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Abstract

Emerging evidence shows that oral squamous cell carcinoma (OSCC) invasiveness can be

attributed to a small subpopulation of cancer stem cells (CSCs) in the bulk of the tumor.

However, the presence of CSCs in the OSCC close resection margins is still poorly unex-

plored. Here, we found that BMI1, CD44, SOX2, OCT4, UBE2C, CXCR4 CSCs marker

genes are significantly upregulated, while IGF1-R, KLF4, ALDH1A1, CD133, FAM3C are

downregulated in the tumor core vs healthy mucosa of 24 patients with OSCC. Among

these, SOX2 appears also upregulated in the tumor close margin vs healthy mucosa and

this significantly correlates with tumor size and lymph node compromise. In vitro analyses in

CAL27 and SCC15 tongue squamous cell carcinoma cell lines, show that SOX2 transient

knockdown i) promotes the mesenchymal-to-epithelial transition, ii) smooths the invasive-

ness, iii) attenuates the 3D tumor sphere-forming capacity, and iv) partially increases the

sensitivity to cisplatin treatment. Overall, our study highlights that the OSCC close margins

can retain CSC-specific markers. Notably, SOX2 may represent a useful CSCs marker to

predict a more aggressive phenotype and a suitable target to prevent local invasiveness.

Introduction

Oral squamous cell carcinoma (OSCC) accounts for more than 90% of head and neck cancers

(HNSCC) [1,2]. Curative therapeutic approaches for OSCC include surgical resection, radio-

therapy, and chemotherapy; however, according to the current clinical guidelines, surgery

remains the conclusive treatment option for most patients [3–8]. One of the major concerns in

the OSCC resection is sparing as much healthy tissue as possible to preserve vital functions

and esthetics. At the same time, removing all malignant cells from the bulk of the tumor and
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around it is mandatory to reduce the possibility of local recurrence [3,8–11]. Although many

efforts in defining “safe” surgical margins outside tumor boundaries have been achieved, local

recurrence still affects up to 45% of OSCC patients [12–14]. In this regard, we and others have

recently observed that OSCC close margins may retain molecular alterations that, otherwise,

result undetectable through conventional histopathological examination, thus making the defi-

nition of “safe” tumor margins even more complex [11,15,16].

Local recurrence has been associated with two concepts: the minimal residual disease and

the “field cancerization”. In the case of minimal residual disease, a small number of tumor

cells, undetected by routine histopathology, remain in the margins upon surgery [17,18]. In

the case of “field cancerization”, instead, a not macroscopically visible precancerous area sur-

rounding the tumor stays behind unnoticed or can be detected as epithelial dysplasia [19,20].

Recently, the precancerous fields have been defined by the existence of genetic changes, either

mutations, loss of heterozygosity (LOH), or copy number alterations (i.e., p53, CDKN2A, etc)

[21–23]. However, the current detection methods of precancerous fields suffer from the prob-

lem of “undersampling”, as only a very small number of residual cancer cells are present in a

relatively large tissue volume. Therefore, the identification of this small cell subpopulation,

which likely represents the foci of precancerous initiation and progression, represents a major

concern in oral cancer research.

The persistence of a very small fraction of cancer cells, defined as cancer stem cells (CSCs),

provided with high tumorigenic proficiency, motility, invasion, and drug resistance, is largely

considered a primary cause of tumor recurrence [24–27]. During the last decade, a few CSCs-

related genes have been identified in OSCC lesions and associated, even often contradictorily,

with nodal metastasis, chemoresistance, tumor recurrence, and survival rate of OSCC patients

[25,28,29]. Among these, SOX2 has been found overexpressed along the different stages of oral

carcinogenesis, from potentially malignant oral disorders to invasive carcinomas [30]. SOX2, a

member of the SOX family of high-mobility group transcriptional factors, holds a pivotal role

in embryonic development and the preservation of stemness features in both embryonic and

adult stem cell populations [29]. Robust evidence derived from preclinical studies involving

both cell cultures and genetically modified mouse models strongly supports the role of SOX2

as an oncogene. SOX2, indeed, crosstalks with multiple signaling pathways to tightly regulate

critical biological processes associated with tumor initiation and progression, such as cell-

cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition (EMT). Dysregulation

of SOX2 expression and activity occurs in several cancer types and often correlates with

advanced tumor stages, unfavorable prognosis, and drug resistance [31].

The expression-based and the functional-based characterization of CSCs, as well as their

spatial organization within the tumor mass and the surrounding tumor microenvironment

(TME), is an attractive field of investigation as it may provide remarkable information on the

existence of pre-metastatic niches.

In this study, we analyzed the expression-based distribution of CSCs within the bulk of the

oral tumor and their close margin. To this, we analyzed the gene expression profile of CSCs

markers and its potential impact on tumor recurrence and prognosis. Then, we assessed the

functional role of putative CSCs markers in the OSCC cell phenotype in vitro.

Results

SOX2 is overexpressed in the tumor core and its close margin of OSCC

patients with lymph node compromise

According to previous findings of our [11] and other research groups (GEO databases, S1

Table) 13 CSCs markers genes (BMI1, CD44, SOX2, OCT4, UBE2C, FAM3C, CXCR4,
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NANOG, RRM2, IGF-1R, KLF4, ALDH1A, CD133) are differentially expressed in OSCC tissues

compared to the relative healthy mucosa. Hence, to assess the distribution of tumor cells with

CSCs-like phenotype in OSCC core and close margins, we performed the gene expression pro-

file of these 13 CSCs markers in three different tissue samples (tumor core (T), tumor-free

close margin (CM) and adjacent health distant margin (DM)) collected from a cohort of 24

patients with histologically confirmed OSCC. Clinicopathological, as well as demographic

characteristics of the 24 patients enrolled in this study, are presented in Table 1.

Briefly, the mean age of patients at recruitment was 68.6; the 58.3% was composed by men.

Around half of patients routinely assumed alcohol (45.8%) and the 37.5% smoked. The main

tumor site was the tongue (62.5%) with a preeminent moderate histological grade (66.6%).

TNM stage was well distributed among the four categories. The main therapeutic approach

was radiotherapy, while chemotherapy was used only in the 25% of patients. Only primary

OSCC samples with histologically tumor-free CM were included in the study. Indeed, as

shown in the representative images of hematoxylin and eosin staining, T showed neoplastic

proliferation of pleomorphic cells, CM showed a mild dysplasia with atypical tissue morphol-

ogy only at the inner epithelial layers, and DM showed a mild hyperplasia without any signs of

disrupted tissue morphology (10x and 20x images in Fig 1A). First, Principal Component

Table 1. Demographic and clinicopathological characteristics of OSCC patients (n = 24).

VARIABLES NUMBER (n) PERCENTAGE (%)

Patient enrolled 24

Age (years) Mean (range) 68.6 (47 to 89)

Sex Male 14 58.3

Female 10 41.6

Alcohol 11 45.8

Smoke 9 37.5

Site of tumor Alveolar mucosa 6 25

Tongue 15 62.5

Cheek 3 12.5

Histologic grade Well 5 20.8

Moderate 16 66.6

Poor 3 12.5

T stage T1 14 58.3

T2 4 16.6

T3 5 20.8

T4 1 4.1

N stage N0 15 62.5

N1 5 20.8

N2 4 16.6

M stage M0 24 100

M1 0 0

TNM Stage I 9 37.5

II 3 12.5

III 7 29.1

IVA 5 20.8

Chemotherapy No 18 75

Yes 6 25

Radiotherapy No 14 58.3

Yes 10 41.6

https://doi.org/10.1371/journal.pone.0293475.t001
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Analysis (PCA) and unsupervised hierarchical clustering analysis confirmed that, overall, T

samples were consistently different from DM samples (Fig 1B and 1C). In detail, SOX2, BMI1,

UBE2C, OCT4, CXCR4, and CD44 were significantly upregulated in T vs DM (Log2|FC| >1, **
p-value< 0.01) while KLF4, FAM3C, ALDH1A1, CD133, and IGF-1R were significantly down-

regulated in T vs DM (Log2|FC|<1, ** p-value < 0.01) (Fig 1D). Then, we interestingly found

that CM samples appeared partially clustering with T (Fig 1B and 1C). Indeed, for some

patients, SOX2, CXCR4, and CD44 expression levels in CM samples were similar to those

observed in their relative T samples and higher than those observed in DM (Fig 1D). For

SOX2, this trend was confirmed also at the protein level by Western Blot (WB) (see patient #2

in S1 Fig). No significant differences were observed in NANOG and RRM2 (S2 Fig).

Analysis of clinicopathological correlations showed that high levels of SOX2 in T signifi-

cantly correlated with a higher TNM stage [32] (stage IVA vs stage I, p-value = 0.0007; stage

IVA vs stage II, p-value = 0.033; stage IVA vs stage III, p-value = 0.048) while high levels of

CXCR4 and BMI1 significantly correlated with a greater lymph node compromise (N status)

(CXCR4: N2 vs N0, p-value = 0.037) (BMI1: N2 vs N1, p-value = 0.032). Patients with greater

N status also showed significantly lower UBE2C levels in T (N2 vs N0, p-value = 0.037). Nota-

bly, high levels of SOX2 in CM significantly correlated with lymph node compromise (N2 vs
N0, log2 |FC| = 1.32, p-value = 0.0036). Overall, these data suggest that SOX2 might be

involved in OSCC local spreading.[NO_PRINTED_FORM]

TCGA analysis of CSCs markers in HNSCC

OSCC accounts for more than 90% of HNSCC [1,2]. Thus, we employed the RNA-seq data rel-

ative to 520 primary HNSCC tissue specimens and 44 healthy mucosa samples archived in

TCGA to confirm the impact of the above mentioned 13 CSCs markers on patient outcomes.

Fig 1. High SOX2 in T and CM samples correlate with N status of patients with OSCC. (A) Representative images

of tumor (T), close margin (CM), and distal margin (DM) tissue specimens stained with hematoxylin and eosin (10x

and 20x magnification). (B) Principal component analysis (PCA), (C) unsupervised hierarchical clustering analysis,

and (D) relative box plots showing gene expression pattern and levels (log2 |FC|) in T, CM, and DM samples (T vs DM,

** p-value< 0.01; CM vs DM, ** p-value< 0.01). (E) Correlation between CXCR4, BMI, UBE2C, SOX2 expression in

T and CM with TNM stage, tumor size (T status), and lymph node metastasis (N status) (p-value< 0.05 is statistically

significant).

https://doi.org/10.1371/journal.pone.0293475.g001
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We found that BMI1, CD44, SOX2, OCT4, UBE2C, FAM3C, CXCR4, NANOG, and RRM2
mRNA levels were significantly increased while IGF-1R, KLF4, and ALDH1A were decreased

in OSCC samples compared to healthy adjacent mucosa and that this trend significantly corre-

lated with tumor stage (Fig 2). Patients harboring low/medium expression of CXCR4 in tumor

samples showed a worse overall survival (OS) (p-value = 0.0055). No significant impact on OS

was observed for all the other DEGs (Fig 3).

SOX2 knockdown reduces OSCC cell migration ability

To investigate the contribution of SOX2 in the development of an aggressive and invasive

OSCC phenotype, we performed its transient knockdown in CAL27 and SCC15 OSCC cell

lines (Fig 4A). Then, we performed wound healing assays upon 24h, 48h and 72h transfection

with siSOX2 and, as reported in representative images and relative histograms, we observed

that SOX2 knockdown reduced in vitro migration of both CAL27siSOX2 and SCC15siSOX2 (*p-

value < 0.05, 72h CAL27) (*p-value < 0.05, 24h SCC15) (**p-value< 0.01, 48h SCC15) (**p-

value < 0.01, 72h SCC15) (Fig 4B; S1–S4 Movies). Because tumor migration is tightly associ-

ated with epithelial-to-mesenchymal transition (EMT), we further measured the expression

levels of key EMT markers vimentin (VIM) and e-cadherin (E-CAD) and mediators (SNAIL
and SLUG). Interestingly, we found that SOX2 knockdown strongly reduced both mRNA and

protein expression of the mesenchymal marker VIM and that of the EMT-associated transcrip-

tion factor SNAIL in both cell lines (*p-value <0.05) (Fig 4C). In agreement with in vitro data,

we found that both in T and CM samples, higher levels of SOX2 correlate with lower levels of

E-CAD and higher levels of VIM, compared to T and CM samples showing low levels of SOX2
(*p-value < 0.05) (S3A and S3B Fig). Finally, WB analyses showed that SOX2 knockdown was

associated with the reduction of pAKT protein levels thus suggesting a repression of AKT sig-

naling pathway (Fig 4D).

SOX2 knockdown attenuates CSCs-associated properties of OSCC cells

Next, we tested the effect of SOX2 silencing on OSCC cell anchorage-independent growth by

performing 3D tumor spheroid assay. As reported in representative images and relative

Fig 2. Correlation between CSCs markers and tumor stage in HNSCC patients. Correlation between the expression

of CSCs markers and tumor stage in a cohort of primary HNSCC tissue specimens (n = 520) derived from TCGA

dataset. CSCs expression markers are reported also in healthy mucosa samples (normal, n = 44). p-value Stage vs
Normal: *< 0.05, **< 0.01, ***< 0.001; p-value Stage vs Stage: ˚< 0.05.

https://doi.org/10.1371/journal.pone.0293475.g002
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histograms, SOX2 knockdown significantly reduced the number of tumor spheroids from a

mean of 164.21 to 139.81 in CAL27 and from 200.15 to 147.65 in SCC15 cells (*p-value < 0.05,

CAL27) (**p-value < 0.01, SCC15). Moreover, SOX2 knockdown significantly also affected

the spheroids diameter as demonstrated by the reduction from 193.66 μm to 134.39 μm in

CAL27 and from 192.39 μm to 131.26 μm in SCC15 cells (*p-value < 0.05) (Fig 5A; S5–S8

Movies). In line with these results, we found that SOX2 knockdown decreased the expression

of a consistent number of other CSCs markers (BMI1, UBE2C, CD44, NANOG, CXCR4,

Fig 3. Impact of CSCs markers expression on overall survival (OS) of HNSCC patients. Kaplan-Maier OS curves of

patients harboring high (n = 130, red line) and low/medium (n = 389, blue line) expression of CSCs markers. p-

value< 0.05 was considered statistically significant.

https://doi.org/10.1371/journal.pone.0293475.g003

Fig 4. SOX2 knockdown decreases OSCC cell migration and EMT. (A) qRT-PCR and western blot analyses of SOX2

in CAL27 and SCC15 cells (siSOX2 vs cntr). γ-TUB was used as a normalization control for protein quantification. (B)

Representative images of wound healing assay of CAL27 and SCC15 cells (siSOX2 vs cntr) at T0, T24, T48, and T72

(10x magnification) (left); Mean and SD of the gap area (a.u.: arbitrary unit) of three biological replicates (right). (C)

qRT-PCR and WB analysis of EMT markers in both cell lines upon SOX2 knockdown. (D) WB analysis of pAKT/AKT

in both cell lines upon SOX2 knockdown. All the experiments were carried out in triplicate. qRT-PCR are presented as

mean ± SD. p-value: *< 0.05, **< 0.01. ns: not significant.

https://doi.org/10.1371/journal.pone.0293475.g004
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FAM3C, and RRM2) in both CAL27 and SCC15 3D tumor spheroids (*p-value <0.05) (Fig

5B).

Targeting SOX2 improves sensitivity to cisplatin treatment in OSCC cells

The observation that SOX2 supports oral squamous CSCs properties was suggestive of its pos-

sible involvement in the modulation of response of OSCC to chemotherapy. Thus, we treated

CAL27siSOX2 and SCC15siSOX2 cells and relative control cells with growing concentration of

cisplatin (6μM, 12μM, 24μM, 48μM) for 24h upon 48h transient transfection with siSOX2 and

negative control siRNA, respectively. As shown in Fig 6A and 6B, SOX2 knockdown signifi-

cantly improved sensitivity of CAL27 cells at 12μM, 24μM and 48μM of cisplatin (*p-value

<0.05 12μM and 24μM) (**p-value<0.01 48μM) by increasing the percentage of cells under-

going apoptosis compared to control cells. This effect was confirmed in SCC15 cells only upon

treatment with 24μM cisplatin (*p-value <0.05).

Discussion

It is well known that the OSCC core is populated by a small fraction of CSCs, which may repre-

sent the culprits behind the anchorage-independent growth, migration, and spreading of

tumor cells [33]. The presence within the OSCC margins of a subpopulation of CSCs that may

function as cancer-initiating cells and, thus. may massively contribute to local recurrence, still

remains obscure because of the lack of surrogate biomarkers.

In the present study, whose experimental workflow is schematically reported in Fig 7, we

demonstrate that the OSCC is defined by a CSCs-associated molecular signature characterized

by high levels of SOX2, BMI1, UBE2C, OCT4, CXCR4, and CD44 and low levels of CD133,

KLF4, ALDH1A1, and IGF-1R. Notably, high levels of SOX2, BMI1, and CXCR4, as well as low

levels of UBE2C in the tumor core (T) significantly correlate with a greater tumor size and

lymph node compromise. Due to the short follow-up period (<3 years), our cohort of patients

did not show distant metastasis (M status) or death events, so correlations with M status or OS

Fig 5. SOX2 knockdown mitigates the stemness properties of OSCC cells. (A) Representative images and relative

histograms of 3D tumor spheroid morphology, count, and diameter in CAL27 and SCC15 cells (siSOX2 vs cntr). (B)

qRT-PCR analysis of a panel of stemness genes in both cell lines upon SOX2 knockdown. All the experiments were

carried out in triplicate and results are presented as mean ± SD. p-value: *< 0.05, **< 0.01. ns: not significant.

https://doi.org/10.1371/journal.pone.0293475.g005
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were not available. These results were supported by TCGA analysis showing that the identified

CSCs gene signature significantly correlates with advanced tumor stage, but not with OS, also

in patients with HNSCC. [24,27,28,33–41]. The only exception was for CXCR4, whose high

expression in HNSCC samples appears to correlate with a better OS.

The main finding of our study is that the close margin, defined as tumor-free by the con-

ventional histopathological examination, may show high levels of SOX2, CD44, and CXCR4 to

an extent comparable to that observed in the relative tumor core. Most importantly, the high

expression of SOX2 in the close margin significantly correlates with a greater lymph node com-

promise, thus suggesting a possible role of this marker in fostering the progression of OSCC.

Our results add an important piece of information to the current literature that, although

Fig 6. SOX2 silencing increases apoptosis in OSCC cells upon cisplatin administration. (A-B) Representative plots

of Annexin V/7-AAD apoptosis assay (left) in CAL27 and SCC15 cells (siSOX2 vs cntr) upon treatment with 6, 12, 24

and 48μM cisplatin (24h) and relative graphical data of total apoptotic cells (%) (right). All the experiments were

carried out in triplicate and results are presented as mean ± SD. p-value: *< 0.05, **< 0.01. ns: not significant.

https://doi.org/10.1371/journal.pone.0293475.g006

Fig 7. Schematic representation of the investigation workflow.

https://doi.org/10.1371/journal.pone.0293475.g007

PLOS ONE SOX2 causes invasiveness in OSCC

PLOS ONE | https://doi.org/10.1371/journal.pone.0293475 December 14, 2023 8 / 18

https://doi.org/10.1371/journal.pone.0293475.g006
https://doi.org/10.1371/journal.pone.0293475.g007
https://doi.org/10.1371/journal.pone.0293475


seems to agree on the overexpression of SOX2 along the different steps of oral cancer [30], still

remains debated on the role of SOX2 in OSCC progression [29,31,30] SOX2 has been corre-

lated either to a favorable or an unfavorable prognosis. In support of a role as favorable prog-

nostic biomarker, it has been reported that SOX2 is overexpressed during the early stages of

OSCC and that this predicts for reduced local recurrence [42]. On the contrary, other studies

have demonstrated that SOX2 overexpression promotes EMT and lymph node metastasis [42–

47] while SOX2 knockdown inhibits HNSCC cell self-renewal and chemoresistance [34]. A

recent retrospective study also highlights that SOX2 is overexpressed in pre-malignant oral dis-

orders and that this predicts for oral cancer evolution [42, 48].

A survey of the literature indicates that SOX2 affects tumor progression by acting on several

signaling pathways in a context-dependent manner. SOX2 may promote EMT by transcrip-

tionally activating SNAIL, SLUG, and TWIST, which in turn act as transcription factors

involved in the repression of the epithelial marker E-CADHERIN and the activation of the

mesenchymal marker VIMENTIN. In breast and pancreatic cancer, indeed, the overexpres-

sion of SOX2 leads to the EMT through the repression of the epithelial genes E-CAD and Zo-1
[49,50]. SOX2 may promote the remodeling of the extracellular matrix (ECM). In lung cancer,

indeed, SOX2 activates AKT/mTOR signaling pathway, which in turn enhances the activity of

the matrix-metalloproteinase-2 (MMP2) [51]. [49–51] In prostate cancer, SOX2 fosters the

EMT by directly binding to the β-catenin enhancer and thus activating the Wnt/β-catenin

pathway [52]. In this regard, in this study we show that SOX2 knockdown remarkably reduces

the OSCC cells migration ability and that is associated with inhibition of the EMT as suggested

by the significant reduction of SNAIL and VIMENTIN and the slight increase of E-CAD-

HERIN. Furthermore, we show that SOX2 silencing is associated with the repression of AKT

signaling pathway as demonstrated by the reduction of pAKT protein levels.

In bladder cancer, tumor progression is associated with the strong up-regulation of SOX2

and NANOG and the consequent acquisition of cancer stem cell properties [53,54]. According

to our results, silencing SOX2 leads to the inhibition of anchorage-independent growth of

CAL27 and SCC15 cells and, thus, to the significant reduction of 3D oral tumor spheroids

generation.

A previous study highlighted that, in HNSCC, SOX2 triggers cisplatin resistance by pro-

moting drug efflux via activation of the ATP-binding cassette ABCG22 (ABCG2) transporter

[55]. In ovarian cancer SOX2 ectopic overexpression promotes tumor cell resistance to several

chemotherapeutic compounds, such as cisplatin, carboplatin, and paclitaxel, by altering the

homeostasis between pro- and anti-apoptotic proteins. Conversely, SOX2 knockdown restores

drug sensitivity by causing mitochondrial dysfunction, apoptosis, and autophagy [56]. In

EGFR-mutated lung cancer cells, SOX2 overexpression promotes resistance to erlotinib by

repressing the expression of proapoptotic proteins BIM and BMF [57]. Concerning the role of

SOX2 in OSCC response to chemotherapy, our results indicate that the loss of SOX2 improves

CAL27 and SCC15 sensitivity to cisplatin treatment by increasing the percentage of apoptotic

events. However, further detailed mechanisms underlying the contribution of SOX2 to a more

aggressive behavior remain to be entirely elucidated and will be subject of future studies.

Collectively, our study underlines that the molecular analysis highlights the existence of

residual tumor cells over-expressing CSCs markers even in the OSCC close margins defined as

tumor-free by the conventional histopathological examination. In particular, we show for the

first time that SOX2 is over-expressed not only in the tumor core but also in the close margin

of OSCC patients with advanced tumor stage and lymph node compromise, thus suggesting

that high levels of SOX2 may predict for a local spreading. Furthermore, we demonstrate that

SOX2 knockdown abrogates in vitro OSCC cell migration ability and CSCs-traits, and at the

same time, improves OSCC cell sensitivity to cisplatin. Future in vitro and in vivo studies are
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mandatory to investigate the molecular mechanisms underlying the role of SOX2 in OSCC

spreading and its potential as therapeutic target to prevent OSCC dissemination.

Materials and methods

In silico analysis through Gene Expression Omnibus (GEO database)

CSCs markers genes expression were explored using GEO database. Research queries included

“Homo sapiens” and “oral squamous cell carcinoma” as keywords. After a survey of the litera-

ture, 4 datasets containing CSCs gene expression profiles of both OSCC, and healthy oral tis-

sues were selected (S1 Table) and analyzed in R Software (Version: 1.3.1093) by using “limma”

bioconductor package to identify the differentially expressed genes (DEGs) between OSCC

and healthy tumor tissues. DEGs were selected by using the following criteria:log2|FC|�1 and

adjust p-value� 0.05.

Patients and clinical samples

Twenty-four OSCC patients were surgically treated at the Oral Pathology and Oral Surgery

Unit of “Magna Graecia” University, between December 2020 and December 2022. For each

patient, primary tissue specimens were collected at 2 cm from the macroscopic lesion bound-

aries defined visually and by palpation. Laser Capture Microdissection (LCM) was used to

obtain three different area from each biopsy: i) tumor core (T), ii) tumor-free close margin

(CM) within 1–4.9 mm from the lesion boundaries and iii) adjacent health distant margin

(DM) collected> 1.5 cm from the lesion boundaries, as recommended from current clinical

guidelines [7,10,58,59]. Two μm serial sections were obtained from formalin-fixed and paraf-

fin-embedded T, CM and DM tissue specimens. Samples collection was performed in the

same two-year’s time frame.

All patients provided a written informed consent at the time of data collection.

No information that could identify individual participants are available. The procedures

reported in this study were performed in accordance with the Helsinki Declaration guidelines

(2008) on human experimentation and good clinical practice (good clinical practice or GCP).

TCGA data analysis

A total of 564 samples were analyzed by TCGA Biolinks R Bioconductor [60] for the expres-

sion of 13 selected CSCs marker genes. OSCC samples were selected using ALCAN database,

(http://ualcan.path.uab.edu/cgi-bin/ualcan-res.pl) [61].

Cell lines and culture

OSCC cell lines CRL-2095 (CAL27) and CRL-1623 (SCC15) derived from tongue squamous

carcinoma were purchased from the American Type Culture Collection (ATCC, Rockville,

MD, USA). CAL27 cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM)

(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% (v/v) Fetal Bovine Serum (FBS)

(Invitrogen, San Diego, CA, USA), and 1% (v/v) of penicillin and streptomycin 100 U/ml

(Sigma-Aldrich, St. Louis, MO, USA). Conversely, for SCC15 cell line a 1:1 mixture of DMEM

medium (Sigma-Aldrich, St. Louis, MO, USA) and Ham’s F-12 Nutrient Mix (Thermo Fisher

Scientific, Waltham, MA, USA), supplemented with 90% (v/v) hydrocortisone 400 ng/ml

(Sigma-Aldrich, St. Louis, MO, USA), 10% FBS, and 1% (v/v) of penicillin/streptomycin 100

U/ml was used. Cells were maintained in a 5% CO2 humidified atmosphere at 37˚C and rou-

tinely examined for Mycoplasma contamination. CAL27 and SCC15 were selected for their

ability to generate three-dimensional (3D) tumor spheroid in vitro.
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RNA isolation, cDNA generation, and Real-time quantitative reverse

transcription (qRT)-PCR

Total RNA was isolated using TRIzol™ Reagent (Life Technologies, Carlsbad, CA, USA)

according to the manufacturer’s instructions. Extracted RNA quality and quantification were

assessed using NanoDrop1 ND-1000 (Thermo Fisher Scientific, Waltham, MA, USA) [62–

64]. Then, 1μg of total RNA were retrotranscribed using High-Capacity cDNA Reverse Tran-

scription Kit (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Synthesized cDNA

(50 ng) was used for qRT-PCR performed using SYBR™ Green PCR Master Mix (Thermo

Fisher Scientific, Waltham, Massachusetts, USA), and 400 nM of each primer pair [65]. Genes

analyzed were as follow: E-CAD, VIM, SNAIL, SLUG, SOX2, KLF4, BMI1, UBE2C, CD44,

NANOG, OCT4, CXCR4, FAM3C, RRM2, CD133, IGF-1R, and ALDH1A1. The thermal profile

used were structured as follow: 1 step at 95˚C for 10 min, 45 cycles at 95˚C for 30 sec, and 60

sec at 60˚C. The relative mRNA expression level was calculated by the 2−ΔΔCt method using

GAPDH or RPL38 as housekeeping genes for cell lines or tissue specimens, respectively [66].

Each reaction was performed in triplicate.

Western blot

Protein extraction and Western Blot were performed as previously reported by Chirillo R et al

[67]. Antibodies against SOX2 (1:500, sc-365823), VIM (1:500, sc-7557), E-CAD (1:500, sc-

8426), SLUG (1:500, sc-166476), SNAIL (1:500, sc-393172) were purchased from Santa Cruz

Biotechnology (Santa Cruz Biotechnology, Dallas, Texas, USA); antibodies against AKT

(1:1000, #9272) and p-AKT (1:1000, #9271) were obtained from Cell Signaling Technology

(Danvers, Massachusetts, USA). Goat polyclonal anti-γ-Tubulin antibody (1:3000; sc-7396)

(Santa Cruz Biotechnology, Dallas, TX, USA) and RPL38 (1:1000, PA5-88313) (Thermo

Fisher, Waltham, MA, USA) served as a reference for samples loading. The membranes were

washed for 30 min with T-TBS solution and then incubated for 1h at room temperature with

peroxidase-conjugated secondary antibodies (Peroxidase AffiniPure Sheep Anti-Mouse IgG,

1:10000; Peroxidase AffiniPure Donkey Anti-Goat IgG, 1:10000) (Jackson ImmunoResearch

Labs, West Grove, PA, USA). Chemiluminescence signals were detected using Western Blot-

ting Luminol Reagent (Santa Cruz Biotechnology, Dallas, TX, USA) and acquired by UVItec

Alliance Mini HD9 (UVItec Ltd. Cambridge, Cambridge, UK). The protein band intensity on

western blots was quantified and normalized using ImageJ Software (http://rsb.info.nih.gov/ij/

) [68–70].

SOX2 transient knockdown

CAL27 and SCC15 cells were transfected using Lipofectamine™ 3000 Transfection Reagent

(Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocol.

SOX2 siRNA was purchased from Thermo Fisher Scientific. To ensure an optimal control, the

two cell lines were further transfected with Silencer™ Select Negative Control siRNA (cntr)

(Thermo Fisher Scientific, Waltham, MA, USA). The evaluation of transfection efficiency was

performed by western blot and qRT-PCR at 48h [71].

Wound healing assay

1x106 cells/well were seeded in 6-wells standard plates. To simulate a wound, the cells mono-

layer was manually scratched using a pipette tip. Wound closure was then monitored through

images and time-lapse video recorded at 0, 24 and 48h using Leica THUNDER Imaging
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Systems DMi8 (Leica Microsystems S.r.l., Wetzlar, Germany). Subsequently, cell migration

was quantified by Leica Application Suite Software [72].

3D tumor spheroid assay

CAL27 and SCC15 were seeded in Corning1 Costar1Ultra-Low Attachment Multiple Well

Plates (Corning Inc., New York, NYC, USA) at a concentration of 15x103 cells/mL. OSCC 3D

tumor spheroids were cultured in a previously described sphere medium [73]. OSCC tumor

spheroids were grown in a 5% CO2 humidified atmosphere at 37˚C and monitored through

images and time-lapse video recorded for 6 days using Leica THUNDER Imaging Systems

DMi8 (Leica Microsystems S.r.l., Wetzlar, Germany). The collected tumor spheroids were

resuspended in an appropriate volume of culture medium and counted according to the fol-

lowing formulas:

sphere concentration ¼ sphere count � counting volume ðmLÞ

total sphere count ¼ sphere concentration� total volume

Their diameters were then measured through the internal image measuring feature of Leica

Application Suite Software.

Cisplatin treatment

CAL27cntr, CAL27siSOX2, SCC15cntr, SCC15siSOX2 were seeded in 6-wells standard plates. Cis-

platin was added into the medium at various concentrations (6μM, 12μM, 24μM, 48μM) for

24h. Treatment was performed upon 48h of transient transfection with siSOX2 or negative

control siRNA, respectively.

Flow cytometry apoptosis analysis

To identify cells actively undergoing apoptosis, a double staining with Annexin V and PI was

performed using Alexa Fluor1488 Annexin V/Dead Cell Apoptosis Kit (Thermo Fisher Sci-

entific, Waltham, MA, USA) according to the manufacturer’s instructions. Cells were then

incubated at room temperature for 15 min in the dark. Each tube was diluted with 400μL of

Annexin Binding Buffer. Flow cytometry assays were performed using the BD LSRFortessa™
X-20 (BD Biosciences, San Jose, CA, USA). Data analysis was carried out using FlowJo™ v10

Software (BD Biosciences, San Jose, CA) [72,74,75].

Statistical analysis

Statistical tests were conducted using GraphPad Prism 9 and R software. Gene expression data

were analyzed by Principal Component Analyisis (PCA) and unsupervised hierarchical clus-

tering. ANOVA multi-sample test (permutation-based 5% FDR) was performed on the result-

ing dataset, and the significant DEGs were grouped by unsupervised hierarchical clustering.

Multivariate correlations between gene expression data and clinicopathological parameters

were performed using a Cox’s multiple linear regression model based on Firth’s bias correction

method. The statistical significance of the in vitro experimental data was analyzed using the

two-tailed Student’s t-test (for comparisons of two treatment groups) or one-way ANOVA

(for comparisons of three or more groups). All results were expressed as the means ± standard

deviation (SD). A p-value� 0.05 was considered statistically significant.
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Supporting information

S1 Fig. SOX2 protein levels in T, CM, and DM of two representative OSCC samples. WB

analysis of SOX2 in T, CM, and DM samples of two representative OSCC patients (#1 and #2)

and relative optical densitometry. In patient #1, SOX2 protein level is higher in T compared to

CM and DM. In patient #2, SOX2 protein level is similar in T and CM and higher compared

to DM. RPL38 was used as a normalization control for protein quantification.

(PDF)

S2 Fig. NANOG and RRM2 did not show any significant difference among T, CM and DM

samples. Box plots showing NANOG and RRM2 gene expression levels (log2 |FC|) in T, CM,

and DM samples (ns: not significant).

(PDF)

S3 Fig. High SOX2 levels correlate with EMT phenotype in tissue samples. Box plots show-

ing the relative expression of VIM and E-CAD in both T (A) and CM (B) samples clustered

according to high or low SOX2 levels, respectively (*ANOVA t-test p value < 0.05).

(PDF)

S1 Table. Details of the selected four databases.

(PDF)

S1 Raw images. Uncropped plots relative to all Western Blot analyses. (A) Uncropped plot

relative to Western Blot analysis (showed in Fig 4A) of SOX2 in CAL27 and SCC15 cells

(siSOX2 vs cntr). γ-TUB was used as a normalization control for protein quantification. (B-C)

Uncropped plot relative to Western Blot analyses (showed in Fig 4C) of EMT markers

(E-CAD, VIM, SLUG, SNAIL) in CAL27 and SCC15 cells (siSOX2 vs cntr). γ-TUB was used

as a normalization control for protein quantification. (D) Uncropped plot relative to Western

Blot analyses (showed in Fig 4D) of AKT and p-AKT in CAL27 and SCC15 cells (siSOX2 vs
cntr). γ-TUB was used as a normalization control for protein quantification. (E) Uncropped

blot relative to Western Blot analysis (showed in S1 Fig) of SOX2 in T, CM and DM samples of

two representative patients (#1 and #2). RPL38 was used as a normalization control for protein

quantification.

(DOCX)

S1 Movie. Time lapse of wound healing assay of CAL27 cntr for 72h (10x magnification).

(MP4)

S2 Movie. Time lapse of wound healing assay of CAL27 siSOX2 for 72h (10x magnifica-

tion).

(MP4)

S3 Movie. Time lapse of wound healing assay of SCC15 cntr for 72h (10x magnification).

(MP4)

S4 Movie. Time lapse of wound healing assay of SCC15 siSOX2 for 72h (10x magnifica-

tion).

(MP4)

S5 Movie. Time lapse of 3D tumor spheroid formation assay of CAL27 cntr for 6 days (10x

magnification).

(MP4)
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S6 Movie. Time lapse of 3D tumor spheroid formation assay of CAL27 siSOX2 for 6 days

(10x magnification).

(MP4)

S7 Movie. Time lapse of 3D tumor spheroid formation assay of SCC15 cntr for 6 days (10x

magnification).

(MP4)

S8 Movie. Time lapse of 3D tumor spheroid formation assay of SCC15 siSOX2 for 6 days

(10x magnification).

(MP4)
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