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Abstract

Brown adipose tissue (BAT) dissipates energy as heat, contributing to temperature control,

energy expenditure, and systemic homeostasis. In adult humans, BAT mainly exists in

supraclavicular areas and its prevalence is associated with cardiometabolic health. How-

ever, the developmental origin of supraclavicular BAT remains unknown. Here, using

genetic cell marking in mice, we demonstrate that supraclavicular brown adipocytes do not

develop from the Pax3+/Myf5+ epaxial dermomyotome that gives rise to interscapular BAT

(iBAT). Instead, the Tbx1+ lineage that specifies the pharyngeal mesoderm marks the

majority of supraclavicular brown adipocytes. Tbx1Cre-mediated ablation of peroxisome pro-

liferator-activated receptor gamma (PPARγ) or PR/SET Domain 16 (PRDM16), compo-

nents of the transcriptional complex for brown fat determination, leads to supraclavicular

BAT paucity or dysfunction, thus rendering mice more sensitive to cold exposure. Moreover,

human deep neck BAT expresses higher levels of the TBX1 gene than subcutaneous neck

white adipocytes. Taken together, our observations reveal location-specific developmental

origins of BAT depots and call attention to Tbx1+ lineage cells when investigating human rel-

evant supraclavicular BAT.

Introduction

Brown adipose tissue (BAT) is a thermogenic organ found in almost all mammals that dis-

sipates energy as heat, thus contributing to homeostatic regulation of body temperature

and metabolic physiology. In newborn humans, the predominant BAT depot is located in

the interscapular region (iBAT). Through poorly understood mechanisms [1], iBAT under-

goes progressive involution, scatters around the back during adolescence, and becomes

undetectable in most adults [2–4]. In adult humans, metabolically active BAT instead exists

in cervical and supraclavicular areas, collectively referred as neck BAT [5–9]. The
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prevalence of neck BAT is inversely associated with body mass index [10,11] and declines

as a function of age [9,12,13], indicating the potential involvement of neck BAT dysfunc-

tion in the development of obesity and related metabolic disorders [14]. However, the line-

age origins and mechanisms for age-dependent functional decline of neck BAT remain

almost unknown.

In the past decade, tremendous efforts have been made in our understanding of the devel-

opment, recruitment, and activation of BAT. Nonetheless, most mechanistic studies were per-

formed on rodent iBAT, due to its large size and easy accessibility. BAT and skeletal muscle

have shared metabolic features and embryonic origins. Genetic fate mapping experiments in

mice demonstrate that the dermomyotome regions of the somites, marked by the expression

of transcription factors including Pax3, Pax7, Meox1, and Myf5, give rise to most fat cells

within the interscapular and retroperitoneal adipose depots [15–20]. The fact that these line-

ages trace to dorsal-anterior-located muscle, brown and white adipocytes suggests that they

are location markers, rather than identity markers. Therefore, it is unlikely, although not tested

or reported, that Pax3+/Myf5+ myoprogenitors form brown adipocytes in ventral neck BAT

that has a very distinct location compared to dorsal-anterior BAT.

In vertebrates, head and neck muscles arise from the unsegmented cranial mesoderm, in

distinction to somite-derived trunk muscles [21]. Transcriptional factors such as Tbx1, Ptx2,

and Islet1 specify the cardiopharyngeal mesoderm (CPM) that gives rise to muscles of the head

and heart [22–24]. Supraclavicular BAT (scBAT) in mice is located in a region analogous to

human neck BAT (Fig 1A). Though smaller than iBAT, subscapular and supraspinal (also

termed as posterior cervical) BAT depots in the dorsal trunk (Fig 1B), scBAT possesses similar

thermogenic activity and regulation [25,26]. However, the developmental origins of scBAT

adipocytes have not been defined. We hypothesized that the CPM also contributes to connec-

tive tissues in the neck region, including scBAT. In this study, taking advantage Pax3Cre,
Myf5Cre, and Tbx1Cre-mediated lineage tracing and gene ablation, we identified the location-

specific myogenic progenitors for scBAT versus iBAT in mice. Importantly, scBAT as Tbx1-

progeny appears to be true in humans as well. This knowledge can be leveraged in the future

to investigate location-dependent functions of BAT and to target scBAT specifically for meta-

bolic improvements.

Results

Pax3+ progenitors rarely give rise to supraclavicular brown adipocytes

Pax3, together with its orthologue Pax7, initiate a transcriptional cascade including Myf5 and

Myod for myogenesis. To determine if supraclavicular BAT arises from Pax3+ myogenic pro-

genitors, we mated Pax3Cre to Rosa26LSL-mT/mG reporter mice (Fig 1C). Pax3-derived cells

express membrane-tethered GFP (mG), while those non-Pax3 progeny cells express mem-

brane-tethered tdTomato (mT). As expected, brown adipocytes within dorsal BAT including

interscapular, subscapular, and supraspinal depots were almost exclusively GFP+ (Fig 1D and

1E), indicating their Pax3-lineage origin. Mouse scBAT localizes in the ventral site of the neck,

beneath the submandibular gland and tightly connected to the jugular vein (Fig 1F). We dis-

sected both medial and lateral scBAT depots, which are above and below the jugular vein

respectively. Very rare brown adipocytes in these scBAT depots (approximately 6.7% in medial

and 0.3% in lateral) were GFP+ (Fig 1G and 1H). No adipocytes in either iBAT or scBAT were

labeled in Cre-negative animals (S1 Fig), validating reagents and methods used for lineage

tracing in the study. These data demonstrate that most scBAT adipocytes are not progeny of

somite myogenic progenitors.
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Myf5+ progenitors seldom give rise to scBAT adipocytes

Myf5+ myogenic progenitors contribute to trunk and limb muscles, and dorsal adipose tissues

including iBAT. To determine if scBAT arises from Myf5+ cells, we mated Myf5Cre to

Rosa26LSL-mT/mG reporter mice (Fig 2A). Similar to the Pax3Cre reporter, adipocytes within

dorsal BAT depots were mostly mG+ (Fig 2B and 2D), representing their somite origins. How-

ever, only approximately 7% of adipocytes in the medial scBAT were GFP-labeled and essen-

tially no adipocytes were labeled in the lateral scBAT (Fig 2C and 2D). Collectively, our

Pax3Cre and Myf5Cre cell marking data demonstrate that scBAT and iBAT do not share the

same myogenic origins.

Fig 1. scBAT does not arise from Pax3+ progenitor cells. (A) Schematic representation of the location of peri-scapular and neck BAT in mice. (B)

Representative photo of major BAT depots examined in this study. (C) Generation of the reporter mice for Pax3+ cells. (D) Fluorescent images of dorsal BAT

depots from 5-week-old male Pax3-mTmG mice (green = mG, red = mT, blue = DAPI, scale = 50 μm). (E) Frequency of GFP+ cells within each BAT depot

(n = 3). (F) Anatomic location of supraclavicular BAT depot (indicated with red dotted line). (G) Fluorescent images of medial and lateral scBAT from

Pax3-mTmG mice. (green = mG, red = mT, blue = DAPI, scale = 50 μm). (H) Quantification of GFP+ cells as a percentage of total adipocytes (n = 3). Data are

presented as mean ± SEM. Extended data are listed in S1 Data. BAT, brown adipose tissue; scBAT, supraclavicular brown adipose tissue.

https://doi.org/10.1371/journal.pbio.3002413.g001
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To validate the lineage marking data, we then generated Pparg knockout mice specifically in

Myf5+ cells (PpargΔMyf5). The Pparg gene encodes the master transcriptional factor for adipo-

genesis—peroxisome proliferator-activated receptor gamma (PPARγ). As a result, severe BAT

paucity was observed in the interscapular and subscapular depots (Fig 3A and 3B). Less obvi-

ous mass reduction was seen in the supraspinal BAT (Fig 3A and 3B), possibly due to the exis-

tence (approximately 15%) of non-Myf5+ progeny cells in this depot (Fig 2B and 2D). Western

blotting showed a complete loss of PPARγ protein and significant reduction in UCP1 expres-

sion (Fig 3C). In contrast, scBAT did not reduce its size in PpargΔMyf5 mice (Fig 3D). Instead,

there was a trending increase in weight when compared to littermates (Fig 3E), suggesting a

potential compensation for iBAT paucity. Myf5Cre does not target scBAT, thus no change in

PPARγ or UCP1 expression was observed (Fig 3F). Taken together, Myf5+ myogenic progeni-

tors are essential for the development of dorsal-located BAT, but not ventral-located scBAT.

scBAT adipocytes arise from Tbx1+ progenitors

The Tbx1 gene is expressed in CPM that gives rise to the branchiomeric and transition zone

muscles between head and trunk. To determine if Tbx1+ progenitors mark the nearby scBAT,

we generated Tbx1Cre-dependent mT/mG reporter mice (Fig 4A). The tracing of the CPM was

confirmed by the mT-labeling of scapular muscle (Myf5-lineage) and the mG-labeling of cla-

vicular muscle (Tbx1-lineage) (S2 Fig). In consistent with their origin as Myf5+ progeny,

brown adipocytes in dorsal BAT, including interscapular, subscapular, and supraspinal depots,

were not labeled at all by mG in Tbx1-mT/mG mice (Fig 4B and 4D). In contrast, nearly 50%

of scBAT adipocytes are mG+ (Fig 4C and 4D). We saw the even distribution of Tbx1-lineage

Fig 2. scBAT does not arise from Myf5+ precursor cells. (A) Generation of the reporter mice for the Myf5+ lineage cells. (B, C)

Fluorescent images of dorsal BAT (B) or scBAT (C) from 2-month-old female Myf5-mTmG mice (green = mG, red = mT,

blue = DAPI, scale = 50 μm). (D) Frequency of GFP+ cells within each BAT depot (n = 2–5). Data are presented as mean ± SEM.

Extended data are listed in S1 Data. BAT, brown adipose tissue; scBAT, supraclavicular brown adipose tissue.

https://doi.org/10.1371/journal.pbio.3002413.g002
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adipocytes across the whole scBAT, which is preserved in aged mice (Fig 4E). Salivary gland

can be found to be connected with the medial end of scBAT. Salivary gland is derived from

oral epithelium, thus not labeled by mG (Fig 4E). It is currently unclear what the identity of

these mT+ non-Tbx1 progeny adipocytes in the scBAT depot.

scBAT contributes to temperature maintenance in female mice

To evaluate the functional contribution of scBAT to systemic metabolism, we generated Tbx1-

specific Pparg knockout mice (PpargΔTbx1). In female PpargΔTbx1 mice, PPARγ deficiency leads

to a specific decrease of scBAT weight (Fig 5A), but not of any dorsal depots including iBAT

(Fig 5B–5D). The approximately 50% reduction in scBAT weight is consistent with the labeling

efficiency of Tbx1+ progenitors (Fig 4) and the knockout efficiency of the Pparg genes in

PpargΔTbx1 scBAT (S3A Fig). Body mass and weights of WAT and skeletal muscle were not

affected in these PpargΔTbx1 female (S3B and S3C Fig). Areas indicating adipose “whitening”

and tissue degeneration could be found in PpargΔTbx1 scBAT (Fig 5E). RT-qPCR revealed a sig-

nificant down-regulation of total transcripts of thermogenic genes in scBAT but not iBAT (Fig

5F and 5G). As a result, female PpargΔTbx1 mice reduced more body temperature when chal-

lenged with cold, compared to Ppargf/f controls (Fig 5G). Similar scBAT paucity but intact dor-

sal BAT depots were observed in male PpargΔTbx1 mice (Fig 5I–5L). Body, WAT, and muscle

weights were comparable between 2 genotypes in males (S3D and S3E). Histological assess-

ment of scBAT found more unilocular adipocytes in PpargΔTbx1 mice (Fig 5M), indicative of

the loss of brown identity in PPARγ-deficient adipocytes. Some thermogenic genes like

Prdm16 and Dio2 were specifically down-regulated in male scBAT (Fig 5N), but not in iBAT

Fig 3. Intact scBAT in mice with PPARγ deficiency in the Myf5+ lineage. (A, B) Indicated dorsal BAT depots from 8-month-old Ppargf/f (mixed sex,

n = 10) and PpargΔMyf5 mice (mixed sex, n = 6) were isolated, photographed (A, scale = 1 cm), and weighed (B). (C) Representative immunoblotting of

UCP1 and PPARγ with iBAT proteins from Ppargf/f and PpargΔMyf5 mice. Densitometry (n = 9–10) is shown to the right. (D, E) scBAT depots were

isolated from 8-month-old Ppargf/f (n = 10) and PpargΔMyf5 mice (n = 6), photographed (D, scale = 1 cm), and weighed (E). (F) Representative UCP1

and PPARγ expression in scBAT from Ppargf/f and PpargΔMyf5 mice. Densitometry (n = 9–10) is shown to the right. Data are presented as mean ± SEM.

***, p< 0.01 by unpaired Student’s t test. Extended data are listed in S1 Data. BAT, brown adipose tissue; iBAT, interscapular brown adipose tissue;

PPARγ, peroxisome proliferator-activated receptor gamma; scBAT, supraclavicular brown adipose tissue.

https://doi.org/10.1371/journal.pbio.3002413.g003
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(Fig 5O) or inguinal WAT (S3F Fig). Nonetheless, male Ppargf/f and PpargΔTbx1 mice had simi-

lar Ucp1 expression and tolerance to cold challenge (Fig 5P), indicating that male mice rely

less on scBAT for thermogenesis.

scBAT paucity does not exacerbate diet-induced obesity

In humans, scBAT prevalence is negatively correlated with BMI and cardiometabolic dysfunc-

tion. We thus went on to test if scBAT paucity renders mice more susceptible to high-fat diet

(HFD)-induced obesity and complications. We subjected both female and male PpargΔTbx1

Fig 4. scBAT is composed of Tbx1+ lineage adipocytes. (A) Tbx1+ lineage cell labeling with the Tbx1-mTmG mice. (B, C)

Fluorescent images of dorsal BAT (B) and scBAT (C) from 6-week-old female Tbx1-mTmG mice (green = mG, red = mT,

blue = DAPI, scale = 50 μm). (D) Frequency of GFP+ cells within each BAT depot (n = 3). Data are presented as

mean ± SEM. (E) Fluorescent images of scBAT from a 1-year-old Tbx1-mTmG mouse (green = mG, red = mT, blue = DAPI,

scale = 500 μm). Salivary gland (epithelial lineage) was labeled by mT. Data are presented as mean ± SEM. Extended data are

listed in S1 Data. BAT, brown adipose tissue; scBAT, supraclavicular brown adipose tissue.

https://doi.org/10.1371/journal.pbio.3002413.g004
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Fig 5. PPARγ deficiency in the Tbx1+ lineage impairs scBAT function. (A–D) Weights of supraclavicular (A), interscapular (B), subscapular (C), and

supraspinal (D) BAT depots from 4-month-old Ppargf/f (n = 7) and PpargΔTbx1 (n = 6) female mice. (E) Representative HE staining of scBAT from

Ppargf/f and PpargΔTbx1 female mice (scale = 100 μm). # indicates areas of adipose whitening and tissue degeneration. (F, G) Thermogenic gene

expression in scBAT (F) and iBAT (G) of female mice was determined by RT-qPCR and adjusted by total tissue RNA to calculate the relative total

transcript levels. (H) Changes in core body temperature of Ppargf/f (n = 9) and PpargΔTbx1 (n = 7) female mice during cold challenge in 4˚C. (I–L)

Weights of supraclavicular (I), interscapular (J), subscapular (K), and supraspinal (L) BAT depots from 4-month-old Ppargf/f (n = 14) and PpargΔTbx1

(n = 10) male mice after 3 weeks of cold challenge. (M) Representative HE staining of scBAT from Ppargf/f and PpargΔTbx1 male mice (scale = 100 μm).

(N, O) Thermogenic gene expression in scBAT (N) and iBAT (O) of male mice was determined by RT-qPCR and adjusted by total tissue RNA to

calculate the relative total transcript levels. (P) Changes in core body temperature of Ppargf/f (n = 6) and PpargΔTbx1 (n = 17) male mice during cold

challenge in 4˚C. Data are presented as mean ± SEM.*, p< 0.05; **, p< 0.01; and ***, p< 0.001 by unpaired Student’s t test or two-way ANOVA (H).

Extended data are listed in S1 Data. BAT, brown adipose tissue; iBAT, interscapular brown adipose tissue; PPARγ, peroxisome proliferator-activated

receptor gamma; scBAT, supraclavicular brown adipose tissue.

https://doi.org/10.1371/journal.pbio.3002413.g005
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mice and their littermate controls to HFD feeding; however, no difference in weight gain was

observed between genotypes (Fig 6A and 6B). PpargΔTbx1 mice also had similar tolerance to

glucose (Fig 6C), suggesting scBAT paucity in mice is not sufficient to cause metabolic

dysfunction.

Obesity induces systemic and hepatic inflammation, and BAT recruitment and UCP1 acti-

vation by cold have been suggested to participate in resolving systemic and hepatic inflamma-

tion [27,28]. To examine if scBAT is involved in inflammation resolution, we subjected HFD-

fed PpargΔTbx1 mice to lipopolysaccharide (LPS) injection to generate acute endotoxemia [29].

Notably, higher serum levels of LPS were observed in PpargΔTbx1 mice compared to controls

(Fig 6D), indicative of possible role of scBAT in neutralizing LPS. As expected, Ucp1 and Adi-
poq gene expression was down-regulated in scBAT of HFD-fed, LPS-treated PpargΔTbx1 mice

(Fig 6E and 6F). However, we did not observe any significant changes in the expression of

inflammatory genes such as Il1b, Il6, Tnfa, and Ifng in either scBAT (Fig 6G) or liver (Fig 6H).

We speculate that, because of the intact dorsal BAT depots in these animals, specific paucity of

the smaller scBAT would not predispose animals to HFD-induced metabolic dysfunction and

inflammation.

PRMD16 drives the thermogenic programing of scBAT

Next, we investigated the molecular determinants of scBAT development and function.

Because of the similar thermogenic activity and regulation between scBAT and iBAT [25,26],

we postulated that the transcriptional regulatory circuits for iBAT will control scBAT differen-

tiation and/or activity [30,31]. PRDM16 dictates the brown adipogenic switch of myogenic

progenitors [15] and is required for WAT browning and the maintenance of brown adipocyte

identify [32,33]. In PpargΔTbx1 mice, Prdm16 gene expression was down-regulated in scBAT

(Fig 5F and 5N). To investigate the role of PRDM16 in scBAT, we generated Tbx1Cre-mediated

PRDM16 knockout (Prdm16ΔTbx1) mice. While we did not observe weight changes in tissues

including dorsal BAT depots, scBAT, WAT, and quadricep muscles in female Prdm16ΔTbx1

mice (Fig 7A), these animals showed more body temperature loss during the cold tolerance

test (Fig 7B). HE histology demonstrated adipose whitening when PRDM16 is absent (Fig 7C).

RT-qPCR analysis revealed profound down-regulation of thermogenic/adipogenic genes

including Ucp1, Pparg, Dio2, Cidea, Pparg1c, and Adipoq specifically in scBAT, but not iBAT

of female Prdm16ΔTbx1 mice (Fig 7D). Similar findings were observed in male Prdm16ΔTbx1

mice. Compared to littermate controls, male Prdm16ΔTbx1 mice were less cold tolerant (Fig

7E), despite of having similar weight of scBAT and other depots (Fig 7F). These data suggest

that PRDM16 is critical for the thermogenic function of scBAT in adult mice.

TBX1 marks human deep neck BAT

Finally, we determined the expression of TBX1 gene in human deep neck BAT. Since iBAT

was absence in adult humans, subcutaneous neck WAT from healthy donors was obtained as

controls [34]. RT-qPCR revealed a much higher levels of TBX1 expression in total lysates from

deep neck BAT than subcutaneous neck WAT (Fig 8A). Adipogenic differentiation of preadi-

pocytes isolated from both subcutaneous WAT and deep neck BAT induced TBX1 expression

(Fig 8B). Nonetheless, a consistent higher expression of TBX1 could be observed in preadipo-

cytes and adipocytes derived from deep neck BAT, compared to those from subcutaneous

neck WAT (Fig 8B). Mimicking adrenergic stimulation, the cell-permeable dibutyryl-cAMP

stimulates nutrition uptake and oxygen consumption of human brown adipocytes [35]. How-

ever, cAMP did not change TBX1 expression (Fig 8C), indicating that TBX1 might not be a
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Fig 6. Characterization of HFD-fed PpargΔTbx1 mice. (A, B) Body weight of female (A, n = 6–7) and male (B, n = 10–

12) Ppargf/f and PpargΔTbx1 mice after HFD feeding. (C) Glucose tolerant test of HFD-fed Ppargf/f (n = 8) and

PpargΔTbx1 (n = 10) mice (mixed sexes). (D) HFD-fed Ppargf/f (n = 10) and PpargΔTbx1 (n = 10) male mice were fasted

overnight, orally gavaged with 4 μg LPS (in 200 μl olive oil), and sera were collected at indicated time for LPS

measurement. (E–H) HFD-fed Ppargf/f (10 males, 7 females) and PpargΔTbx1 (8 males, 5 females) mice were fasted and

gavaged with 50 μl of 0.1 μg/μl LPS in water per 20 g of body weight. scBAT (E–G) and liver (H) were collected 3 h

later for RT-qPCR quantification the expression of Ucp1 (E), Adipoq (F), and inflammatory genes (G, H). Data are

presented as mean ± SEM. *, p< 0.05; **, p< 0.01 by unpaired Student’s t test (E, F) or two-way ANOVA (D).

Extended data are listed in S1 Data. HFD, high-fat diet; LPS, lipopolysaccharide; scBAT, supraclavicular brown adipose

tissue.

https://doi.org/10.1371/journal.pbio.3002413.g006
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Fig 7. scBAT dysfunction in Prdm16ΔTbx1 mice. (A) Weight of indicated tissues as a percentage of body weight in Prdm16f/f (n = 8) and Prdm16ΔTbx1

(n = 5) female mice. (B) Core body temperature of Prdm16f/f (n = 8) and Prdm16ΔTbx1 (n = 5) female mice during cold challenge in 4˚C. (C)

Representative HE staining of scBAT from Prdm16f/f and Prdm16ΔTbx1 female mice (scale = 100 μm). (D) RT-qPCR measurements of gene expression

in scBAT and iBAT of Prdm16f/f (n = 8) and Prdm16ΔTbx1 (n = 5) female mice. (E) Core body temperature of Prdm16f/f (n = 5) and Prdm16ΔTbx1 (n = 6)

male mice during cold challenge in 4˚C. (F) Weight of indicated tissues as a percentage of body weight in Prdm16f/f (n = 5) and Prdm16ΔTbx1 (n = 6)

male mice after 3 weeks of cold challenge. Data are presented as mean ± SEM. *, p< 0.05; **, p< 0.01 by unpaired Student’s t test (D) or two-way

ANOVA (B, E). Extended data are listed in S1 Data. iBAT, interscapular brown adipose tissue; scBAT, supraclavicular brown adipose tissue.

https://doi.org/10.1371/journal.pbio.3002413.g007
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cold-inducible early gene that contributes to thermogenesis. Instead, based on our mouse data,

Tbx1 is a location marker specifically for scBAT during development.

Discussion

Obesity is a major risk factor for many diseases, including type 2 diabetes, cardiovascular dis-

ease, and some types of cancers. BAT burns fat and dissipates chemical energy as heat; there-

fore, activating BAT might be a strategy to combat obesity and related metabolic disorders.

Since the re-discovery of scBAT in adult humans, many efforts have been devoted in the field

to find ways to convert white fat into brown or beige fat. However, almost all the current pre-

clinical studies investigate either iBAT or subcutaneous inguinal WAT in rodents, with

assumptions that these depots possess similar developmental, functional, and regulatory mech-

anisms as the predominant scBAT depot in human adults. In fact, many depot-, location-, and

species-specific characteristics of thermogenic adipocytes have been described [4]. For exam-

ple, human iBAT rapidly atrophies till undetectable in adults [2,3]. However, mice iBAT

shows little involution or atrophy. Whitened, hypertrophic iBAT adipocytes in aged or

“humanized” mice remain as the progeny of Myf5+ progenitors [17] and can be recruited by

cold and sympathetic activation [36–41]. In mice, inguinal WAT adipocytes are derived from

Prrx1+ progenitors in the somatic lateral plate mesoderm [42,43]. Inguinal WAT browning is

driven by de novo beige adipogenesis [44,45], activation of “dormant” beige cells [46], and

“transdifferentiation” of white adipocytes [47,48]. Like that in mice, subcutaneous WAT in

humans can undergoes thermogenic activation [49–52]. However, visceral WAT in humans

seems to have higher thermogenic capacity than subcutaneous WAT [53].

These depot- and species-specific findings highlight the urgency and importance to under-

stand scBAT development and regulation. Our study here provides the first evidence that

scBAT adipocytes do not share the same embryonic origins as iBAT fat cells. Somatic Pax3+/

Myf5+ myoprogenitors give rise to dorsal-anterior-located iBAT, as well as nearby WAT and

Fig 8. TBX1 gene expression in human deep neck BAT. (A) Taqman RT-qPCR of TBX1 gene expression, normalized to GAPDH, in subcutaneous

(subQ) neck WAT and deep neck BAT from 3 donors. (B) SubQ neck WAT and deep neck BAT preadipocytes from 4 donors were differentiated to

adipocytes in the presence or absence of rosiglitazone for 14 days. TBX1 gene expression normalized to GAPDH was determined using Taqman

probes. (C) Differentiated adipocytes from SubQ WAT and deep neck BAT (n = 4 donors) were treated with or without 500 μm dibutyril-cAMP for

10 h. TBX1 gene expression was normalized to GAPDH. Data are presented as mean ± SD. *, p< 0.05; **, p< 0.01 by paired Student’s t test (A) or

two-way ANOVA (B, C). Extended data are listed in S1 Data. BAT, brown adipose tissue.

https://doi.org/10.1371/journal.pbio.3002413.g008
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trunk muscles. In contrast, Tbx1+ myoprogenitors from the CPM give rise to scBAT adipo-

cytes, in addition to many muscle groups in the head and neck. The Tbx1 gene has been sug-

gested as a marker for beige adipocytes [54]. However, β3 adrenergic agonism does not induce

the expression of TBX1 in human (Fig 8C) or Tbx1 in mouse [55]. Mouse Tbx1 was also

expressed by inguinal white adipocytes under warm conditions [39], suggesting that Tbx1 is

not a bona fide beige marker, but reflects the anatomical location of the inguinal depot. Due to

its high expression in inguinal WAT, we speculate, even though not directly examined here,

that inguinal fat cells will be labeled in the Tbx1-mTmG mice. However, we would not be able

to distinguish between their embryonic lineage origin versus postnatal expression of Tbx1,

because of the constitutive Cre expression in Tbx1Cre mice. Recently, adipose expression of

TBX1 was shown to be necessary for UCP1 expression and insulin sensitivity of subcutaneous

WAT [56]. Future investigations using inducible Tbx1-driven Cre models and depot-specific

deletion of TBX1 are required to determine the temporospatial function of TBX1. Nonetheless,

the shared expression of TBX1 between scBAT and inguinal WAT also provides additional jus-

tification to study WAT browning in contributing to metabolic health.

In lineage mapping experiments, we noticed that only about half of scBAT adipocytes are

labeled by Tbx1Cre. This could be a result of low Cre expression or insufficient recombination

(S3A Fig), supported by the uniform distribution and no cluster formation of mG+ adipocytes

(Fig 4E). Nonetheless, it is also possible that scBAT adipocytes have multiple developmental

origins and Tbx1 only labels a portion of CPM myoprogenitors. It would be interesting in the

future to test whether other CPM markers such as Ptx2 and Islet1 [22–24] trace all or some of

the scBAT adipocytes. Although controlling myogenesis at different locations, both Tbx1 and

Myf5 elicit a transcriptional cascade including Myod and Myogenin [57]. Myod also induces

glycolytic beige adipocytes in the absence of β-adrenergic receptor signaling [58]. However,

Myod does not label any iBAT brown adipocytes [17]. It stresses that the bifurcation between

brown adipogenesis and myogenesis happens upstream of Myod. The PRDM16-C/EBPβ-

EHMT1 transcriptional complex specifies the iBAT brown adipocyte fate from Myf5+ progeni-

tors and the PRDM16-PPARγ-PGC-1α complex drives the complete brown fat differentiation

[59,60]. Here, we have showed that both PPARγ and PRDM16 are also important for scBAT

development and function. Tbx1Cre-mediated deletion of either PPARγ or PRDM16 leads to

scBAT dysfunction, evidenced by reduced Ucp1 expression and cold intolerance. PPARγ defi-

ciency cause early developmental paucity of scBAT, but loss of PRDM16 only causes thermo-

genic reduction in adult animals. This is consistent with earlier findings based on Myf5Cre-
mediated PRDM16 KO in iBAT [33], which collectively demonstrate that PRDM16 in myo-

progenitors is required for brown adipocyte identity maintenance during aging. While current

evidence suggests shared regulatory mechanisms for the recruitment and activation of iBAT

and scBAT [25,26], it warrants further investigations to identify depot-specific regulations and

functions of BAT, in addition to their distinct developmental origins. In adult BAT, progeni-

tors that are marked by genes like Pdgfra and Trpv1 have been reported to contribute to cold-

induced BAT recruitment and tissue homeostasis [47,61,62]. While not the scope of our cur-

rent research, future endeavors are needed to test if embryonic Tbx1+ myoprogenitors give

rise to all or only some populations of adult BAT progenitors.

While the absolute mass and thermogenic capacity of human BAT are difficult to quantify,

it is well accepted that BAT prevalence declines as a function of age [1,4]. Thus, many have

questioned the physiological relevance of BAT in thermogenesis and body temperature control

in adult humans, particularly the elderly. The thermogenic contribution of human BAT might

be limited; however, it is without doubt that the presence of scBAT is independently correlated

with lower incidences of obesity, type 2 diabetes, dyslipidemia, hypertension, and heart failure

[14]. It is thus tempting to hypothesize that iBAT is a critical thermogenic organ for infants,
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while scBAT in adults primarily modulates systemic metabolism. Anatomically, scBAT sits

adjacent to the jugular vein and subclavian vein, where the lymphatic vessels empty lymph col-

lected from the intestine into the venous system. We hypothesized that this unique anatomical

location of scBAT may enable its ability to sample and regulate lymphatic fluids, such as bacte-

rial endotoxins therein. While we did see higher serum LPS levels in PpargΔTbx1 mice with

scBAT paucity (Fig 6D), glucose metabolism and inflammation resolution seemed to be unaf-

fected. The lack of metabolic dysfunction and endotoxemia in PpargΔTbx1 mice could be due to

the partial atrophy (approximately 50%) of scBAT and functional compensation from the

intact iBAT. Future Tbx1Cre-mediated brown adipocyte ablation and simultaneous removal of

iBAT could address these issues.

In summary, the identification of Tbx1+ lineage cells as progenitors of scBAT brown adipo-

cytes reveals location-specific myoprogenitors for different BAT depots in rodents and possi-

bly humans. This knowledge can be leveraged to develop new models in order to discover

depot-specific BAT functions. Not only should we cease to state that “brown adipocytes are

derived from a Myf5-expressing lineage,” but also study more the Tbx1+ lineage-derived

brown adipocytes due to their human relevance.

Methods

Animals

All animal experiments were approved by the institutional animal care and use committee

(IACUC) of the University of Minnesota (protocol #: 2112-39682A) and adhered to the NIH

Guide for the Care and Use of Laboratory Animals. All the mice were group-housed in light/

dark cycle—(6 AM to 8 PM light), temperature—(21.5 ± 1.5˚C), and humidity-controlled

(30% to 70%) room, and had free access to water and regular chow (Teklad #2018), or 60%

HFD (Research Diet #D12492) as indicated. Tbx1Cre (MGI:3757964) was a kind gift from Dr.

Antonio Baldini [63]. Myf5Cre (Jax #007893), Pax3Cre (Jax #005549), Ppargf/f (Jax #004584),

and Rosa26LSL-mT/mG (Jax #007676) mice were from Jackson Lab.

To confirm Pparg knockout, RT-PCR was conducted using primers (50-GTCACGTTCT-

GACAGGACTGTGTGAC-30) and (50-TATCACTGGAGATCTCCGCCAACAGC-30)

encompassing exons A1 and 4 of the Pparg1 gene, which differentiate the full-length (700 bp)

and recombined (300 bp) transcripts [64]. PCR was performed on a Bio-Rad C1000 Thermal

Cycler using a touchdown program: 10 cycles of 94˚C for 20 s, 65˚C (−0.5˚C/cycle) for 15 s,

and 68˚C for 15 s, followed by 28 cycles of 94˚C for 15 s, 58˚C for 15 s, and 72˚C for 15 s.

For cold treatment, mice were housed in a temperature-controlled room (4˚C) with free

access to water and food. Core body temperature was measured using an electronic thermom-

eter with anal probe.

For glucose tolerance test, mice were fasted overnight for 16 h and intraperitoneally injected

with 1.5 g/kg body weight of glucose. Blood glucose levels were measured using a Bayer Con-

tour Glucometer at indicated time point after injection.

For LPS treatment, mice were fasted overnight when indicated and orally gavaged with LPS

from Escherichia coli O111:B4 (Sigma, L3024) in water or olive oil. Tail blood was collected

for LPS measurement using a Pierce chromogenic endotoxin quantification kit (Thermo

Fisher, A39552).

Human adipocytes

Tissue collection was approved by the Medical Research Council of Hungary (20571-2/2017/

EKU) followed by the EU Member States’ Directive 2004/23/EC on presumed consent practice

for tissue collection. All experiments were carried out in accordance with the guidelines of the
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Helsinki Declaration. Written informed consent was obtained from all participants before the

surgical procedure. During thyroid surgeries, a pair of deep neck BAT and subcutaneous

WAT samples was obtained to rule out inter-individual variations. Patients with known diabe-

tes, malignant tumor, or with abnormal thyroid hormone levels at the time of surgery were

excluded. Tissue specimens were either homogenized in Trizol or digested in phosphate buff-

ered saline (PBS) with 120 U/ml collagenase (Sigma, C1639) to obtain stromal vascular frac-

tion (SVF). Floating cells were washed away with PBS after 3 days of isolation and the

remaining cells were cultured [34]. Human primary adipocytes were differentiated from SVF

of adipose tissue containing preadipocytes according either to a regular adipogenic protocol or

in the presence of long-term rosiglitazone effect resulting in higher browning capacity of the

adipocytes. Where indicated, adipocytes were treated with a single bolus of 500 μm dibutyryl-

cAMP (Sigma, D0627) for 10 h to mimic in vivo cold-induced thermogenesis [35]. Then, SVF

cells or adipocytes were homogenized using Trizol.

Histology

Brown adipose tissues were harvested and fixed in 10% formalin overnight with gentle shak-

ing, then kept in 4˚C for further experiments. For hematoxylin and eosin staining, BAT

embedding, sectioning, staining was conducted at the Comparative Pathology Shared

Resource of the University of Minnesota. For the fluorescent imaging, the fixed BAT was

embedding with OCT (Tissue-Tek #4583) then sliced into 10 μm slides. Following PBS wash-

ing, the sections were mounted using VECTASHIELD Antifade Mounting Medium with

DAPI and visualized using Nikon Ni-E or Keyence microscope system. The numbers of

Tomato+ and GFP+ cells were counted to calculate the percentage of GFP+ cells.

RT-qPCR

After weight measurement, BAT tissues were homogenized in Trizol (Thermo Scientific) for

RNA isolation, following the manufacturer’s protocol. RNA concentrations were measured

with a NanoDrop spectrophotometer. Reverse transcription was performed with the iScript

cDNA Synthesis Kit. Real-time RT-PCR was conducted using iTaq Universal SYBR Green

Supermix and gene-specific primers on a Bio-Rad C1000 Thermal Cycler. Relative expression

was normalized to the house keeping Rplp0 gene. When indicated, total mRNA amounts were

calculated based on relative Ucp1 mRNA levels and total amounts of RNA isolated from spe-

cific depots [65]. For human WAT, BAT, and adipocyte lysates, RT-PCR was conducted using

validated TaqMan assays (Thermo Fisher, Hs00271949_m1 for TBX1, and Hs99999905_m1

for GAPDH). Gene expression values were calculated by the comparative threshold cycle (Ct)

method. ΔCt represents the Ct of the target minus that of GAPDH. Normalized gene expres-

sion levels equal 2−ΔCt [35]. Samples with poor RNA quality or artifact bias, determined by

housing keeping gene expression and melting curve, were removed from analysis.

Western blot

Tissues were collected quickly after sacrificing mice and homogenized immediately in RIPA

lysis buffer (50 mM Tris–HCl (pH 7.4), 1% Nonidet P-40, 0.25% Na-deoxycholate, 150 mM

NaCl, 1 mM EDTA, and protease inhibitors) on ice-water bath. Protein concentration was

measured using a BCA protein assay kit (Thermo Fisher). Protein samples were separated by

SDS-PAGE and western blots were performed with following antibodies: UCP1 (Abcam,

#ab209483), PPARγ (Cell Signaling Techonology, #2443), and Tubulin (Santa cruz, #SC-

8035).
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Quantification and statistical analysis

Results are shown as mean ± SEM or ± SD. N values (biological replicates) and statistical anal-

ysis methods are described in figure legends. The statistical comparisons were carried out

using two-tailed Student’s t test and one-way or two-way ANOVA with indicated post hoc

tests with Prism (Graphpad). Differences were considered significant when p< 0.05. *,
p< 0.05; **, p< 0.01; ***, p< 0.001.

Supporting information

S1 Fig. Validation of mTmG reporter mice. Representative fluorescent images of interscapu-

lar (left) and supraclavicular (right) BAT from Cre-negative mTmG reporter mice

(scale = 50 μm).

(TIF)

S2 Fig. Validation of Tbx1-mTmG reporter mice. Representative fluorescent images of scap-

ular (left) and clavicular (right) skeletal muscles from Tbx1-mTmG reporter mice

(scale = 50 μm).

(TIF)

S3 Fig. No changes in body and tissue weight of PpargΔTbx1 mice. (A) Detection of wild type

(wt, 700 bp) and mutant (mt, 300 bp) Pparg transcripts by RT-PCR. Note the approximately

50% recombination of the Pparg gene only in scBAT of PpargΔTbx1 mice. (B, C) Body weight

(B) and tissue weight (C) of 4-month-old Ppargf/f (n = 7) and PpargΔTbx1 (n = 6) female mice.

(D, E) Body weight (D) and tissue weight (E) of 4-month-old Ppargf/f (n = 14) and PpargΔTbx1

(n = 10) male mice. (F) Thermogenic gene expression in inguinal WAT of male mice was

determined by RT-qPCR and adjusted by total tissue RNA to calculate the relative total tran-

script levels.

(TIF)

S1 Data. Individual numeric results illustrated in all figures.

(XLSX)

S1 Raw. Image. The uncropped and unadjusted blots related to Figs 3C and S3A.

(PDF)
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Formal analysis: Zan Huang, Chenxin Gu, Zengdi Zhang, Rini Arianti, Aneesh Swaminathan,

Kevin Tran, Alex Battist, Endre Kristóf, Hai-Bin Ruan.
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