. This can be used to quantify other metrics of diagnostic rele-

vance, such as the wall shear stress [38], which is related to the risk of thrombus formation
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[39,40]. Moreover, the velocity profile after the stenosis can be used to estimate the pressure

drop across the blockage without catheterization [41].

Assuming the surface forces between the particles, the effect of the blood rheology, and the

interaction between the particles and the blood cells are negligible, the low Stokes number

reported by [33] implies the path of the particles in the flow is only governed by the velocity

field of the flow, not the particle inertia, meaning the effect of the particles on the flow is negli-

gible. Bruggemann and co-workers [42] used the Monte Carlo technique implemented in the

package GEANT4 Applications for Tomographic Emission (GATE) [11] to reconstruct the

flow downstream of an orifice to find the required acquisition duration to resolve the flow fea-

tures of interest for a given activity and the Reynolds number for simulated PET data. GATE

was also used to assess the ability of PEPT to track particles in turbulent flows [43] and to

model a PET scanner to for the for the development of new PEPT algorithms [44]. Clinical

CFD-PET simulations have been reported in [45] to predict the radioisotope distribution in

the hepatic artery during a dosimetry procedure to optimize the injection site for tumor target-

ing. Although they did not perform particle tracking analysis, they observed that the number

of microspheres was proportional to the cumulative blood flow.

One of the sources of uncertainties in reconstructing the velocity profiles is the sparsity of

the particle data, especially in a time-dependent flow. To overcome this challenge, we proposed

and evaluated the kriging Gaussian process to calculate the blood flow velocity based on the

velocities of the particles and to quantify the uncertainty based on the sampled data. Kriging,

an advanced geostatistical technique, has emerged as a powerful tool in various fields, includ-

ing geology [46], design optimization [47–49], health-related data analysis [50–54], and medi-

cal image processing [55–57]. Kriging models complex spatial patterns and incorporates

spatial dependency, offering an innovative solution for capturing and predicting data in areas

where traditional interpolation methods fail [40]. The model is trained using the measured or

sampled data, and the kernel hyperparameters are optimized. By utilizing a Gaussian process

and a set of predefined parameters, kriging not only estimates unknown values at unsampled

locations but also provides measures of uncertainty, enabling researchers to make informed

decisions based on the reliability of predictions.

So far, PEPT has mainly been used to record the position of a single particle. However, to

reconstruct the velocity profile of blood flow with the accuracy required for diagnostic pur-

poses, more data points are required. In addition to the number of particles, other factors like

the number of seeding instances in a cardiac cycle play a central role in the accuracy of the

velocity reconstruction. Therefore, we investigated the effect of the number of particles and

the measurement sampling rate per cardiac cycle on the uncertainty associated with the veloc-

ity reconstruction and quantified the error in velocity field estimates in a set of models with

increasing levels of complexity.

In this paper, we present a fully computational methodology for blood flow reconstruction

from multiple particles to assess the potential of clinical applications of PEPT for coronary dis-

ease diagnosis and estimation of the associated uncertainty. Specifically, we apply Gaussian

process to estimate blood velocity and the associated uncertainty, first in an idealized straight

vessel with stenosis, then in a bifurcation with a stenotic branch, and finally in a patient-spe-

cific model of coronary obstruction.

The current paper presents a fully in-silico study, which is a necessary step to inform our

next steps for in-vitro and finally in-vivo experiments. These controlled in-silico datasets form

a testbed to understand the feasibility of PEPT and Gaussian process in in-vitro phantoms of

arterial flow. Full in-silico approaches improve one’s understanding of the strength and weak-

ness of the reconstruction algorithm and are beneficial for designing in-vitro and in-vivo
experiments.
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Methods

In our test scenario, pulses of biocompatible tracer particles [10,58] are injected into the

patient upstream of the region of interest. Sufficient particles in the plane of interest in the ves-

sel are needed to reconstruct the velocity field. If only one particle in the region is used, it is

not possible to calculate the mean velocity as the true velocity profile is not known, and

because of this, we have increased the number of tracers.

Fig 1 shows the workflow for the present analysis. CFD simulations are first performed to

generate a physiological flow field (a), from which random points are iteratively sampled at a

specific location to reconstruct the profile in space and time (a1). An error analysis is then per-

formed to establish the optimal number of sampling points necessary to reconstruct the veloc-

ity field (a2). We then determine the optimal number of simulated PEPT particles that need to

be released based on the optimal number of sampling points from the error analysis in the

CFD model. At the next step, we simulate particle tracking to approximate the PEPT proce-

dure (c1). The velocity profile is then reconstructed using kriging and the particles’ velocity as

they pass through a plane of interest (c2). Finally, the reconstructed velocity field is quantita-

tively compared with the velocity field from CFD (c3).

CFD simulation

We propose a workbench of CFD problems for evaluating PEPT spanning from a straight tube

to a bifurcation and finally a patient specific coronary obstruction model.

Fig 1. Schematic of the research methodology. The velocity field is generated using CFD (a). By sampling from the CFD velocity field, the

number of required particles for particle tracking is estimated (b). The particle tracking is performed as a post-processing procedure and the

velocity profiles are reconstructed (c).

https://doi.org/10.1371/journal.pone.0295789.g001
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Computational domains. For the simplest model we considered a straight tube with a

50% blockage (Fig 2a), where the occlusion profile was generated using a sinusoidal shape.

Both inlet and outlet boundaries were extended by 60 mm.

For the idealized bifurcation model (Fig 2b), the diameters and lengths of the vessels were

based on previous studies on coronary flow [60,61]. Murray’s law was used to relate the radii

of the branches to the radius of the main inlet, as well as the angles between each branch and

the centerline, which are 35˚ and 40˚ for the left anterior descending artery (LAD) and the left

circumflex (LCx), respectively [62]. In each case, models with a narrowing of 30%, 50% and

70% in the cross-sectional diameter were created. Finally, the anatomy of a patient-specific

coronary tree (Fig 2c) was reconstructed from anonymized cardiac CT images using 3D Slicer

4 [63] and MeshMixer (Autodesk, California, USA). The computational domain is presented

in Fig 2d.

CFD simulation and boundary conditions. The Navier-Stokes and continuity equations

for incompressible flows were solved using Ansys1 FLUENT1, Release 18.1 (ANSYS,

Canonsburg, PA, USA). Regarding the Reynolds number for the average velocity (Re<500)

the flow was assumed to be laminar [64]. Even though Re at the peak flow in a stenosis might

reach transition values, the pulsatility effect means that turbulence will not develop at the scale

that requires turbulent modeling. The blood was assumed to be a Newtonian flow with a den-

sity of 1050 kg/m3 and a viscosity of 0.0036 Pa�s. According to [65], assuming the blood to be

Newtonian is acceptable in coronary artery, which leads to more computationally efficient

simulations. The velocity waveform recorded in 20 patients with relatively low probability of

coronary disease [59] (Fig 2a) was prescribed as the inlet boundary condition (BC). For the

straight tube, the outlet pressure presented in Fig 2a [59] was used as the outlet BC. For the ide-

alized bifurcation geometry and the patient-specific anatomy, a 0D model was assigned to the

outlet boundaries based on the model described by [66] as shown in Fig 2d. The equation for

the 0D model is:

a
d2P
dt2
þ b

dP
dt
þ cP ¼ d

d2Q
dt2
þ e

dQ
dt
þ fQþ g; ð1Þ

Fig 2. Geometry and boundary conditions. Tube stenosis geometry, the stenosis geometry, velocity (solid line) and the pressure (dashed line)

regenerated from [59] (a), idealized bifurcation with 50% stenosis at LCx (b), segmented coronary artery on the CT scan images (c) and anatomical

bifurcation with an artificially generated 50% occlusion at LCx and the equivalent electrical circuit for the outlet boundaries (d).

https://doi.org/10.1371/journal.pone.0295789.g002
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where P is the pressure and Q is the flow rate. The rest of the parameters are as follow:

a ¼ RvCimRa� mCa;

b ¼ RvCim þ RvCa þ Ra� mCa;

c ¼ 1;

d ¼ Ra� mRaRvCimCa;

e ¼ RaRvCim þ Ra� mRvCim þ CaRaRv þ Ra� mRaCa;

f ¼ Ra� m þ Ra þ Rv;

g ¼ RvCim
dPLV
dt

;

where PLV is the pressure of the left ventricle and the lumped parameters for the resistances

and capacitances Ra, Rv, Ra-m, Cim, and Ca are illustrated in Fig 2d. The lumped parameters

were then separately calibrated in both geometries based on physiological flow curves [59].

The parameter optimization was performed using Simulink1 (MathWorks, Natick, MA,

USA) by minimizing the error between the physiological inlet pressure [59] and the calculated

inlet pressure. The final parameter values are listed in S1 and S2 Tables for idealized bifurca-

tion and anatomically-accurate geometry, respectively. The CFD simulation was performed

for three cardiac cycles until the solution reached a periodic state.

We carried out a grid independence analysis to ensure the results were in the asymptotic

region. The used mesh for all stenotic cases had 800k to 831k cells. The error between the area-

pressures was less than 1.5% and the maximum velocity in the field had 0.7% error when the

mesh was refined about 50%.

We ensured that the pressure is within a physiological range (70–140 mmHg), allowing us

to compare simulated PEPT particle distributions within under physiologically plausible con-

ditions [67].

Flow measurement. To estimate the flow across an occlusion, particles were released ran-

domly in a cross section at the inlet of the vessel. The location at which each particle experi-

enced its maximum velocity was then used to estimate the position of the occlusion. The

particles’ velocity through a plane of interest (POI) perpendicular to the vessel centerline 10

mm downstream of the minimum lumen area (MLA) was then calculated. This location was

chosen based on the guideline for the Fractional Flow Reserve (FFR) measurements [68,69].

The reconstructed profile, performed using kriging, was compared with the results from CFD.

Sampling

The velocity vector from the CFD solution was sampled at a varying number of points uni-

formly distributed in the POI (i.e., 10, 20, 40, 60, 80 and 100). Tc is the cardiac cycle time (Tc =

0.96 s), tc 2 [0,Tc] is the time in a cycle, and Δtc is the difference between the tc values. The

data were sampled at Δtc values of 96 ms, 64 ms and 48 ms, equivalent to sampling 10, 15 and

20 times per cardiac cycle. Δtc was considered as a control parameter in this study.

Sampling allowed us to find the optimal number of particles and Δtc for the particle track-

ing algorithm (Fig 1b). In the particle tracking phase, Δtc can be interpreted as the time points

at which the particles are injected within the cardiac cycle.

Particle tracking

The Stokes number of a particle in a flow represents the time it needs to follow the changes in

the flow field normalized by the characteristic time of the flow, i.e., the ratio of the particle
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relaxation time, τp, and the flow typical time scale, τf [70]:

St ¼
tp

tf
: ð2Þ

The characteristic time of a particle is defined [71] as

tp ¼
rpd2

p

18mf
; ð3Þ

where ρp, dp and μf are the density of the particle material, the particle diameter and the sur-

rounding fluid viscosity. For a particle in range of 1–100 μm [12] and with density similar to

that of blood, τp is between 1.62 × 10−8 s and 1.62 × 10−4 s. Therefore, for τf of about a second

in the coronary artery, the Stokes number will be less than 10−3, which means that the particles

are driven by the flow without disturbing it. The velocity of a particle at a point can therefore

be approximated by the velocity of the carrier fluid at the same point and the particle tracking

analysis can be de-coupled from the flow simulation. Based on these considerations, particles

were released in the computed flow field before the stenosis and tracked by calculating their

location at the next particle tracking time step (ΔtPT) using in-house software. The updated

location of the particles at the time k+1 was calculated as:

xkþ1 ¼ xk þ vDtPT þ
1

2
aDt2PT; ð4Þ

where v and a are the velocity and acceleration vectors from the CFD simulation. Both v and a

depend on space and time and should be updated at each time step. Where historical informa-

tion was lacking (for k = 0, 1), the acceleration was assumed to be zero. Algorithm 1 presents

the step by stem algorithm.
Algorithm 1 Post processing particle tracking
Load CFD results for all time steps
Initialize the location x of the tracer particles
Initial the time t = 0
while t < tend do
Check all elements of the particle location to be in the domain
if no element located in the domain
end procedure

Read the velocities at x and t
Calculate the acceleration
if t = 0 or ΔtPT then
Acceleration is zero a = 0

else
Linear acceleration based on the previous velocities

Update t to t + ΔtPT
Update x using Eq 4

end while
Similar to the sampling phase, we grouped the data points with similar Δtc. Therefore,

although the particles could be injected in different cardiac cycles, we grouped the information

of the particles that have identical tc values. As for the CFD sampling, the quantity Δtc was also

considered as a control parameter for the particle tracking. It should be emphasized that Δtc is

a property of seeding/grouping the particles during the analysis of the results.

The assumption of multiple particles was used because the velocity depends on both space

and time, therefore using multiple particles is necessary for generating enough data to train

the Gaussian process.
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It is worth noting that we initially assumed perfect tracking, i.e., the location of the location

of the particles were exactly measured and the positron range was assumed to be zero. How-

ever, the positron range in a blood-like environment is in submillimeter scales for 18F [72].

This range affects the spatial resolution of PEPT. We initially assume the limiting case, where

we decay events occur at a sufficient rate that allow an accurate partial position to be deter-

mined through averaging. To estimate the impact of uncertainty on our analysis we consider

the effect of noise. We have introduced random noise to the location of particles before feeding

them to the kriging process. Moreover, this approach provides an estimate of what can be

achieved at given levels of uncertainty and provides an estimate of the accuracy upper bound

that could be achieved with improved sensors that approached optimal data acquisition.

Kriging

To reconstruct the velocity using the data from a limited number of particles, we used the kri-

ging technique. In kriging, the points closer together have more similar values than points fur-

ther apart. The values corresponding to the points are related through the semivariogram. For

the current study, we used an anisotropic exponential semivariogram with a higher impact on

the spatial correlation than the temporal correlation. In kriging, one uses the data value at

some special points and calculates the continuous distribution of the parameter. During the

training phase, the semivariogram (i.e., the kernel) was calculated based on the sampled data

and the values for the hyper-parameters, i.e., sill, range and nugget were calculated. The nug-

get, i.e., the y-intercept for the semivarogram, was consistently zero for all cases in our analysis.

Therefore, the kriged field behaved as an exact interpolator.

Regarding the pulsatile nature of the flow, we used universal kriging that does not assume

the constant mean value for the data. The data for training the kriging process was prepared

based on the locations and velocities of the sampled points (for the sampling) and the particle

locations and the corresponding velocity (for the particle tracking). We transform the 3D

coordinate system to local 2D coordinates at the POI. By doing so we transformed (x,y,z,t)
into (X,Y,t) to use a 3D kriging process, where x, y and z were the global 3D coordinates for

the data and X and Y were the local 2D corresponding coordinates on the POI. The time was

not changed in the transformation. Zero velocity was set at the boundary of the POI for all

time steps to apply the no-slip condition of the flow at the vessel wall. As the rigid wall was

assumed for the CFD domain and the fluid was modelled as a continuous material, no-slip

boundary condition was chosen for the study. The S1 Text presents the universal kriging pro-

cess which was used for reconstructing the normal velocity profile.

Error analysis. In this study, we employed two concepts of error and uncertainty. The

error refers to the difference between the CFD (ground-truth) and the reconstructed velocity

profile. The reconstructed profile at each point is space and time is the mean of the value of the

values predicted from the Gaussian process. On the other hand, the range that the Gaussian

process predicts for a point with no particle or sample data is the quantified uncertainty. The

uncertainty of the prediction is calculated during the Gaussian process and reflected in the kri-

ging variance. The uncertainty is not compared to the true values from the CFD simulations.

We used two error measures to evaluate the accuracy of the kriging velocity reconstruction

based on the sparse data from particles: the root-mean-square (RMS) error between the recon-

structed profile and the true velocity profile from the CFD simulations, and the difference of

the peak velocity value from the reconstructed profile and that from the CFD simulation. For

the first error, the reconstructed velocities were compared to the CFD results and the RMS
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effective surface error, eRMS, was used to quantify accuracy [73]:

eRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
e2dA
A

r

; ð5Þ

where e is the absolute error between the reconstructed profile and the CFD profile and A is

the area of the POI. The error was normalized with the average velocity at the corresponding

timepoint.

For the maximum velocity error, emax(v), the relative error of the maximum reconstructed

velocities was calculated as:

emaxðvÞ ¼
abs max vRð Þ � maxðvCFDÞð Þ

maxðvCFDÞ
; ð6Þ

where max(vR) is the maximum value of the reconstructed velocity normal to the POI at a

given timepoint and max(vCFD) is the maximum value of the normal velocity from the CFD

simulation at the same timepoint.

For more clarification, Table 1 presents all the errors used in this paper with their

explanations.

Results

Stenosis detection

Fig 3 shows the maximum velocity and the corresponding position for each particle in the

three geometries, with and without stenosis (red and black symbols, respectively).

The cycle time difference between the particle releases was Δtc = 64 ms and the particles

were released in batches of 40.

The axial location of the stenosis was identified by the accumulation of particles with ele-

vated maximum velocity. An illustration of the estimated Cartesian location of the stenosis

based on the maximum velocity is presented in the embedded panel for each case.

Sampling

The normalized eRMS in the area-averaged reconstructed velocity was found to decrease mono-

tonically with increasing numbers of sampling incidents and points. This behavior is shown

for the straight vessel with 50% occlusion (Fig 4a) and the bifurcation model with 0%, 30%,

50% and 70% occlusion (Fig 4b–4e). The error bars show the standard deviation calculated

from 30 repeat simulations.

When 40 or more sampling points are used with Δtc of 64 ms or 48 ms (6.7% or 5% of the

cycle), the median normalized eRMS were less than 10%. For 10 sampling incidents, an error of

less than 10% was achieved for 60 or more particles. The error standard deviations in the

Table 1. The errors and their explanations.

Error explanation

eRMS The root-mean-square (RMS) error between two 3D surfaces, e.g., velocity profiles

emax(v) Relative error between the peaks of two surfaces, e.g., velocity profiles

epar−CFD The normalized RMS error between the area-average velocity curves corresponding to the reconstructed

velocity from the particle data and the true (CFD) results in a full cycle

esam

−CFD

The normalized RMS error between the area-average velocity curves corresponding to the reconstructed

velocity from the sampled data and the true (CFD) results in a full cycle

https://doi.org/10.1371/journal.pone.0295789.t001
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idealized bifurcation model with 70% occlusion (Fig 4e) are smaller than those of the cases

with less severe occlusion (Fig 4b–4d).

By increasing the number of sampled points, the errors decreased from over 30% to less

than 10% for the case without an occlusion and Δtc = 96 ms. Similar behavior was observed for

all other cases.

The same error analysis was performed at POI for the time point at which the maximum

flow rate occurred. The normalized RMS error showed a similar behavior to that presented in

Fig 4, with values less than 10% for 40 or more sampling points and Δtc of 64 ms and 48 ms for

all cases. To achieve convergence, we performed 30 trials of randomly sampled points at the

POI.

Particle tracking

Area-averaged velocity. To better approximate PEPT, we simulated the motion of parti-

cles in the flow. We compared the reconstructed peak velocity and the profile at the POI calcu-

lated from kriging and those from the CFD. Based on the error analysis, the particle tracking

was performed in all models using 600 particles (15 batches of 40 particles) and Δtc = 64 ms.

Convergence was achieved with 10 trials of tracking randomly released particles.

The area-averaged velocity against time for the CFD velocity profile, the reconstructed pro-

file based on the sampled data, and the reconstructed profile based on the particle tracking

data for all cases are presented in Fig 5.

Fig 3. The maximum velocity of particles and the coordinates in which the maximum velocity occurred. Results in

a straight tube (a), a bifurcation (b) and an anatomically accurate left coronary artery (c). Each point represents a

particle. Points presented with black × correspond to the case without stenosis and the red dots● correspond to the

case with a 50% stenosis. The black triangle shows the location of the stenosis based on particle data in different

geometries.

https://doi.org/10.1371/journal.pone.0295789.g003
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For the flow in the straight tube with 50% occlusion, the area-averaged velocities at the POI

from the CFD (ground truth) and both reconstructions from sampled points and particle

tracking (with the same number of particles and seeding instances) show a consistent overesti-

mation of the ground truth by the particle tracking algorithm (Fig 5a). The error between the

particle tracking velocity reconstruction and the CFD, epar−CFD, and between the sampled

velocity reconstruction and the CFD, esam−CFD, were 29.9% and 6.6%, respectively, indicating

that particle tracking introduced a significant increase in reconstruction error.

Fig 5b–5e, present the time-dependent area-averaged normal velocity at the POI for the ide-

alized bifurcation with 0%, 30%, 50%, and 70% occlusion at LCx. We calculated the RMS error

between the area-averaged velocity curves corresponding to particle tracking and CFD in Fig 5

and normalized that with the time mean CFD velocity over a cycle. While the normalized

RMS error for the sampling procedure remained under 10% for all cases, the error for the par-

ticle tracking was 10.2% for 30% occlusion (Fig 5c), 16.9% for 50% occlusion (Fig 5d) and

128.1% for 70% occlusion (Fig 5e).

Fig 4. The error for the velocity reconstruction using the sampled points. The normalized RMS error of the area-

averaged velocity over a cardiac cycle normalized with the CFD total averaged velocity from CFD for different number

of sampling points and Δtc for a tube with 50% of occlusion (a), a bifurcation without occlusion (b) and a bifurcation

with 30% of occlusion at LCx (c), a bifurcation with 50% of occlusion at LCx (d) and a bifurcation with 70% of

occlusion at LCx (e). The error bars show the standard deviation. The cardiac cycle time, Tc is 0.96 s.

https://doi.org/10.1371/journal.pone.0295789.g004
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Fig 5f shows the average velocities for the anatomically accurate model with 50% occlusion.

The normalized RMS errors, i.e., epar−CFD and esam−CFD, were 15.1% and 6.2%, respectively.

None of the reconstructed velocity profiles could replicate the oscillatory behavior of the flow

between 0 and 0.4 s. The results are summarized in Table 2.

Error analysis. We compared the accuracy of the kriging velocity profile reconstruction

based on the particle tracking by calculating RMS errors between the CFD velocity profile and

the reconstructed profiles. Table 3 shows the different types of RMS errors between the recon-

structed velocity profile and the CFD velocity profile (Eq 5), i.e., the maximum value, the value

at the peak flow and the mean value over the cycle for the normalized eRMS.

Table 4 shows the maximum, minimum and time-averaged errors over a cardiac cycle for

the estimation of the peak velocity at each time point (Eq 6).

Fig 5. Comparison of the area-averaged velocity reconstructions. The area-averaged velocity against time for a straight tube

with 50% occlusion (a), idealized bifurcation with 0% (b), 30% (c), 50% (d) and 70% (e) occlusion, and an anatomic coronary

artery with 50% occlusion (f). All error values were normalized with the averaged CFD normal velocity over the cycle, and the

shaded areas show the standard deviation based on the simulation repeats.

https://doi.org/10.1371/journal.pone.0295789.g005

Table 2. The error between the particle tracking velocity reconstruction and the CFD, epar−CFD, and between the sampled velocity reconstruction and the CFD, epar
−CFD, for different cases.

Geometry Straight tube Idealized bifurcation Idealized bifurcation Idealized bifurcation Anatomical geometry

Occlusion [%] 50 30 50 70 50

epar−CFD 29.9 10.2 16.9 128.1 15.1

esam−CFD 6.6 7.9 5.4 5.9 6.2

https://doi.org/10.1371/journal.pone.0295789.t002
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Calculated errors show that PEPT measurement after the stenosis results in overestimating

the area-averaged velocity (i.e., the flow rate); however, this method is capable to measure the

maximum velocity in the POI with a time-averaged error of less than 10%.

It should be noted that the results in Table 4 show that using PEPT and kriging could result

in high error for estimating the peak cross-sectional velocity, i.e., max(emax(v)). However, the

time-averaged error, mean(emax(v)) over a cycle, shows an error value of less than 10%.

Retrograde velocity. Fig 6 shows the anatomy, reference normal velocity contours, veloc-

ity reconstructed from sampling at the POI and velocity reconstructed from particle tracking,

and kriging local uncertainties (standard deviations) for t = 0.582 s at which the maximum

flow rate occurred for samples and particle-based velocity reconstruction. The figure illustrates

the results for the CFD and the reconstructed profiles for the patient-specific case.

For both Fig 6b-bottom and Fig 6c-bottom the seeded particle and the sampled points were

40 and Δtc = 64 ms, respectively. In the kriging local standard deviation contour, the areas with

lower uncertainty values were in close proximity to the sample points or where particles passed

through the POI. As shown in Fig 6b-bottom, the uncertainty contour for the particle tracking,

the area with lower uncertainty were clustered around the center of the artery, where we saw a

higher density of particles. In contrast, Fig 6c-bottom uncertainty contour shows that in the

sampling process, the distribution of the data points was more uniform. To estimate particle

clustering, we calculated the standard deviation of the distance between all datapoints and

their centroids for the particle tracking and sampling cases, Cd = SD(dp), where dp is the vector

of the distances between the points/particles and their centroid. At the POI, Cd for multiple

random trials was 0.77±0.03 mm and 0.89±0.04 mm, for the particle tracking (10 random tri-

als) and sampling case (30 random trials), respectively. The clustering causes a systematic

increase in error in the velocity profile reconstruction near the borders.

Table 3. The normalized RMS error for the profile reconstruction by the particle tracking data ± the standard deviation over random trials. The error is normalized

with the averaged normal velocity at the same time point.

Geometry Occlusion [%] max(eRMS) [%] eRMS @ of peak flow [%] mean(eRMS) over a cycle[%]

Straight tube 50 73.8±3.6 33.8±0.5 33.6±0.7

Idealised bifurcation 0 31.3±3.2 16.3±0.4 13.4±1.3

Idealised bifurcation 30 42.7 ±4.1 8.4±1.0 13.4±0.5

Idealised bifurcation 50 55.6±3.9 26.4±2.6 28.5±2.2

Idealised bifurcation 70 209.8±21.4 138.1±13.5 161.0±13.0

Anatomical geometry 50 54.4±3.0 12.5±1.0 21.9±0.9

https://doi.org/10.1371/journal.pone.0295789.t003

Table 4. The relative error for maximum velocity prediction emax(v) ± the standard deviation over random trials for particle tracking and sampling velocity

reconstruction.

Geometry Occlusion [%] max(emax(v)) [%] min(emax(v)) [%] mean(emax(v)) over a cycle [%]

Straight tube 50 29.4±4.0 0.0±0.0 5.2±0.4

Idealized bifurcation 0 25.3±6.3 0.2±0.2 6.2±1.2

Idealized bifurcation 30 32.3±3.6 0.0±0.0 5.2±0.3

Idealized bifurcation 50 22.3±3.5 0.1±0.1 5.0±0.5

Idealized bifurcation 70 18.1±2.7 0.0±0.0 3.6±0.3

Anatomical geometry 50 31.0±8.2 0.2±0.2 9.4±1.3

https://doi.org/10.1371/journal.pone.0295789.t004
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To illustrate the difference between the particle tracking and the sampling profiles, Fig 7

shows cross-sections of velocity profiles for the same simulation repeats of Fig 6 and the corre-

sponding errors.

Fig 7 shows an example for the local behavior of the kriging reconstruction procedure

using the particle tracking data. As one can see, for cases without a negative velocity (Fig 7a)

the kriging using particle tracking and sampling behaved similarly. For cases with larger nega-

tive velocity (Fig 7d) particle tracking failed to reconstruct the velocity. One should note that

not all time points have particle data; therefore, the discrepancy between the particle tracking

reconstructed velocity in Fig 7b and 7d in not only associated with the difference between the

magnitude of the negative velocities but is also associated with the temporal and spatial dis-

tance between any point and the particle data.

Effect of noise. To investigate the effect of the other sources of error, we added random

noise to the particle location for the flow in the anatomically accurate case. In our study, we

used independent noise in three directions for the particle positions in each time step. The ran-

dom noise was generated with Xn ¼ N ð0; IÞ, where N is the normal distribution, and I is an

identity matrix. Then, for different noise levels, Ln, the noise, Xn, was scaled in [−Lnr, Lnr] and

added to the particle positions, where r is the radius of the cross section at POI before kriging.

We have introduced an uncertainty less than 0.5 mm, regarding the scale of the coronary

artery, on the location of the particles. Fig 8 shows the normalized RMS error against the area

averaged velocity over a cardiac cycle for different maximum noise, i.e., Lnr.

Discussion

The motivation for this study is the novel medical application of PEPT. To develop and use

PEPT for medical imaging and diagnosis of coronary artery disease, we took a computational

approach to analyze the underlying errors of the reconstruction technique. We presented a

Fig 6. Velocity contours and the uncertainties. The normal velocity contour at the POI for the CFD simulation (a-top), the

anatomy of the coronary artery (a-bottom), the velocity contour of the reconstructed velocity using the particle tracking data

(b-top) and the local uncertainty (standard deviation for the velocity) calculated in the kriging Gaussian process (b-bottom),

the velocity contour of the reconstructed profile using the sampling process data (c-top) and the corresponding local

uncertainty (c-bottom). All the results are presented at the time when the peak flow happens (t = 0.582 s).

https://doi.org/10.1371/journal.pone.0295789.g006
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Fig 7. The reconstructed profile velocities and the error. The cross section of the velocity profiles of one of the

simulation repeats, i.e., one of the trials for the particle tracking and random sampling, for the anatomically accurate

case (50% occlusion) at t = 0.582 s (a) and t = 0.679 s (b) and the velocity profiles for the idealized bifurcation with 70%

of occlusion at t = 0.582 s (c) and t = 0.679 s (d). Panel (e) shows the relative error for the maximum cross-sectional

velocity during a cardiac cycle for the same simulation repeat.

https://doi.org/10.1371/journal.pone.0295789.g007

Fig 8. The effect of noise. The RMS error for the averaged velocity over the cycle for various maximum noise. The

error was normalized based on the averaged velocity over the cycle.

https://doi.org/10.1371/journal.pone.0295789.g008
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methodology to reconstruct the velocity profile after an occlusion, which can then be used to

calculate the wall shear stress [38,74,75] or estimate pressure gradients across the stenosis

using Bernoulli equation [76] or the work-energy principles [41,77]. Our approach provides

an estimated velocity profile in addition to the Lagrangian representation of the fluid flow as

reported in [78]. This would allow PEPT to measure both blood velocity and functional pres-

sure drop over an occlusion, in contrast to conventional PET, which can only measure perfu-

sion over tissue volumes [79]. Cardiac 4D phase-contrast CMR can measure flow at a

resolution of 1.5x1.5x1.5 to 3×3×3 mm3 [4,5] with a dependency on the users’ experience [80],

which would limit their ability to measure flow across an occlusion.

To determine how many particles are required to estimate the velocity profile acceptably,

we used sampling and then particle tracking to gather the velocity data from the flow field.

However, the results show that an interpolation using particle tracking is less accurate than the

profile derived from the direct sampling of the CFD results, especially when retrograde flow is

present near the wall.

The virtual particles were seeded upstream of the blockage. Therefore, the particles were

affected by any vortices that formed after the stenosis, provided that the CFD simulation could

capture them. As the flow regime stays in the laminar region, a transient laminar CFD model

is able to capture the vortices [64].

Using kriging and particle tracking allowed for an accuracy of 78.1% (mean RMS error

over the cycle of 21.9%) for an anatomically accurate case. While these errors are high, they are

comparable with alternate approaches. Reference [81] reported a novel method to estimate the

average velocities in LAD using cine X-ray angiographic sequence (compared with transtho-

racic Doppler) with an average error of 30.8%±20% for 21 patients with no reported stenosis.

Moreover, unlike [81], we did not need to make any assumptions regarding the diameter of

the vessel while doing the particle tracking analysis, as PEPT can be performed on any vessel

anatomy. The error values show that the kriging coupled with the particle tracking data can

predict the maximum velocity at the POI for a given time more accurately (mean relative error

of less than 10%).

We also demonstrated that peak particle velocity could be used to accurately identify the

location of the stenosis. Due to the tendency of particles to cluster in the center of the vessel,

where the peak velocity is higher, the reconstruction algorithm could detect the maximum

velocity at peak flow with an error of less than 10% (Fig 7e). However, this also led to inaccu-

racy in the velocity profile reconstruction away from the centerline, where very few or no data

points are available. This tendency is particularly exacerbated when areas of flow recirculation

occur after a stenosis and cause negative velocity near the wall, which the kriging algorithm is

unable to detect, resulting in large eRMS. Negative velocity in regions with the recirculating

flow is due to the pulsatile nature of blood and the occlusion, which is consistent with the

report from [42] that used simulated PET results to reconstruct the flow field in a jet flow and

found a larger error in the recirculation region; however, the retrograde velocity in our study

was always underestimated by the kriging and particle tracking. It is important to note that

data from the radioisotope particles trapped in the recirculation region could result in errors

due to the inability to differentiate the core flow and the recirculation flow. As shown in Fig

5a, 5d and 5e, the distribution of the particles around POI resulted in overprediction for cases

with a high level of stenosis (50% and 70%). The higher inflow velocities in the idealized bifur-

cation compared to the patient-specific anatomy with a similar level of occlusion result in

larger negative velocities at the POI and thus in larger errors in Fig 5e. Similar behavior was

reported in [82] in biogas production and gas mixing applications about the existence of some

regions in the domain that PEPT particles failed to enter and therefore higher uncertainties

were calculated for the regions. As shown in Fig 7b, the particle tracking can recapitulate the
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flow velocity profile in the center of the vessel but fails to capture the flow profile at the edges

of the vessel, where we see retrograde blood flow. As one can see in Fig 7c and 7d, the discrep-

ancy between the particle tracking profile and the true profile is more severe in the bifurcation

as the retrograde velocities were larger. For instance, the ratio of max negative velocity to the

maximum positive velocity in Fig 7b and 7d is 1.24% and 19.57%, respectively. Physic

informed neural network (PINN) could be an alternate method for correcting this overestima-

tion by predicting the near-wall blood flow [83].

It is worth emphasizing that the velocity values were estimated using the velocities of the

particles passing through the POI at different time points. Therefore, larger errors were

observed at the times when fewer data points were available at the POI (Fig 7e). Kriging calcu-

lates the local uncertainties which will reflect the uncertainties in the estimation of the velocity

in locations with data scarcity. Using only raw data from the particles could potentially result

in significantly high errors. Another option to correct this error and predict negative velocity

is to impose no-slip boundary conditions in the kriging step.

We used the results from Fig 4 to estimate the optimal number of particles and number of

released batches as 40 and 15, respectively. In total, we released 600 particles. Using kriging to

reconstruct the velocity at a plane allowed us to reduce the need for higher numbers of parti-

cles. References [35] reported 8730 registered particles (over 50 minutes) to reconstruct the

velocity field in a pinched tube with a pulsatile flow.

The estimation of the area-averaged velocities was similar in Fig 5a and 5d. In both cases,

the occlusion level is 50% and the velocities are comparable. The velocities are less in the

anatomically accurate case than the velocities in the idealized bifurcation because of different

inlet areas and having the same flow rates. Moreover, the anatomical model has seven outlets

and one outlet before the stenosis in the same branch. Therefore, it should be noted that if the

velocity increases in the anatomical coronary artery model, larger negative velocities after the

stenosis and, consequently, higher errors and uncertainties are expected.

We performed convergence analyses for the sampling and particle tracking to determine

the number of attempts for random sampling points and particles released. The results showed

that the number of attempts for particle tracking is 10, which is less than the corresponding

value for sampling, i.e., 30. This is because, in sampling, we selected the points in a circle with

80% of the radius of the vessel at the plane of interest, while in the particle tracking, most of

the particles accumulate in the regions with a positive velocity at the POI.

It should be noted that pairing the data in different frames for the reconstruction of the tra-

jectories created by multiple particles from experimental data are very challenging [35], espe-

cially when the particles are close to each other in regions in the size of the coronary arteries

and may introduce error to final velocity reconstruction. Typically, the particle pairing is done

through a modified nearest-neighbors algorithm [20]. However, for rapid flows and relatively

low sampling rates, more robust pairing algorithms [35,84] are required. Machine learning

techniques based algorithms have been developed to track multiple particles without a priori

knowledge of the number of particles, such as the PEPT-ML algorithm [12]. Any gap in the

data due to particles not paired to any other particle can be considered a contributor to the

sparsity of the data for the Gaussian process.

In the real PEPT data, different incidents are registered with uncontrolled Δtc; however, dif-

ferent Δtc would not affect our Gaussian process approach because it is performed in space

and time simultaneously. In other words, during the data preparation, before the kriging, the

corresponding time for each particle would be unique to that particle.

The particle data scarcity around the wall is the main source of error in our work. Nonethe-

less, one may consider benefiting from cell or particle margination in blood flow. It has been

known that particles with different properties have different cross-streamline migration, also
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known as margination, in the blood flow [85–89]. Stiff particles were observed to move toward

the vessel walls due to their hydrodynamic interaction with softer particles, i.e., red blood cells

[90,91]. This behavior is common between synthetic particles and naturally stiffer blood ele-

ments such as platelets and white blood cells. Computational approaches have been employed

to understand the mechanism and dynamics of margination [89,91–99]. In our study, we did

not consider any cross-streamline migration for particle tracking. Nevertheless, the margin-

ation can be exploited to gather more data around the wall. One possibility is to use particles

with different properties as tracer particles. However, it should be noted that margination

decreases as the vessel diameter increase [100]; therefore, the effect is weaker in larger vessels.

Other hemodynamic and geometric quantities such as wall shear rate, vessel orientation and

pulsatility of the flow also affect the margination behavior of microparticles [100].

In our study, with a full in-silico approach, we have particularly focused on the blood veloc-

ity reconstruction in the coronary artery with stenosis. We wanted to test the plausibility of

recovering blood flow profiles using PEPT, which is a potential novel imaging application of

this technology. We have demonstrated how Gaussian processes can be used to recover in the

flow from temporal-spatial sparse data simultaneously and have identified potential limitations

in measuring the velocity of fast biofluids with potentially negative velocity.

Limitations

We presented a simulation workbench to evaluate a novel imaging modality. Simulations pro-

vide an approximation of the system under study and have inherent limitations. First of all,

one should note that there are other factors, such as the interaction between the particles, reso-

lution of the gamma-ray detector and particle size, that could affect the accuracy of the PEPT

measurement, stenosis diagnosis, and velocity profile reconstruction. In this paper, we focused

on particle delivery in PEPT. Another limitation is that our analysis for the anatomically accu-

rate model was done for one case. The coronary tree has large inter-individual variation.

Therefore, to quantify the uncertainty of PEPT measurement, a larger cohort of patient-spe-

cific anatomies is needed. Due to the lack of pressure and flow measurement for the patient,

we could not use patient-specific boundary conditions. Nevertheless, we used an optimized

lumped parameter model for which the pressures and flow rates were within the physiological

range. Moreover, we assumed that the locations of the particles are measured instantaneously

and accurately, ignoring the false detection of the gamma rays that may happen in practice.

The boundary of the domain was also assumed segmented from CT data in the patient-specific

case, which would be possible only if PEPT data were coupled with MRI or CT data. Displace-

ment and deformation of the computational domain were not measured directly from the CT

images and were neglected to simplify the complexity and assess the accuracy of the proposed

Gaussian process approached by comparing the reconstructed velocity to the CFD results. The

displacement and deformation of the coronary artery will introduce additional sources of

error [101] that may require further algorithm developments. In this study, we have performed

a computational experiment on PEPT accuracy, flow recovery and uncertainty. The next step

is to quantify errors due to the tracer activity, positron range, false detection, gamma ray scat-

tering, particle size effect, etc. This can be achieved using Geant4 (GATE), however, these

results will depend on the scanner and particle size, which will require further characterization.

Our expectation for PEPT is that we rely on small particles or labelled cells, which will have a

nominal impact on the flow. It is important to note that as particles get larger, they may impact

blood flow and this could introduce new sources of error, which will decrease the accuracy of

the recovered flow field (see Fig 8). As PEPT measurement in biology is a novel and under-

development medical measurement technique, the significance of various types of error is still
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unknown. However, future work will consider different sources of errors in PEPT measure-

ment to quantify their effect.

Conclusion

This study is a proof-of-concept study for using PEPT technology to diagnose coronary occlu-

sion. We used CFD techniques to generate the blood flow in a straight tube and a bifurcation

with occlusion and then reconstructed the velocity profile after the occlusion using the kriging

process. For reconstructing the velocity profile, we used the data from sampling and particle

tracking in the flow field. We could reconstruct the velocity profile using a limited number of

particles released upstream of the location of interest. The reconstructed profiles can be used

for the calculation of the wall shear stress and FFR if needed. We conclude that kriging can be

used to estimate the maximum cross-sectional velocity after the stenosis but fails to reconstruct

the velocity profiles accurate; especially in cases with large near-wall negative velocity. This

shows that PEPT can feasibly be developed to provide a novel measurement of blood flow pro-

files for imaging and cardiac diagnosis.
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