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Introduction
The function of  organic anion transporter 1 (OAT1/SLC22A6) is considered a rate-limiting step for the 
movement of  many small negatively charged organic molecules from the blood into the urine (1). Origi-
nally discovered by our group as novel kidney transporter (NKT), OAT1 was one of  the original SLC and 
ABC drug transporters highlighted by the FDA for testing of  interactions with new drug entities (1–3). This 
is due its role in excreting many drugs (e.g., antibiotics, antivirals, NSAIDs, diuretics) (2, 4, 5). More recent 
studies have uncovered its critical role in regulating endogenous pathways involved in systemic and renal 
metabolism as well as signaling. In vitro transport data and in vivo KO of  Oat1 in mouse models have been 
used to identify the endogenous metabolites that are handled by this transporter. These studies (6–9) reveal 
that many of  the metabolites altered in Oat1-KO mice originate from gut microbes.

OAT1, along with other SLC and ABC “drug” transporters (e.g., OATP1B1, MRP2, ABCG2), is 
considered to be a key systemic and organ hub in a proposed Remote Sensing and Signaling Network 
consisting of  > 500 proteins (2, 10, 11). The Remote Sensing and Signaling Theory (RSST) posits that 
this network of  genes — which partly overlaps with genes regulating drug absorption, distribution, 
metabolism, and excretion (ADME) — serves to maintain homeostatic balance of  a broad range of  
endogenous small molecules in the body (2, 12, 13). An example of  the Remote Sensing and Signaling 
System in action in human pathophysiology occurs when kidney function is diminished during chronic 
kidney disease (12). When the kidney is no longer able to effectively handle urate, a common end-prod-
uct of  purine metabolism and antioxidant, the accumulation of  urate can lead to gout, hypertension, and 
progression of  renal and cardiovascular disease (14). As a result, the intestine alters the expression and/
or function of  ABCG2 and partly remotely compensates for the damaged kidney, eliminating urate from 
the blood by excreting it into the gut lumen (15).

The organic anion transporter OAT1 (SLC22A6, originally identified as NKT) is a multispecific 
transporter responsible for the elimination by the kidney of small organic anions that derive 
from the gut microbiome. Many are uremic toxins associated with chronic kidney disease 
(CKD). OAT1 is among a group of “drug” transporters that act as hubs in a large homeostatic 
network regulating interorgan and interorganismal communication via small molecules. 
The Remote Sensing and Signaling Theory predicts that genetic deletion of such a key hub 
in the network results in compensatory interorganismal communication (e.g., host-gut 
microbe dynamics). Recent metabolomics data from Oat1-KO mice indicate that some of the 
most highly affected metabolites derive from bacterial tyrosine, tryptophan, purine, and 
fatty acid metabolism. Functional metagenomic analysis of fecal 16S amplicon and whole-
genome sequencing revealed that loss of OAT1 was impressively associated with microbial 
pathways regulating production of urate, gut-derived p-cresol, tryptophan derivatives, 
and fatty acids. Certain changes, such as alterations in gut microbiome urate metabolism, 
appear compensatory. Thus, Oat1 in the kidney appears to mediate remote interorganismal 
communication by regulating the gut microbiome composition and metabolic capability. Since 
OAT1 function in the proximal tubule is substantially affected in CKD, our results may shed 
light on the associated alterations in gut-microbiome dynamics.
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The Remote Sensing and Signaling network extends beyond communication along the gut-liver-kidney 
axis (16); recent work (17–19) supports its importance in other axes, such as the gut and adipose tissue, the gut 
and brain, the kidney and skin, the gut/kidney/heart axis, and between the host and the commensal microbes 
living within its gastrointestinal system. Previous work (20) has shown that changes in the gut microbiome 
composition influence the metabolic profile of  the host organism. Furthermore, metabolites originating from 
microbes are substrates/inhibitors for proteins in the Remote Sensing and Signaling network and ADME 
network (transporters and enzymes), and many of  these compounds can serve as ligands for nuclear receptors 
and GPCRs, which can impact gene expression in several tissues within the host (11, 21, 22).

Indeed, OAT1 in the kidney appears to be a major determinant of  systemic levels of  gut microbe–
derived metabolites and signaling molecules (6–9). This relationship between host and gut microbiome is 
an important tenet in RSST, as reciprocal interorganismal communication has a considerable impact on 
host small-molecule homeostasis (11). The microbiota also serves as an initial interface between the dietary 
compounds and the host organism (23). The capacity of  the microbiome to metabolize certain compounds 
over others greatly influences the metabolic profile of  the host and plays a role in determining how the host 
organism, in turn, responds to the diet by the expression of  various ADME and other proteins that are part 
of  the Remote Sensing and Signaling System (10, 20, 24).

There is tremendous clinical and basic science interest in the role of  gut microbes in kidney disease, 
among many other clinical syndromes (25–28). This interest is partly related to the wide range of  small mol-
ecules produced by the gut microbiota that enter the circulation and that have been implicated as “uremic 
toxins” associated with negative outcomes in chronic kidney disease (CKD) (15, 29, 30). In the context of  
drug development, many of  these gut-derived compounds have been suspected to interact with a variety of  
small-molecule drugs at the site of  the transporter (31). Thus, it is not surprising that gut microbe–derived 
small molecules (some of  which are uremic toxins) are transported by multispecific drug transporters in 
the gut, liver, kidney, and brain (7, 32–35). Indeed, in chronic kidney disease, there appears to be some type 
of  cross-talk, possibly involving drug transporters and ligand-activated transcription factors, between the 
failing kidney and the gut microbes, resulting in alterations in the gut microbiota (36–38).

However, a particular multispecific drug transporter in the kidney has not been directly linked to alter-
ations in the microbiota — and the attendant effects on systemic metabolism. OAT1 is perhaps the pro-
totypical multispecific “drug” transporter in the kidney, handling a very broad range of  endogenous and 
exogenous compounds that are organic anions (13). Genetic KO of Oat1 in mice leads to the alteration of  
hundreds of  metabolites in the blood, many of  which are derived from the gut microbes and include uremic 
toxins widely considered to worsen the symptoms and progression of  disease (7, 26, 32, 39, 40).

For example, tryptophan and tyrosine derivatives, such as indoxyl sulfate and p-cresol sulfate, are com-
mon gut-derived small molecules that require OAT1/OAT3 to be eliminated into the urine (2, 8). Accumula-
tion of  these compounds in the blood has been linked to renal fibrosis and the activation of  proinflammatory 
cytokines, which leads to vascular injury and coronary artery disease (2, 21, 28, 41). Serum concentrations 
of  both compounds serve as predictors for chronic kidney disease and heart disease progression, and a major 
research and pharmaceutical effort is aimed at developing therapeutic approaches to reduce the levels of  these 
compounds (2, 21, 28, 41). Similarly, other gut microbe–derived uremic toxins transported by OAT1/OAT3 
have also been found to be detrimental to remote tissue if  not properly excreted from the body (21, 41).

Interestingly, while in vivo loss of  Oat1 in mice considerably increases serum concentrations of  numer-
ous small-molecule toxins thought to cause organ and vascular damage, these KO mice have a normal life 
span and present no clear evidence of  organ dysfunction. That said, the double KO of  rat Oat1 and Oat3 
(SLC22a8) does result in impressive renal dysfunction and high levels of  uremic toxins at 4 weeks of  age, 
although this appears to mostly resolve by 7 weeks, apparently due to compensatory expression in the prox-
imal tubule of  another gut-derived uremic toxin transporter, Oatp4c1 (SLCO4c1).

Transcriptomic analysis of  the Oat1–single KO kidney has not revealed the significant upregulation 
of  another transporter such as occurs in the double KO. This raises the question: Is there another com-
pensatory mechanism that prevents the Oat1–single KO mice from becoming diseased despite the high 
levels of  gut-derived small-molecule toxins?

RSST predicts a resetting of  interorgan (e.g., kidney-liver) or interorganismal (e.g., host-gut microbes) 
communication would help restore homeostasis after genetic ablation of  a key multispecific transporter 
necessary for the elimination of  potentially harmful small molecules (2). Some compensatory mecha-
nisms in the Oat1-KO organs have been revealed through genome scale metabolic reconstruction, but as 
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mentioned, these do not clearly indicate a renal transport mechanism that would compensate for high 
levels of  uremic toxins (9, 42, 43). Nevertheless, the gut microbiome’s immense potential to adapt in 
response to loss of  Oat1 in the single KO has not yet been examined. We thus sought to analyze how the 
loss of  OAT1 in the kidney influences the composition and metabolic potential of  the gut microbiota in 
relation to serum metabolites altered in the Oat1 KO.

We discovered marked changes in the composition and metabolic capability of  the gut microbiota 
that, together with recently published metabolomics data from the Oat1 KO, provide a potentially new 
view of  how OAT1 serves as a key interface between the gut microbes, the kidney, and systemic metab-
olism (8). Furthermore, our findings are relevant for understanding host-microbiome dynamics that may 
be altered in CKD since OAT1-mediated elimination of  uremic toxins at the site of  the proximal tubule 
is affected by the decline of  renal function in CKD (38). Our results, connecting the loss of  OAT1 to 
alterations in gut microbiome composition and function, may thus be helpful for understanding altered 
host-gut microbiome dynamics in CKD.

Results
16S amplicon sequencing reveals Oat1-KO mice have greater microbiome alpha diversity than WT mice. We aimed to 
explore the differences in microbiome composition by analyzing the bacterial species present in fecal sam-
ples of  mice that reflected the gut bacteria composition. Feces were collected from the Oat1-KO and WT 
mice, and bacterial DNA was extracted for 16S amplicon sequencing. Raw 16S reads were preprocessed 
and clustered into operational taxonomic units (OTUs) based on sequence similarity. An OTU represents 
a distinct member within the microbial community, where reads with greater than 97% similarity are con-
sidered to belong to the same OTU. We then applied denoising/error correction to improve the assignment 
of  OTUs from reads (44). OTU assignment was performed using the Qiime2 platform (45) and was sum-
marized in a feature table (Supplemental Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/jci.insight.172341DS1) (Figure 1A).

To assess the differences between the microbial communities, we first calculated the alpha diversity 
of  the samples. Alpha diversity metrics are used to describe the total number of  members in a community 
(richness) and how evenly they are distributed (evenness). Two commonly used metrics are the Chao1 
index, which estimates the total members in a community based on the observed richness and composition 
of  a sample, and Shannon’s entropy, which quantifies both richness and evenness.

A rarefaction curve using Chao1 indices calculated at various depths was generated (Figure 1B). Total 
richness is largely unaffected at depths greater than 10,000; thus, we do not anticipate our results to be affected  
by undersampling. Furthermore, it was found that the median Chao1 estimated OTUs in the Oat1-KO and 
WT controls were 238 and 169, respectively. Shannon’s entropy was also calculated as a measure of  diver-
sity (Figure 1C), and we found greater richness and evenness in the Oat1-KO compared with the WT mice 
(Kruskal-Wallis H test, P < 0.05; Table 1). Both median observed and estimated richness were greater in 
the Oat1-KO compared with the WT controls, with both metrics reaching statistical significance (Kruskal- 
Wallis H Test, P < 0.05; Table 1).

Enrichment of  both Chao1 and Shannon’s entropy in the Oat1 KO indicates an overall increase in 
alpha diversity in the KO compared with the WT controls, raising the possibility of  important functional 
differences in the KO microbiome. To further explore what distinguished the 2 gut microbiomes, we investi-
gated the beta diversity, which relates to differences within groups, to determine if  there were any taxonom-
ical differences in the Oat1-KO and WT microbiomes.

Oat1-KO and WT mouse microbiomes have compositional differences. Beta diversity is used in microbiome 
studies to measure differences in taxonomic composition between bacterial communities. Due to previously  
reported changes (7, 8, 32) in circulating gut microbiome–derived compounds in the very same mice, we 
analyzed compositional differences in the Oat1-KO and WT microbiomes in the context of  the serum 
metabolomics data; this could help determine whether the gut microbiome in the KO mice was reflecting 
changes in systemic metabolism due to loss of  OAT1, which is almost exclusively expressed in the kidney. 
As a first step, we compared the OTUs present across the genotypes (Figure 2A) and generated a Bray-Curtis  
distance matrix in Qiime2 to compare reads from Oat1-KO and WT samples (45, 46). The ordination of  
these results shows that Oat1-KO and WT samples form their own distinct clusters (Figure 2B). A biplot was 
then generated using Deicode (46, 47) robust Aitchison distances as a compositionally sensitive approach 
to measuring beta diversity (Figure 2C). These results indicate that Oat1-KO and WT vary in taxonomical 
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composition of  their communities, with members belonging to Lactobacillus, Turicibacter, Muribaculaceae, 
and Prevotellaceae, among others, explaining the differences in beta diversity in the 2 groups (Figure 2B).

To further investigate differences in taxa resulting from the deletion of  Oat1, we performed an Analysis 
of  Compositions of  Microbiomes (ANCOM) as a composition-sensitive approach to determine differen-
tial abundance (Figure 2C) (48). The results of  the ANCOM indicate 30 taxa to be significantly altered 
between KO and WT, many of  which belonged to Muribaculaceae, a member of  the phylum Bacteriodetes 
and are classified as contributors to the metabolism of  complex polysaccharides in the gut (49). We ana-
lyzed the log ratios of  the OTUs detected with respect to mouse genotype in the form of  a rank plot (Figure 
2D) (50). We found that Turicibacter ranked highly in the WT mice, indicating that it likely constitutes a 
greater proportion of  the WT microbiome, compared with the Oat1 KO (Figure 2D). Prevotellaceae and 
Lactobacillus, on the other hand, appeared to be dominant in Oat1-KO microbiomes. These differences in 
taxonomical composition led us to compare the metabolic potentials of  the microbiomes, since these bacte-
rial species are associated with distinct metabolic functions based on their genomes.

Functional analyses of  bacterial 16S and whole-genome sequencing results help explain OAT1-mediated changes  
in the serum metabolome. We aimed to analyze the functional differences in the Oat1-KO microbiomes using 
16S amplicon and whole-genome sequencing (WGS) to predict the metabolic consequences of  the distinct 
microbiomes using metagenomic genome reconstruction methods. For functional relevance, we observed 
the bacterial changes in the context of  serum metabolomics results from Oat1-KO mice across multiple 
experiments. These mice, while healthy and fertile, display dozens of  significantly elevated circulating 
metabolites, suggesting that loss of  OAT1 prevents their normal urinary clearance or otherwise plays a 
role in regulating their levels. In addition, we reanalyzed the metabolites consistently altered across sever-
al previous studies (Table 2). Among those that were consistently altered in multiple experiments, many 
belonged to tyrosine, fatty acid, tryptophan, and purine metabolism subpathways. We chose to focus on 
these specific subpathways in the analysis of  altered genes/pathways in the microbiome.

Figure 1. Oat1-KO and WT microbiomes have different alpha diversity metrics. 16S amplicon sequencing reveals differences in richness and evenness 
between the Oat1-KO (n = 9) and the WT mice (n = 9). (A) Summary of methods and workflow for generating 16S amplicon sequencing results. (B) Rarefac-
tion curve comparing Chao1 indices at various depths. Chao1 estimated richness is largely unaffected at depths greater than 10,000 reads. Median Chao1 
estimated OTUs were found to be 238 and 169 for the Oat1 KO and WT, respectively. (C) Box plot of Shannon’s entropy of the 2 groups, with a median 
Shannon’s entropy of 5.52 for the Oat1 KO and 4.35 for the WT.



5

R E S E A R C H  A R T I C L E

JCI Insight 2023;8(21):e172341  https://doi.org/10.1172/jci.insight.172341

Previous work (8, 9, 21) has also suggested that OAT1 plays a crucial role in mediating the commu-
nication between the host and the gut microbes, via regulation of  gut-derived metabolites. This suggests 
that the gut microbiome may adjust its composition and function in response to loss of  OAT1; thus, we 
aimed to study the bacterial species present and their metabolic capacities using both 16S sequencing and 
WGS of  the microbiota. 16S amplicon sequencing seeks to classify members of  a bacterial community 
based on their 16S variable regions. While this method does not directly measure functional enrichment, 
the recently classified taxa can be annotated with genes based on established WGS databases, such as the 
Integrated Microbial Genomes (IMG) database (Figure 3). However, this method may introduce bias in 
functional predictions by covering only species that have been previously sequenced. WGS remedies this 
issue by directly sequencing the entirety of  the genomes in a community. Functional enrichment can then 
be predicted by measuring the abundance of  genes across the genomes recovered. For our analysis of  the 
Oat1-KO and WT control microbiomes, we decided to investigate functional changes based on our 16S 
amplicon sequencing results and then perform WGS and metagenomic genome reconstruction to achieve 
better resolution on the genes altered. Given that many of  the gut microbe–derived products altered in the 
Oat1-KO serum, including indoxyl sulfate and p-cresol sulfate, have production that is rate limited by only a 
handful of  enzymes in the bacteria, the resolution offered by WGS proved useful for interpreting functional 
changes in the microbiome in the context of  serum metabolites.

Tyrosine metabolism in the microbiome in the context of  serum metabolomics. Functional analysis of  16S and 
WGS data were consistent with elevated tyrosine metabolism in the Oat1-KO microbiomes. 16S ampli-
con data were analyzed using PICRUSt2 (Phylogenetic Investigation of  Communities by Reconstruction 
of  Unobserved States, second iteration) (51) and were used to predict functional pathway enrichment in 
the microbiomes (Figure 3). Individual gene enrichments were assigned Kyoto Encyclopedia of  Genes 
and Genomes (KEGG) IDs, and pathways were annotated using MetaCyc. Eighteen total pathways were 
found to be significantly altered between the Oat1-KO and WT mice, including some that were consistent 
with known OAT1 functional interactions in vitro and/or in vivo (8, 13, 15, 27). For example, tyrosine 
degradation I was significantly elevated in the KO (log fold-change [LogFC] > 5, adjusted P value [Padj] < 
0.05; Figure 4A), and this describes the conversion of  tyrosine to 4-hydroxyphenyl pyruvate. At the gene 
level, we found a significant elevation of  tyrosine phenol-lyase, which catalyzes the conversion of  tyro-
sine to phenol, precursor of  a uremic toxin (LogFC > 9, Padj < 0.05; Figure 4C). Interestingly, 4-cresol 
dehydrogenase, pchF, an enzyme responsible for the conversion of  the uremic toxin precursor p-cresol 
to 4-hydroxybenzaldehyde, was also significantly elevated in the KO. Our serum metabolomics results 
show greatly elevated levels of  p-cresol sulfate, so it seems plausible that the microbiome is responding to 
these altered serum metabolites by shifting its own metabolism to favor the degradation of  the bacterial 
precursor to p-cresol sulfate (Figure 4B).

We then applied WGS to perform a deeper analysis of  metabolic differences between the KO and 
WT gut bacteria. To accomplish this, we performed a metagenomic genome reconstruction, the process 
by which metagenomic contigs are assembled to re-create individual bacterial genomes. The genomes 
recovered from the greater library of  contigs are referred to as metagenome-assembled genomes (MAGs) 
and represent the genomic makeup of  1 member of  the microbiome. In total, we recovered 112 bins for 
the Oat1 KO and 59 bins for the WT, with each bin representing a reconstructed genome or MAG (Fig-
ure 3). These MAGs were then functionally annotated using KEGG IDs. When summed, the number 
of  hits a gene has reflects the abundance of  this gene in the metagenome. Thus, a greater abundance of  
a particular gene is reflective of  a propensity for the microbiome to engage in this metabolic task. In the 
case of  the Oat1 KO and WT, we considered a gene as enriched in the KO if  there was an associated > 
2-fold change in the number of  hits.

Table 1. Kruskal-Wallis’s H test of alpha diversity metrics

Metric Kruskal Wallis’s H P value
Chao1 4.88 0.0270

Shannon’s entropy 7.25 0.0071

Statistical comparison of Shannon’s entropy and Chao1 using Kruskal-Wallis’s H test. Oat1-KO mice show statistically 
greater Chao1 richness and alpha diversity, measured by Shannon’s entropy (P < 0.05).
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Enzymes associated with tyrosine metabolism were reconstructed in greater numbers in the Oat1 KO 
compared with the WT. Aspartate aminotransferase aspB, which can catalyze the conversion of  L-tyrosine to 
4-hydroxyphenyl pyruvate, was reconstructed 48 times in the KO genomes compared with the 8 reconstructed  
in the WT (Figure 4B). Downstream products of  tyrosine metabolism, including 4-hydroxyphenylacetate 

Figure 2. Beta diversity analysis reveals compositional differences between the Oat1-KO and WT gut microbiomes. (A) Venn diagram of OTUs assigned 
to Oat1-KO and WT samples (n = 9 each). (B) Principal coordinate analysis (PCoA) based on Bray-Curtis distances. The 95% CI ellipses are included for both 
groups. PC1 and PC2 account for 61% of variability in the species between the groups. (C) Biplot based on Deicode, a modified Aitchison distance calculation. 
Arrows represent the top 8 species that contribute to the variability in beta diversity. (D) Analysis of Compositions of Microbiomes (ANCOM) volcano plot of 
the Oat1-KO and WT OTUs. Features above a W statistic of 708 were deemed significant. Values colored blue represent features significantly increased in 
the WT, and those colored red represent features significantly elevated in the Oat1 KO. Clr is the centered log-ratio of the KO with respect to WT. Thirty fea-
tures were found to be significantly altered between the 2 groups, with many of the features belonging to the family Muribaculaceae. Members belonging 
to Alistipes and Akkermansia were elevated in the WT. Abundance of archaea was not measured. (E) Microbial differential ranks estimated from multino-
mial regression with Prevotellacae, Turicibacter, Lactobacillus, and Lachnospiraceae highlighted. The y axis represents the log-ratio of abundance between 
KO and WT samples, and the x axis numerically orders the ranks of each taxon in the analysis; ranks further down the x axis represent greater abundance 
in WT microbiomes, with respect to other taxa. Features belonging to Turicibacter appear to constitute a greater proportion of the WT microbiomes when 
compared with the Oat1 KO, while Prevotellacae constitute a greater proportion of the Oat1-KO microbiomes. Lactobacillus appears to make up a greater 
proportion of the Oat1-KO microbiomes. Lachnospiraceae does not favor either genotype.
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Table 2. Metabolites elevated in the serum of Oat1 across recent publications (n = 4)

Metabolite LogFC P value Citation
Decadienedioic acid (C10:2-DC) 5.52510276 0.00170989 8
Myristoleate (14:1n5) 3.11734466 0.02803944 8
Tridecanedioate (C13-DC) 2.78583794 0.00449296 8
Propionylglycine (C3) 2.71707603 0.01665395 8
Tetradecadienoate (14:2) 2.70684039 0.01947947 8
5-Dodecenoylcarnitine (C12:1) 2.4741499 0.00826003 8
Dodecadienoate (12:2) 2.2864293 0.04943634 8
Palmitoleate (16:1n7) 2.11755095 0.01839039 8
Myristoleoylcarnitine (C14:1) 1.91095061 0.02248543 8
Myristate (14:0) 1.82354351 0.08988906 8
Palmitoleoylcarnitine (C16:1) 1.78882857 0.0162678 8
Oleoylcarnitine (C18:1) 1.7815625 0.00159659 8
10-Heptadecenoate (17:1n7) 1.67895355 0.01624327 8
Laurate (12:0) 1.64339596 0.09985937 8
Decanoylcarnitine (C10) 1.62465197 0.0671971 8
Arachidonate (20:4n6) 1.57691626 0.05061644 8
Arachidonoylcarnitine (C20:4) 1.52930343 0.0933373 8
Margaroylcarnitine (C17) 1.50167714 0.02296307 8
Stearoylcarnitine (C18) 1.38998241 0.04271367 8
Oleate/vaccenate (18:1) 1.36913694 0.04579833 8
Linoleoylcarnitine (C18:2) 1.21617767 0.07868783 8
3-Indoxyl sulfate 6.57520951 0.00036778 8
2-Amino–p-cresol sulfate 5.58164141 0.00202324 8
O-cresol sulfate 3.87181669 0.01213084 8
Phenol sulfate 3.60336287 0.02137378 8
4-Methoxyphenol sulfate 3.06810252 0.00163482 8
P-cresol sulfate 3.06407323 0.01060426 8
Indolepropionate 1.91762721 0.00228098 8
4-Hydroxyphenylacetate sulfate 4.82923713 0.01472533 8
1H-indole-7-acetic acid 4.53212125 0.00286141 8
4-Hydroxyphenylacetate 3.62986726 0.01335585 8
2-(4-Hydroxyphenyl)propionate 3.87605367 0.02174579 8
Methyl-4-hydroxybenzoate sulfate 3.0197443 0.01252095 8
4-Hydroxybenzoate 1.83028431 0.05425571 8
Kynurenate 0.44289557 0.05010316 8
Hypoxanthine 16.3881827 0.04367393 8
Inosine 8.16720344 0.00701719 8
Xanthosine 5.83351469 0.0050656 8
Propionylglycine 6.06 0.00032694 40
Arachidate (20:0) 2.1 0.00092013 40
Nonadecanoate (19:0) 1.67 0.00734588 40
Margarate (17:0) 1.48 0.01603494 40
Margaroylcarnitine (C17) 1.77 0.01987157 40
Pentadecanoylcarnitine (C15) 1.68 0.02328791 40
Pentadecanoate (15:0) 1.22 0.03264353 40
Stearoylcarnitine (C18) 1.21 0.04271057 40
Palmitoleate (16:1n7) 1.14 0.42968451 40
Kynurenine 2.1 0.0037 32
Urate Elevated 52
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and p-cresol sulfate, were elevated in the serum of  the KO mice and could be resulting, at least in part, 
due to this greater tyrosine metabolism in the gut. Similarly, tyrosine phenol-lyase, which was also noted 
in the 16S analysis, was reconstructed in greater numbers in the KO compared with the WT, with 4 and 2 
reconstructions of  these genes, respectively (Figure 4B). As mentioned previously, this enzyme catalyzes the 
production of  phenol from tyrosine, which can be later conjugated with sulfate during phase II metabolism 
to generate phenol sulfate, a potentially toxic metabolite (also a uremic toxin) elevated in serum of  the KO 
mice, in part presumably due to changes in microbial metabolism.

To determine whether pathway enrichments from our 16S results correlate with serum concentrations 
of  various gut-derived products, we performed a Pearson’s correlation using the metabolomics results from 
our Oat1-KO mice. We observed that the tyrosine derivative p-cresol sulfate correlates well with tyrosine 
degradation in the bacteria (r > 0.9; Figure 4D), while other tyrosine derivatives, such as 4-hydroxypheny-
lacetate and 4-hydroxybenzoate, also show a strong positive correlation with tyrosine metabolism, with 
r = 0.82 and r = 0.79, respectively. These results strongly suggest that the serum concentrations of  these 
metabolites can be at least partially explained by altered gut metabolism. In the Oat1-KO mouse, tyrosine 
derivatives (e.g., p-cresol sulfate) are elevated in the serum, and it appears that the gut microbiome shifts its 
own metabolism to favor tyrosine degradation (i.e., increased p-cresol and phenols).

Gut microbiome tryptophan metabolism appears connected to OAT1 regulation of  tryptophan derivatives in the 
serum. In addition to tyrosine derivatives, tryptophan metabolites have also been shown (40) to be handled 
by OAT1 in vivo and in vitro (Table 2). Many of  these compounds — such as indoxyl sulfate, indole-
propionate, and indolelactate — originate in the gut microbiome from the conversion of  tryptophan to 
indole by tryptophanase-expressing bacteria. Many are also considered uremic toxins, and they also have 
an increasingly appreciated role in signaling (15, 27, 36). Hence, we sought to determine whether there was 
an existing relationship between tryptophan metabolism and the metabolic capacity of  the gut microbiome.

Figure 3. Schematic of functional analysis of Oat1-KO and WT microbiomes. Serum from Oat1-KO and WT mice (n = 4 each) was collected and used for 
global targeted metabolomics analyses. In total, 217 metabolites were found to be significantly elevated in the KO, 40 of which were characterized as gut 
microbiome derived. 16S amplicon sequencing was performed on feces collected from the mice (n = 9 Oat1 KO, n = 9 WT). In total, 795 OTUs were recon-
structed across both groups. Functional profiling was accomplished using PICRUSt2, which utilizes the Integrated Microbial Genomes (IMG) database to 
assign genes to OTUs. WGS reconstructed 112 genomes in the Oat1 KO and 59 genomes in the WT (n = 7 Oat1 KO, n = 8 WT). The genomes reconstructed in 
the Oat1-KO microbiomes were annotated with 84,069 KEGG gene IDs, and the WT mice were annotated with 41,539 KEGG genes. Abundance of genes in 
the microbiomes was used as a measure of functional enrichment and was interpreted in the context of serum metabolomics.
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Figure 4. 16S and WGS pathway analyses reveal microbial pathways enriched in the Oat1 KO. (A) Bar chart of the predicted MetaCyc pathways from 
the 16S PICRUSt2 analysis of Oat1-KO and WT mice (n = 9 each). Pathways enriched in the Oat1 KO are represented by a positive log fold-change 
(LogFC). A voom differential expression analysis was performed to generate fold-changes and P values. P values were adjusted for multiple compar-
isons using the Benjamini-Hochberg correction. Of 346 total detected MetaCyc pathways, those charted had an Padj < 0.1. Pathways annotated with 
an asterisk represent those with an Padj < 0.05. (B) Tyrosine degradation, tryptophan metabolism, and LCFA synthesis pathways summarizing the 
abundance of enzymes reconstructed from WGS metagenome. Enzymes with a > 2-fold increase in abundance in the KO were annotated with a dark 
green arrow. Integer values inside the arrows represent the difference in hits an enzyme had in the KO versus WT. Tyrosine degradation, tryptophan 
metabolism, and LCFA synthesis are favored in the Oat1-KO microbiomes. (C) Volcano plot of gene enrichment from KEGG ontology annotated genes 
in PICRUSt2. Red points highlight genes present in the adjacent pathway diagram (B). Positive log fold-changes reflect an increased abundance of a 
gene in the Oat1 KO. Both WGS and 16S pathway analyses reflect increases in tyrosine degradation, tryptophan metabolism, and LCFA production in 
the Oat1 KO. Fold-change and P values were generated using voom. (D) Serum abundance of metabolites from Oat1-KO (n = 4) mice were correlated 
with MetaCyc pathways detected from the 16S PICRUSt2 analysis. Cells in heatmap are annotated with a Pearson’s R correlation coefficient. Serum 
microbe-derived metabolites correlate well with associated pathway enrichment in the microbiome. Therefore, pathways in the microbiome may 
have a predictive value for serum concentrations of gut-derived compounds.
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Functional predictions from the 16S PICRUSt2 analysis did not show significant changes in trypto-
phan degradation or synthesis pathways. However, at the gene level, an enzyme involved in an intermediate 
step in tryptophan synthesis, indole-3-gylcerol phosphate synthase trpCF, was found to be significantly 
elevated in the KO (Padj < 0.05, LogFC > 4; Figure 4C). Whole-genome reconstructions show a greater 
abundance of  several enzymes responsible for the synthesis and degradation of  tryptophan in the Oat1-KO. 
Bacterial tryptophanase catalyzes the production of  the signaling precursor, indole, from tryptophan and 
was reconstructed in greater numbers in the KO, with 19 hits compared with 4 (Figure 4B). Tryptophan 
synthase A, which can lead to generation of  indole, was reconstructed in 22 genomes in the KO compared 
with 4 in the WT (Figure 4B). The generation of  indole by both pathways is likely associated with the 
downstream production of  compounds like indoxyl sulfate, indolepropionate, and indolelactate, which are 
the products of  liver metabolism of  indole. These compounds have been shown to be affected by in vivo 
loss of  OAT1 in mouse models, which were also supported by in vitro assays, suggesting a strong mecha-
nistic relationship (32, 39). The increased production of  indole-containing compounds is similar to what 
was observed for tyrosine derivatives, with the increased levels in the serum, likely owing to both increased 
microbial production and diminished clearance.

The abundance of  bacterial pathways in Oat1-KO mice was correlated with the serum abundances of  
related metabolites to see how well bacterial tryptophan metabolism explains certain serum tryptophan- 
derived metabolites. We correlated one of  the detected tryptophan degradation pathways, L-tryptophan deg-
radation to 2-amino-3-carboxymuconate semialdehyde, with its closely associated metabolites. We found that 
tryptophan, kynurenine, and quinolinate all correlated well with this pathway (r > 0.75 each; Figure 4D). 
Kynurenine has previously been shown (39) to interact with OAT1 and becomes elevated in the serum of  
mice when Oat1 is deleted. Quinolinate was particularly notable, since it is nonenzymatically generated from 
2-amino-3-carboxymuconate semialdehyde, plays important roles in physiology, and is considered neurotox-
ic. Interestingly, “synthesis of  quinolinate from tryptophan” was one of  the few “metabolic tasks” found to be 
clearly altered in the kidney of  the Oat1-KO mouse (39). While these metabolites are also produced by host 
metabolism, their correlation with this bacterial pathway indicates a potential combined effect between the 
host and microbiome in establishing serum levels of  these metabolites involved in signaling. The increase in 
the bacterial tryptophan degradation pathway raises the possibility that the microbiome is also responding to 
an accumulation of  potentially toxic tryptophan derivatives due to loss of  renal clearance via OAT1.

Taken together, the data suggest a resetting in microbial tryptophan metabolism in response to loss of  
OAT1. Given the tryptophan synthesis and indole-producing degradation bacterial pathways reconstructed 
from WGS, this resetting is likely to apply to many of  the large number of  tryptophan derivatives other than 
indoxyl sulfate altered in the Oat1-KO serum. In light of  a previous study (39) focused on altered systemic 
tryptophan metabolism and kidney tryptophan metabolism (by metabolic task analysis) in the Oat1-KO 
mouse, the results suggest a strong connection, via tryptophan metabolism, between the gut microbiome 
and the kidney through the function of  the OAT1 transporter.

Long-chain fatty acid–related pathways in the gut microbiome are affected by loss of  OAT1. Several long-chain 
fatty acids are elevated in the serum resulting from loss of  OAT1 (Table 2); hence, we analyzed pathways 
associated with fatty acid metabolism. The 16S functional predictions indicate elevations of  several long-
chain fatty acid synthesis pathways, including palmitate, stearate, oleate, and palmitoleate biosynthesis; 
however, these only approached significance (0.05 < Padj < 0.1), so they did not fully meet criteria. We then 
analyzed pathways critical to fatty acid synthesis. The most relevant of  these was Biotin Biosynthesis 2, 
which was significantly elevated in the KO based on 16S results (Figure 4A, LogFC > 6, Padj < 0.05). Bio-
tin is necessary for fatty acid synthesis in bacteria and reflective of  fatty acid synthesis in the microbiome, 
which could explain the elevated levels in the serum.

When the Oat1-KO microbiomes were reconstructed during WGS, we found many enzymes responsi-
ble for the initiation of  fatty acid synthesis and fatty acid elongation to be reconstructed in greater numbers 
in the KO compared with the WT controls. For example, bacterial long-chain acyl-CoA synthase fadD, 
which converts endogenously produced and exogenous free fatty acids to acyl-CoAs, was reconstructed 
146 times in the KO and 25 times in the WT. Long-chain acyl-CoAs were not measured in the metabolo-
mics platform used; however, it is possible that serum acyl-CoAs may be affected by this change in the gut. 
Bacterial enzymes responsible for the elongation of  fatty acids, such as 3-oxoacyl-ACP-synthase 2 fabF, 
were also more abundant in the KO, with 69 reconstructions in the KO and 21 reconstructions in the WT, 
suggesting increased long-chain fatty acid production in the KO (Figure 4B).
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We then correlated serum levels of  long-chain fatty acids with Biotin biosynthesis 2 as a general pathway 
for long-chain fatty acid synthesis, and we saw strong correlation of  several serum long-chain fatty acids (r > 
0.8; Figure 4D). More specifically, we saw serum arachidonic acid and pentadecanoic acid, which have been 
previously shown (40) to change in response to Oat1 deletion in mice, correlated with Biotin biosynthesis 2 
with a coefficient of  0.89 and 0.81, respectively. We also saw serum concentrations of  stearate and palmitate 
also correlated well (stearate r = 0.866, palmitate r = 0.83) with biotin biosynthesis. While many of  these long-
chain fatty acids are elevated in vivo in the Oat1 KO, the available IC50 values in vitro suggest a moderate level 
of  interaction (40). Thus, it seems likely that the serum level changes of  many of  these long-chain fatty acids, 
some of  which are involved in signaling, are in large part due to changes in metabolism of the gut bacteria.

Urate production by the gut microbes is diminished following loss of  Oat1. Urate is a well-established in vivo 
substrate of  OAT1 (14, 32, 52). Human polymorphisms in OAT1 are associated with hyperuricemia (53, 
54). OAT1 and OAT3 are considered the main route of  entry of  urate across the basolateral (blood-fac-
ing) side of  the proximal tubule cell in the kidney (13). In patients with hyperuricemia and/or gout, it 
is now believed that the gut microbiome alters its production of  urate in response to elevated systemic 
urate levels (54). RSST predicts that, as with ABCG2-mediated transport favoring excretion across the 
gut epithelia (12), there should be a change in the microbiome to maintain urate homeostasis since high 
levels are associated with toxicity and disease (54).

In the Oat1 KO, we observed elevated serum levels of  purines, especially inosine (8-fold) and hypox-
anthine (16-fold) (Table 2). Although we did not analyze urine in this study, in our previous studies (32, 
52) of  the Oat1 KO, renal urate secretion was diminished and urine urate levels were low, consistent with 
systemic retention. We thus analyzed urate synthesis and downstream pathways in the context of  broader 
purine metabolism in gut microbiome of  the Oat1 KO. As shown in Figure 5, most of  the bacterial enzymes 
involved in purine metabolism were altered in the Oat1 KO. Notably, we observed a decrease in urate 
production (5 genomes in the WT compared with 0 in the Oat1 KO) (Figure 5). Moreover, analysis of  the 
composition of  the gut microbiota showed an increase in Prevotellaceae (Figure 2E), which is also seen in 
patients with hyperuricemia/gout (55). This suggests that gut microbiome remodeling could be occurring 
to compensate for elevated purines and/or urate in the Oat1 KO.

Discussion
While the effect of  gut bacteria on the host has been of  great interest for some time, there has been little 
research on how host metabolites transported by multispecific “drug” transporters influence the compo-
sition of  the microbiome. Also largely unexplored is the role of  these transporters in mediating crosstalk 
between the microbiome and a particular organ like the kidney, which handles the elimination of  many 
gut microbe–derived metabolites via OAT1. Here, we have analyzed bacterial metagenomics in the context 
of  metabolomics in mice in which a major drug transporter has been genetically disrupted. Furthermore, 
the fact that OAT1 is almost exclusively located in the kidney proximal tubule makes it possible to consider 
the relationship of  an important aspect of  physiology in a single organ to gut microbiome dynamics. Our 
results support the notion of  remote communication between the kidney and the bacterial species within 
the gut via OAT1. The changes in the gut microbiome composition and metabolic capacity associated with 
the loss of  renal OAT1 function help explain resulting changes in serum metabolomics (Figure 6), particu-
larly in the context of  systemic urate, tyrosine, tryptophan, and long-chain fatty acid metabolism.

Principal ordination shows distinct clustering of  beta diversities in the Oat1-KO and WT mice, indi-
cating that genetic differences in the mice can help explain compositional shifts in the gut microbiome. 
We found 30 OTUs to be significantly altered between the KO and WT controls, with compositional shifts 
favoring members of  Prevotellaceae and Lactobacillus in the Oat1 KO. Interestingly, previous work (56) has 
shown that both Prevotellaceae and Lactobacillus are responsible for saturated long-chain fatty acid produc-
tion by commensal microbes, a result also supported by our functional analysis of  the 16S amplicon and 
WGS data. We found enrichment in long-chain fatty acid production in the Oat1 KO in terms of  PICRUSt2 
pathway enrichment as well as a greater number of  fatty acid–producing fab genes reconstructed in the 
KO (Figure 4B). Moreover, tryptophan and tyrosine degradation were also found to be enriched in the KO 
microbiomes, again with greater reconstructions of  tryptophan- and tyrosine-degrading enzymes.

Taken together, the findings are of  particular interest when analyzed in the context of  several of  our 
previous studies (32, 39, 40) of  the serum metabolites altered in the Oat1-KO mice, which have elevations 
of  several LCFAs, tryptophan, tyrosine derivatives, and urate (Table 2). It is important to reemphasize 
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here that nearly all of  the serum metabolomics data referred to in the text are from the same mice on 
which the fecal metagenomics performed.

Particularly interesting is the apparent collaboration between gut microbes and OAT1 in the context of  
uric acid homeostasis. Enzymes associated with bacterial urate production were not detected in the KO but 
were found in the WT, suggesting diminished urate production as compensation for the lack of  OAT1. The 
effect the microbiome has on urate levels has to be considered in light of  the ability of  mice to convert urate 
into the more water-soluble allantoin — a pathway not available to humans. Nevertheless, it is interesting 
to note that changes to the microbiota have also been reported (6, 55) in patients with hyperuricemia; this 
is often associated with renal underexcretion of  urate, which also occurs in the Oat1-KO mouse. Our results 
suggest that the microbiome may be reducing its urate production in an attempt to restore urate homeosta-
sis, as laid out in RSST (12, 14, 15).

While the aforementioned results indicate that the various other bacterial metabolic pathways (involving 
tyrosine, tryptophan, and long-chain fatty acids) are altered in the Oat1-KO mice, the potential compensatory 
value for the murine host is sometimes not as obvious as in the case of  urate. To explore the relationship 
between serum levels of  gut-derived products and bacterial pathway enrichment, we analyzed pathway abun-
dances in the Oat1-KO microbiomes with serum metabolites and found that tyrosine, tryptophan, and long-
chain fatty acid–producing pathways correlated well with their associated products. Together with evidence 
of  increased degradation of  tryptophan (i.e., increased indole) and tyrosine (i.e., increased p-cresol and phe-
nol), this supports the view that the microbiome is at least in part responsible for, and/or is responding to, the 
altered serum metabolites relating to tyrosine, tryptophan, and long-chain fatty acid metabolism in the host.

In the case of  tryptophan and tyrosine derivatives, which serve as organic anion substrates for OAT1 
and, thus, are in part likely elevated largely due to diminished renal clearance, the gut microbiome may 
be shifting its metabolism of  tryptophan and tyrosine and their many derivatives. Some of  these deriv-
atives may be beneficial — and involved in key signaling events between the microbiome and various 

Figure 5. Pathway analysis of bacterial urate production. WGS reconstructs many of the enzymes responsible for purine and urate production in gut bac-
teria. Urate producing xanthine dehydrogenase was reconstructed in 5 bacterial genomes of the WT microbiomes and was not reconstructed in the Oat1 
KO, suggesting decreased urate production in the KO.
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organs — while some of  these may be harmful, and others may have a dual beneficial-harmful nature 
related to their levels in the tissue in question (27). In the case of  LCFAs, it appears that the microbiome 
plays a larger role in establishing serum concentrations of  these metabolites than loss of  renal elimi-
nation via OAT1. Whether the microbiome’s production of  LCFAs in the Oat1 KO serves a protective 
compensatory role in various tissues remains to be determined.

The end result of  the gut microbiome changes in response to the loss of  OAT1 seems to be a “resetting” 
of  small-molecule interorganismal (e.g., host-gut microbes) communication that, as seems most clear in the 
case of  urate, helps restore homeostasis after loss of  function of  a “drug” transporter, OAT1 (SLC22A6). 
OAT1 is a key multispecific organic anion transporter in a gene family (SLC22) functioning as a hub in a 
Remote Sensing and Signaling Network of  proteins regulating the aforementioned small molecules and many 
others (10). We hypothesize that this is a general paradigm for many other multispecific “drug” transporters 
of  both the SLC (e.g., OATs, OCTs, OATPs) and ABC (e.g., BCRP or ABCG2, MRP or ABCC, Pgp or 
ABCB1) families. Due to their multispecificity, a dozen or so such “drug” transporters, together with drug 
metabolizing enzymes (Phase I and Phase II), have the potential to handle the bulk of  small organic anions 
generated by the gut microbiome.

This hypothesis implies that multispecific “drug” transporters other than OAT1 deserve intense further 
investigation because, if  results similar to what we find with OAT1 are obtained, there is the potential to sub-
stantially revise our views on mechanisms within the body underlying the regulation of  microbiome-host 
metabolism. It also has clinically actionable consequences for understanding drug-metabolite interactions 
and the disposition of  endogenous metabolites of  pathophysiological significance such as gut microbe–
derived uremic toxins and, likewise, those accumulating in hepatic disease and metabolic syndrome.  

Figure 6. Illustration of how loss of Oat1 may alter gut microbiome composition. Altered renal clearance of 
gut-derived compounds and organic anions through loss of Oat1 leads to changes in serum metabolites. Systemic 
changes in organic anions may change the composition and function of the commensal microbiome. Some of the 
functional differences observed, due to loss of OAT1, include changes in tyrosine degradation, tryptophan degra-
dation, long-chain fatty acid synthesis, and urate production.
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Indeed, many of  the gut microbe–derived metabolites described here are also uremic toxins thought to 
be responsible for the progression of  CKD and CKD-associated cardiovascular disease (15, 25, 27, 28).

In rats with a CRISPR/Cas9-mediated double KO of  OAT1 (Slc22a6) and OAT3 (Slc22a8), renal 
dysfunction was observed in 4-week-old rats, but this was ameliorated by 7 weeks (57). This was apparently 
due to a compensatory increase in renal SLCO4C1 expression by 7 weeks (57). Previous work has shown 
that overexpression of  the OATP transporter, SLCO4C1, has a protective effect on 5/6 nephrectomy rats 
modeling CKD by reducing systemic uremic toxin levels (58). Diminished tubular secretion in the kidney 
is characteristic of  CKD (25, 27). Like SLCO4C1, OAT1 serves as an important uptake transporter at the 
site of  the proximal tubule, and its genetic deletion in mouse models leads to decreased tubular secretion 
and its associated changes to metabolism (8, 15). Given that many of  the gut-derived metabolite changes in 
our Oat1-KO mice are reflected in the serum of  patients with CKD, our findings may be highly relevant to 
understanding changes in host-microbiome dynamics that arise in the context of  declining renal function. 
The importance of  OAT1 in handling uremic toxins in CKD is clear (7, 8, 38), but renal function appears 
preserved, presumably because OAT3 expression and the gut microbiome compensates. Although a sig-
nificant increase in SLCO4C1 has not been reported in the Oat1 KO, this may not come into play unless 
both OAT1 and OAT3 are not expressed, as was the case in the rat double KO. The implication is that 
upregulating OAT expression, perhaps together with manipulation of  the microbiome, could help slow the 
progression of  CKD (15).

In summary, genetic deletion of  Oat1 leads to a number of  definable changes in the bacterial com-
position of  the gut microbiome. OAT1 in the kidney plays a key role in interorganismal small-molecule 
communication between the host and gut microbiome, particularly involving metabolites handled by these 
altered bacterial species. Our data and analysis indicate that the gut microbiome dynamics, together with 
OAT1 transport function, help maintain systemic homeostasis by regulating host pathways involving urate, 
tryptophan and tyrosine derivatives, long-chain fatty acids, and other metabolites (8).

Methods
Animals. Nine adult Oat1-KO and 9 WT C57BL/6 mice were housed in cages under a 12-hour day-night 
cycle with ad libitum access to food and water. Oat1-KO mice were generated and maintained as pre-
viously described (59). For 4 weeks, feces were collected weekly from each mouse in a sterile field and 
immediately snap frozen. Feces samples were kept at –80°C until further analysis. Whole blood was 
collected via terminal cardiac puncture, and serum was extracted, snap frozen, and stored at –80°C for 
metabolomics analysis as previously described (8).

Metagenomic analysis. Sequencing, library preparation, and isolation of genetic material were all performed 
by the UCSD Microbiome Core. Extraction protocols match those established in the Earth Microbiome Project 
(60). Whole genome and 16S libraries were prepped and sequenced on an Illumina platform. Reads were ana-
lyzed using the sequencing study manager Qiime2 (45). A default workflow for 16S amplicon sequencing results 
was run. Trimming, demultiplexing, and deblurring of reads were all handled by Qiime2. A feature table con-
taining OTU abundances and their reference sequences was generated and used for subsequent analyses. Alpha 
and beta diversity metrics were calculated in the Qiime2 platform. A minimum depth of 45,632 was found across 
all samples. This depth was selected for rarefaction when necessary. The ANCOM was run in Qiime2 (45, 48). 
Denoised features were assigned taxonomies using the Silva r138.1 rRNA database (61). The distance matrix 
used for ordination was generated using an Deicode’s Robust Aitchison distance calculation due to its sensitivity 
to compositional data (47, 48). Ordinations and alpha diversity graphs were plotted using ggplot2 in the R envi-
ronment. Qurro (50) was used for the multinomial differential analysis and to generate the rank plot.

Functional abundance predictions. 16S rRNA sequences for OTUs were input into PICRUSt2 (51), a bio-
informatics tool that uses reference genomes to predict functional abundance. Outputs contained tables 
with abundance values of  MetaCyc pathway and KEGG ontology genes for each sample.

WGS metagenomics. In total, 72 million reads were sequenced for the WT and 40 million reads for the 
KO. Raw paired-end reads were processed using Trimmomatic (v0.39) (62). FastQC was run on the trimmed 
reads, assessing GC content, per-base quality, and read duplication. Eight of  9 Oat1-KO and WT mice were 
selected for fecal WGS. One pair of  Oat1-KO reads was found to be unsatisfactory due to having high dupli-
cation rates and large GC content spikes. This library was removed from the WGS analysis, leaving 7 Oat1-
KO samples and 8 WT samples. Seventy-nine million reads were retained in the Oat1 KO, and 56 million 
were retained in the WT. WT and Oat1-KO metagenomes were coassembled using MegaHIT (v1.2.9) (63), 
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with a minimum contig length of  1 kb, with 77,116 contigs constructed in the KO and 48,295 contigs created 
in the WT — a total length of  290 million and 157 million bp, respectively. Contigs were then binned using 
metabat2 (v2.15) (64), generating 112 bins for the Oat1 KO and 59 bins for the WT. All bins were retained 
in the analysis. Open reading frames were predicted using Prodigal (v2.63) (65). Assembled genomes were 
annotated with KEGG IDs using KofamKOALA (66). The number of  hits across all bins was counted and 
compared between the 2 groups.

Metabolomics of  KO versus WT mice. The relevant metabolomics methods and analyses have been pre-
viously described (8), and here we have focused on a subset of  all significantly altered pathways that are 
necessary for understanding the microbiome results. Briefly, samples of  serum from KO and WT mice were 
delivered to Metabolon. According to the metabolomics protocol provided by Metabolon, serum proteins 
were removed and samples were subjected to ultra–high-performance liquid chromatography–tandem mass 
spectroscopy (UPLC-MS/MS). after passing quality checks. This is a targeted protocol. Peaks were identi-
fied based on retention time, mass/charge ratio, and known spectra; they were quantified by AUC.

Statistics. Statistical significance was determined for alpha diversity metrics using the Kruskal-Wallis H 
test, with P < 0.05 being considered significant. In the 16S functional analysis, when making comparisons 
between genes or between pathway abundances, fold changes and P values were generated using voom in 
the R package limma (67). A Benjamini-Hochberg correction was used to account for multiple compari-
sons and reported as Padj. Padj < 0.05 was deemed significant.

Study approval. All experimental protocols were approved by the UCSD IACUC, and the animals were 
handled in accordance with the Institutional Guidelines on the Use of  Live Animals for Research and 
ARRIVE (Animal Research: Reporting of  In Vivo Experiments) guidelines.

Data availability. Raw sequencing data (16S and WGS) were submitted to Sequence Read Archive and 
are available under the accession no. PRJNA1012006. Data values used to generate each figure are provided 
in the Supporting Data Values file. The code used for analysis will be provided upon request.
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