Table 2.
A summary table of clinical studies based on VCPM algorithm (The deadline of search is May 22, 2023).
| First Author | Country | AI | Year | Subject (n) | Distance (cm) | Data length | Method and clinical condition | Vital-sign: ME ± SD (HR:bpm; RR:brpm) |
|---|---|---|---|---|---|---|---|---|
| Liu147 | China | ✓ | 2023 | 405 | 50–150 | Each 10 min | Unsupervised learning; ICU patients; 67.8 Y/O. (mean); RGB; Chest ROI; 1440 × 1080/1080 × 720 px, 30fps | RR: 2.8 ± 3.0 |
| Barde156 | USA | × | 2023 | 60 | 28–44 | — | Atrial fibrillation patients; 67 ± 10 Y/O.; ≥50, 100, or 200 lux; Smartphone (Samsung S10 or S3), 30 fps | HR:0.05 ± 1.4 |
| Batbayar142 | Japan and Mongolia | × | 2022 | 301 | 40 | — | 154 COVID-19 patients and 147 healthy individuals; Thermal (9fps, 80 × 60 px) and RGB camera (30 fps, 424 × 240 px); Lie in bed | HR:-0.2 ± 2.3; RR:0.0 ± 1.6 |
| Svoboda157 | Germany | — | 2022 | 42 | 150 | — | 3D camera system containing RGB and NIR camera (950 nm); Newborn infants; 39.6 ± 1.3 weeks; 330.4 ± 13.9 lux | HR-3D:8.6 ± 4.4; 7D2HR-2D:3.0 ± 3.4 |
| Allado158 | France | — | 2022 | 963 | 70–100 | Each 60 s | Patients; 56.6 ± 16; Uncompressed video; BMI concordance; Fitzpatrick skin color scale concordance | HR:-0.1 ± 4.1 |
| Allado159 | France | — | 2022 | 924 | 70–100 | Each 60 s | Ditto | RR:-0.7 ± 3.5 |
| Sahoo127 | India | ✓ | 2022 | 19 | — | 19 * 10 mins | An end-to-end DL model integrates a non-learning based approach; NICU; 25 fps, 1920 × 1080 px; NIR and RGB | HR: 0.8 ± 3.5 |
| Zeng160 | China | × | 2022 | 10 | focal length | — | Living-skin detection; Critically-ill premature infants; 160 × 90, 20 fps; RAW format video | HR:MAE = 5.68; RR:MAE = 10.82 |
| Jorge18 | UK | ✓ | 2022 | 15 | — | 233.5 h | Post-operative ICU patients; 62.2 ± 12.4 Y/O.; Uncompressed 8-bit data (850 nm); 1024 × 768 px, 100 fps | HR:MAE = 2.5; RR:MAE = 2.4 |
| Wang161 | China | × | 2022 | 10 | — | each 10 min | ROI optimization using living-skin and respiratory maps; ICU Patients; CCTV camera in ceiling; 1920 × 1080 px, 25 fps | HR:1.7△ ± 6.0; RR:1.6△ ± 2.9 |
| Ottaviani162 | Italy | × | 2022 | 12 | >16 | — | Extract 3D displacements of chest depth images; Preterm infants RR monitoring; RGBD, 90 fps, 1280 × 720 px | RR:0.02 ± 0.51 |
| Hajj163 | Canada | × | 2022 | 4 | — | — | NICU; Neonatal RR estimation with RGBD sensor (Intel SR300); Using automated ROI segmentation algorithm | RR:MAE =5.0 |
| Pediaditis149 | Greece | ✓ | 2022 | 5 | 180 | 25–35 h | Using Eulerian magnification and 3D CNNs; Sleeping; 67 ± 10.8 Y/O; RGB and IR camera; 1080 × 720 px, 25 fps | RR:MAE = 2.29 |
| Nagy164 | Hungary | × | 2022 | 10 | 80-150 | 240 h | ROI detection based on UNet++, but the principle method are not based on AI; NICU, GA:33.2 weeks (mean); Raw format, 500 × 500 px, 20 fps | RR: MAE = 1.09 |
| Varma165 | India | — | 2022 | 158 | 122–152 | Each 30 min | Adult patients’ HR and RR measurement in hospital; 18–80 Y/O; IDS UI3060 and CCTV camera | HR:−1.27 ± 5.6; 7D3RR: −0.3 ± 3.06 |
| Huang17 | China | ✓ | 2021 | 257 | 50–100 | 9.6 h | In-hospitalized neonates (0–7 days); DL based method to extract PPG waveform and HR; 640 × 480 px, 30 fps | HR:−0.21 ± 5.32 |
| Chen166 | China | × | 2021 | 9 | 26–36 | 4.21 h | Hospitalized newborns with motion artifacts; RGB camera; 640 × 480 px, 30fps; Mean GA: 36.6 weeks | HR-R:MAE = 3.4; HR-M:MAE = 4.3 |
| Kyrollos167 | Canada | × | 2021 | 5 | — | — | Video Magnification based method; NICU; RGBD camera | RR: MAE=3.5 |
| Khanam168 | Australia | × | 2021 | 6 | 100–200 | Each 10 min | Automatic ROI detection based on neural networks, but the principle method are not based on AI; NICU; Nikon D610 and D5300; 1920 × 1080 px, 30 fps | HR:0.44 ± 2.2; RR:0.71 ± 2.65 |
| Laurie169 | Australia | × | 2021 | 7 | — | — | patients with acute mental; 12 bit GigE camera; 648 × 488 px | RR:0.11 ± 0.86 |
| Lyra148 | Germany | ✓ | 2021 | 26 | — | — | Investigated skin temperature trend measurement and respiration-related chest movements; Using YOLO detector; ICU patient; IRT camera, 4fps; 382 × 288 px; Optical Flow | RR:−0.18 ± 2.8 |
| Yu170 | Germany | × | 2020 | 20 | 180 | 25*20 min | Patient HR and HRV monitoring with NIR and RGB camera | HR: 0.0 ± 0.7 |
| Villarroel143 | UK | ✓ | 2020 | 40 | — | 304.1 h | Patients undergoing haemodialysis treatment; 64.7 ± 15.3 Y/O; Uncompressed video format; 15 fps, 2448 × 2048 px | HR:0.0 ± 2.4; RR:0.2 ± 1.66 |
| Malafaya171 | Portugal | × | 2020 | 3 | — | 15 min | Spectral and peak analysis; newborns in NICU; two cameras(Kinect V2 & Tesseract OCR engine); lateral | HR:RMSE = 6.93 |
| Chen172 | China | × | 2020 | 5 | 25–36 | 5*3 min | EVM algorithm; infants in NICU(13-25 days); Fluke Tix580; right ahead; 640 × 480 px, 30fps | HR:7.4 ± 12.5 |
| Imano173 | Denmark | × | 2020 | 39 | 110 | — | Estimate tidal volume (TV) and RR from chest depth image; Elderly people, 65-75 Y/O; still; RGBD, 30fps; right ahead | Tidal volume: :0.14 ± 0.03 |
| Paul174 | Germany | × | 2020 | 19 | 70 | 240 min | Neonates; RFGB, IRT and NIR sensor at side of bed; short-time Fourier transform; 1920 × 1200/640 × 480 px, 30/25 fps | HR: ME=3.0 |
| Negishi175 | Japan | × | 2020 | 28 | 100 | — | Influenza patients(45 Y/O); RGB-thermal image sensors; right ahead; 640 × 480 px(visible); 320 × 240 px(thermal) | RMSE:HR:5.93 ± 5.85; RR&BT:1.73 ± 1.68 |
| Villarroel68 | UK | ✓ | 2019 | 30 | — | 426.6 h | Preterm infants in NICU; GA:30.7 weeks; ECG sensor; above; 1620 × 1236 px | HR:0.3 ± 4.39; 7D3RR:−1.1 ± 5.66 |
| Chaichulee145 | UK | ✓ | 2019 | 15 | — | 226.4 h | Preterm infants; above; 1620 × 1236 px; skin segmentation | ROI accuracy:94.5% |
| Rehouma141 | Canada | × | 2019 | 2 | 85 & 160 | — | Children in PICU, 0-18 Y/O; still; two depth cameras; 45∘; 512 × 424 px | RR:0.8 ± 0.41(patient1); 0.7 ± 0.56(patient2) |
| Slapnicar176 | Slovenia | × | 2019 | 22 | — | — | POS algorithm; adult patient; still; right ahead | HR:MAE = 7.92 |
| Antognoli177 | Italy | × | 2019 | 40 | 50 | — | Neonates; GA:35 ± 2 weeks; still; a uniform light source; above; 1280 × 720 px | RMSE: 6.8(HR), 2.1(RR) |
| Rasche178 | Germany | × | 2019 | 70 | 60–100 | — | OPP; adult patients(70.3 ± 11.4 Y/O); fluorescent illumination and ambient light; right ahead; 420 × 720 px | — |
| Antognoli179 | Italy | × | 2018 | 7 | 50 | — | Neonates; GA:32 ± 4 weeks; still; above; 1280 × 720 px, 30fps | HR:12.2,RR:7.6(RMSE) |
| Trumpp180 | Germany | × | 2018 | 41 | 50–100 | — | Intraoperative patients(65.2 ± 12 Y/O); RGB and NIR cameras; surgical light; over head; 320 × 420 px | HR median: 95.6%(G),76.2%(NIR) |
| Chaichulee146 | UK | ✓ | 2018 | 20 | — | 110 h | Using MatConvNet to detect the head, torso and diaper; NICU; GA:≤37 weeks; still; 1620 × 1236 px, 20 fps | HR:2.4 ± 4.1 |
| Cobos181 | Spain | × | 2018 | — | 50 | — | Neonates; GA:25-40 weeks; natural/artificial light and skylights; above; 1920 × 1080/1280 × 720 px | HR:-1.5 ± 4.21, RR:0.6 ± 4.97 |
| Blanik182 | Germany | × | 2016 | 10 | 50–100 | Each 10 min | Neonates, 8-41 days; IR camera, infrared light emitting diode (LED) array (850 nm); above; 1920 × 1080 px, 25 fps | HR:−2 ± 9.69 |
| Sikdar183 | India | × | 2015 | 14 | — | — | Comparing the result of using RGB, RG, GB and RB channel; Infants(3–15 months) under Hammersmith examinations; | HR: – |
| Villarroel144 | UK | × | 2014 | 2 | 150 | 39.8 h | Neonates; GA:29 weeks; above; JAI AT-200CL digital 3CCD progressive scan, 1620 × 1236 px, 20 fps | HR:MAE = 2.83 |
| Aarts184 | Netherlands | × | 2013 | 2 | 100 | — | Neonates; 3 days–4 weeks; still; Blue Sensor NEOX, 150 lux.; 300 × 300 px, 30/15fps | HR:0.3 ± 2.68 |
| Scalise185 | Italy | × | 2012 | 7 | 20 | 28 min | Neonates; GA:33 ± 2.5 weeks; large band light; right ahead; 640 × 480 px | HR:−0.9 ± 4.54 |
The databases are collected by the authors and are private.
BMI body mass index, GA Gestational ages, Y/O years old, RGBD RGB Depth camera, IR infrared, NIR Near infrared, CCTV closed circuit television, EVM Euler video magnification, IRT Infrared thermal imaging, fps Frames per second.