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Abstract
Understanding the suitable habitat of endangered species is crucial for agencies such 
as the Bureau of Land Management to plan management and conservation. However, 
few species distribution models are directly validated, potentially limiting their appli-
cation in management. In preparation for a Species Status Assessment of clay-loving 
wild buckwheat (Eriogonum pelinophilum), an endangered subshrub found in southwest 
Colorado, we ran a series of species distribution models to estimate the species' poten-
tial occupied habitat and validated these models in the field. A 1-meter resolution digital 
elevation model derived from LiDAR and a high-resolution geology mapping helped 
identify biologically relevant characteristics of the species' habitat. We employed a 
weighted ensemble model based on two Random Forest and one Boosted Regression 
Tree model, and discrimination performance of the ensemble model was high (AUC-PR 
= 0.793). We then conducted a systematic field survey of model habitat suitability pre-
dictions, during which we discovered 55 new subpopulations of the species and demon-
strated that new species observations were strongly associated with model predictions 
(p < .0001, Cliff's delta = 0.575). We further refined our original models by incorporating 
the additional species occurrences collected in the field survey, a new explanatory vari-
able, and a more diverse set of models. These iterative changes marginally improved 
performance of the ensemble model (AUC-PR = 0.825). Direct validation of species dis-
tribution models is extremely rare, and our field survey provides strong validation of our 
model results. This helps increase confidence to utilize predictions in planning. The final 
model predictions greatly improve the Bureau of Land Management's understanding 
of the species' habitat and increase our ability to consider potential habitat in planning 
land use activities such as road development and travel management.
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1  |  INTRODUC TION

Species distribution models (SDMs) are widely used tools to under-
stand the primary habitat characteristics associated with species 
occurrence patterns (Guisan & Thuiller,  2005). These models can 
aid prioritization of conservation decisions (Guisan et  al.,  2013) 
and can guide further survey and management priorities (Graham 
et al., 2004; Hernandez et al., 2006). SDMs broadly compare habitat 
characteristics where a species has been observed to characteris-
tics throughout a species' range to determine the conditions associ-
ated with species presence and predict potential habitat (Araújo & 
Guisan, 2006; Phillips et al., 2009).

SDMs have particular importance for rare, at-risk, or endangered 
species. Estimation of a rare species' distribution is central to their 
assessment under International Union for Conservation of Nature 
guidelines (IUCN, 2001), and accurate predictions of the habitat of 
rare species is crucial for making informed conservation and man-
agement decisions (Ramirez-Reyes, Nazeri, et al., 2021). At the same 
time, rare species pose unique challenges and opportunities for mod-
eling. SDMs may have high accuracy if rare species occupy highly 
specialized habitats and limited geographic areas, but accuracy may 
also be limited by small population size and presence data gathered 
over long periods (Lomba et al., 2010; Sousa-Silva et al., 2014).

There has been growing interest in using SDMs to guide field 
surveys, with some relevant examples found in a review (Fois 
et  al.,  2018), but given the ubiquity of SDMs these examples are 
still very uncommon. Furthermore, direct validation of model pre-
dictions is difficult and extremely rare (Araújo & Guisan,  2006), 
though some relevant examples exist (Halvorsen,  2012; Johnson 
et al., 2023; Searcy & Shaffer, 2014; Westwood et al., 2020; Williams 
et  al.,  2009). Model validation is a central tool to assess the pre-
dictive capabilities of models (Tredennick et al., 2021), and without 
robust model validation of SDMs their relevance and application for 
planning is unclear (Loiselle et al., 2003).

We ran a series of species distribution models and a weighted 
ensemble model of clay-loving wild buckwheat (Eriogonum pelinophi-
lum), an endangered species in western Colorado, United States. We 
then conducted a systematic field survey of the model predictions 
as a direct model validation procedure. This rare opportunity helped 
us discover 55 new subpopulations of the species and allowed us 
to directly validate our model, greatly increasing our confidence in 
using the model predictions in planning.

Our goal through this analysis was to obtain high-resolution pre-
dictions of the species' potential habitat and better understand the 
ecology of the species to promote conservation. This was completed 
in preparation for a Species Status Assessment (SSA) of E. pelinoph-
ilum. The SSA process was developed by the U.S. Fish and Wildlife 
Service to inform all Endangered Species Act decisions, and is a 
standardized, repeatable analytical approach that provides a com-
prehensive analysis of the ecology, current condition, and expected 
future condition of at-risk species (Smith et al., 2018). E. pelinoph-
ilum is a long-lived perennial subshrub, generally growing 5–10 cm 
tall and 8–20 cm across (USFWS, 1988). The U.S. Fish and Wildlife 

Service determined that E. pelinophilum met the criteria of an en-
dangered species and listed it under the Endangered Species Act in 
1984, based on the species' small known population size, limited dis-
tribution, and land-use conflicts in its range (USFWS, 1984).

2  |  METHODS

2.1  |  Study area

The study area was western Colorado, USA, including the entire 
known range of E. pelinophilum (hereafter, “ERPE”) (Figure  1). The 
species' known distribution encompasses a narrow band of badlands 
derived from the Mancos Shale formation east of U.S. Highway 50 
between the towns of Delta and Montrose, in Delta and Montrose 
counties (Peterson, 1982). This formation is found on both private 
lands and Bureau of Land Management (BLM) lands managed by the 
Uncompahgre Field Office. Mancos Shale-derived soils tend to have 
high clay and silt content, as well as high salt and selenium concen-
trations. These easily erodible soils form a variety of topographic 
features including steep badlands, gently rolling hills, alluvial fans, 
and flats.

Total annual precipitation in the study area ranges from an av-
erage of 22 cm at the northern extent of the range, to 32 cm at the 
southern extent (PRISM Climate Group,  2016). In the northern, 
lower elevation areas (1600 m above sea level), ERPE is thought to 
be more restricted to northerly aspects and swales that accumulate 
snow in the winter (O'Kane Jr, 1985). In the higher elevation (1900 m 
above sea level) southern extent of the range, the species is less re-
stricted, but abundance tends to be greatest on northerly aspects 
(BLM, 2022a).

Plant communities associated with clay-loving wild buckwheat 
are best described as an Inter-Mountain Basins Mixed Salt Desert 
Scrub ecological system (Crawford et al., 2016). The vegetation com-
munity is characterized by an open shrubland and is predominantly 
comprised of halophytic shrubs and subshrubs including shad-
scale (Atriplex confertifolia), Gardner's saltbush (Atriplex gardneri), 
mat saltbush (Atriplex corrugata), budsage (Artemisia spinescens), 
and Halogeton glomeratus. Higher elevation sites display more het-
erogeneous black sagebrush (Artemisia nova) communities with 
Achnatherum hymenoides, Xylorhiza venusta, and another local en-
demic, Adobe Hills beardtongue (Penstemon retrorsus) (Neely, 1985; 
O'Kane, 1985).

2.2  |  Original model

2.2.1  |  Input points

The original model included 1009 points of ERPE presence. The ma-
jority of these points (858) represented locations where point ob-
servations of individuals had been collected in the field by the BLM 
and others since the listing of the species in 1984. The remaining 
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151 points were manually generated within polygon observations 
also collected in the field which were geographically distinct from 
the point observations (typically separated by 1–2 km). The polygon 
observations represent larger, more continuous ERPE subpopula-
tions that observers chose to map as polygons. Points were manually 
added in these polygons to obtain a more representative sample of 
conditions across the species' habitat in areas where no point obser-
vations were available. Multiple points were generated within larger 
polygons, but were not closer together than 10 m. The total 1009 
ERPE presence points spanned much of the species' known range.

Background points were obtained by generating random points 
within the study area extent (Hefley & Hooten,  2016). A total of 
43,334 random background points overlapping the predictor data 
were generated. Though some background points may be generated 
very close to ERPE presence points, the very large number of ran-
dom points generated ensured that these points as a whole substan-
tially differed from the presence points.

All analysis described in this paper was carried out in R 4.1.2 (R 
Core Team,  2021), with the ‘terra’ package (Hijmans et  al.,  2022) 
used for raster manipulation and ‘ggplot2’ package (Wickham & 
Chang, 2016) for plotting. Additional packages used in modeling are 
detailed below.

2.2.2  |  Environmental covariates

Many of the covariates used in modeling were calculated from a 
1-m resolution LiDAR-derived digital elevation model (DEM). This 
dataset was selected because of its extremely high resolution and 
ability to most accurately capture microtopography. In addition to 

elevation, we calculated slope, northness, and eastness from the 
DEM. Northness was calculated by generating aspect in degrees, 
then transforming as follows: northness = cos (aspect * π/180). 
Eastness was similarly calculated: eastness = sin (aspect * π/180). 
Transforming aspect into eastness and northness is necessary be-
cause aspect is circular (Clark et al., 1999).

We also included geologic formation as a covariate. Since we 
believed EPRE was associated with a single geologic formation 
(the Smoky Hill member of the Mancos Shale, formation "kms"), we 
generated a buffer of distance from this formation using 1:24 k lay-
ers of geology available in the majority of our study area (Morgan 
et al., 2007, 2008, Noe et al., 2007, 2013). We transformed this buf-
fer distance into four classes rather than treating it as a continuous 
variable. One class included distances from 0 m (within formation 
"kms") up to 1 m away, the next included distances from 1 to 10 m 
away, then 10–100 m, and lastly farther than 100 m. One quadrangle 
of 1:24 k geology in the species' range, the Red Rock Canyon quad-
rangle, was not available. This area was omitted from analysis.

Lastly, we included 30-year normal precipitation (1991–2020) 
from PRISM (PRISM Climate Group,  2016). Originally available at 
800-m resolution, we resampled precipitation to 1-m resolution 
by bilinear interpolation to align cells of all predictors. Though this 
method creates interpolated data and does not truly increase data 
resolution, we employed it to preserve the high-resolution LiDAR-
derived data and obtain more realistic precipitation values for pre-
diction without sharp cell transitions (Phillips et  al.,  2006; Wang 
et al., 2006). Model variable coefficients derived from interpolated 
data may be suspect, but we do not report coefficients for this rea-
son and because we mainly employed tree-based methods without 
such coefficients.

F I G U R E  1 Map of the entire study area 
within western Colorado, within Delta 
and Montrose counties, with neighboring 
counties also labeled.
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We extracted the values of each of these environmental covari-
ates onto the presence and background points, then used these val-
ues in modeling.

2.2.3  | Modeling

We randomly selected a subset of two-thirds of both the presence 
and background points to include in modeling. This allowed one-third 
of the points to serve as true model validation points which were 
never included in model construction. All modeling and validation 
was performed with these split training and validation data.

We ran four modeling approaches in our original modeling ef-
fort: two different implementations of Random Forest—a downs-
ampled random forest from the ‘randomForest’ package (Liaw & 
Wiener, 2002) and a shallow random forest from the ‘ranger’ pack-
age (Wright et  al.,  2019)—and Boosted Regression Tree (BRT) and 
MaxEnt both fit in the ‘dismo’ package (Hijmans et al., 2017). These 
modeling methods are widely used in species distribution modeling 
(Valavi et al., 2022). In the downsampled random forest, each tree 
included a random subset of an equal number of presence and back-
ground points, while in the shallow random forest, each tree was 
restricted to a maximum depth of only two splits (Valavi et al., 2021).

From the models, we generated raster layers of habitat suitability 
predictions corresponding to all cells in the environmental covariate 
rasters. These represent predictions of species habitat suitability, 
which should be interpreted as similarity to the species' currently oc-
cupied habitat because current presence was the basis of our model 
(Latif et al., 2015).

We calculated many metrics of model accuracy. Many have 
identified AUC-PR (area under the precision-recall curve) as the 
most relevant for rare species (Sofaer et al., 2019). AUC-ROC (area 
under the receiver operating characteristic curve) is typically pre-
sented as well, but this metric is more strongly influenced by true 
absences, which can overwhelm presences in models of rare spe-
cies (Sofaer et al., 2019). Pearson's correlation between predicted 
suitability and occurrence observations has the advantage of ad-
dressing model value calibration (Phillips & Elith, 2010). Some have 
promoted similarity indices such as Sørensen's similarity index for 
model validation (Leroy et  al.,  2018). However, similarity indices 
require thresholding model results, which causes information loss 

and may lead to misleading results (Guillera-Arroita et  al.,  2015; 
Lawson et al., 2014).

We used only threshold-independent metrics for model vali-
dation (AUC-PR, AUC-ROC, and correlation) and used AUC-PR to 
calculate a weighted ensemble model. The weighted ensemble was 
produced by first dividing each model's AUC-PR by the sum of all 
models' AUC-PR. This determined each model's weight in the en-
semble. Each model was then multiplied by its respective weight, 
and then added to obtain the ensemble prediction (Ramirez-Reyes, 
Nazeri, et  al.,  2021). We did not include MaxEnt in the ensemble 
model because its AUC-PR was somewhat lower than the other 
models (Table 1).

To account for differences in performance across validation met-
rics, we calculated a normalized average of each model's validation 
scores. We did this by scaling the data range for each validation met-
ric from 0 to 1, then averaging the scaled results across the met-
rics we utilized (AUC-PR, AUC-ROC, and correlation). This provided 
a single score for each model which considered performance in all 
three validation metrics.

We applied a threshold on raw model predictions as a final man-
agement tool to delineate suitable and unsuitable habitat. Selection 
of this threshold has a significant impact on suitability determi-
nations (Nenzén & Araújo,  2011), and the appropriate threshold 
depends on a model's purpose and the costs of misclassification 
(Fielding & Bell, 1997; Pearson et al., 2004). For identifying the hab-
itat of rare species, the cost of false negatives (i.e., misidentifying 
true suitable habitat as unsuitable) is much greater than the cost 
of false positives. Therefore, we selected a fixed sensitivity of 0.95 
in thresholding our model results to ensure that areas identified as 
suitable encompassed a high proportion of true ERPE presences.

2.3  |  Field validation

We conducted field surveys in the fall of 2022 to assess the accuracy 
of the original ensemble model. These surveys were conducted by 
generating a series of 50-m cells overlapping the ensemble model's 
suitability predictions. We systematically surveyed these cells in 
groups of at least three individuals by slowly walking in a straight line 
through cells (Williams et al., 2009; Willoughby, 2000). Where ERPE 
individuals were observed, we then mapped new subpopulations.

AUC-ROC AUC-PR Correlation
Normalized 
average

RF Downsample 0.989 0.792 0.606 0.924

RF Shallow 0.987 0.773 0.547 0.537

BRT 0.989 0.728 0.623 0.874

MaxEnt 0.980 0.618 0.608 0.268

Weighted Ensemble 0.989 0.793 0.599 0.897

Note: The bolded number in each column denotes the model(s) with the highest score. Normalized 
average was calculated by scaling the data range of each validation metric from zero to one, then 
averaging the scaled result of the three metrics for each model.

TA B L E  1 Validation metrics of models 
in the original model.
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We kept records of all cells surveyed during field validation. 
These records were used to assess how much area was surveyed, 
the suitability value predicted by the ensemble model in all surveyed 
cells, and the cells in which new ERPE individuals were observed. 
Areas where no ERPE individuals were detected within these cells 
were considered true absence observations.

We used a Wilcoxon rank sum test to analyze whether en-
semble model suitability predictions at locations where ERPE 
was observed differed from model predictions where ERPE was 
not observed. We also calculated Cliff's delta effect size because 
effect sizes are more meaningful for comparison than metrics 
such as p-value and test statistics (Sullivan & Feinn,  2012). The 
Wilcoxon rank sum test and Cliff's delta were used, rather than 
a t-test, because model suitability predictions were not normally 
distributed.

2.4  |  Final model

2.4.1  |  Input points

We included all new species observations from field validation as 
input points in the final model. We also altered our selection of pres-
ence points to better include accurately mapped polygon observa-
tions of ERPE individuals. In the original model, we primarily utilized 
point observations of the species, with some manually generated 
points in mapped polygons distinct from any point observations. In 
the final model, we included all point observations and all accurately 
mapped polygons.

However, mapped polygons were very large in many cases, and 
considering all the area within each mapped polygon yielded an ex-
tremely high number of species presences which overwhelmed the 
point observations. We utilized the mapped polygons by first isolat-
ing those with an area less than 20-m2. For these polygons, we gen-
erated one point in the polygon centroid. For polygons larger than 
20-m2, we rasterized polygons on a 10-m resolution grid and gen-
erated one point in the centroid of each polygon cell. We then fur-
ther restricted these points by filtering them so that no points were 
closer together than 40 meters. This two-step approach helped to 
ensure smaller polygons had at least one point generated within 
them, but large polygons did not have hundreds of points.

The true point observations and the points generated from the 
mapped polygons were then merged. This set included 892 points 
from point observations and 655 points from mapped polygons, for 
a total of 1547 species observations.

True absence data were also available from the field validation 
of the original model because we considered surveyed areas with no 
ERPE observations as true absences. However, we did not want to 
overwhelm the model with these true absence points, which were 
overall very near and similar to presence points. We generated true 
absence points through a similar process as generating presence 
from mapped polygons. Starting with the set of cells surveyed in the 
field validation, we first masked out areas with ERPE observations, 

then rasterized the remaining areas at 20-meter resolution and gen-
erated one point in each cell centroid. This yielded 2061 true ab-
sence points.

We preserved the same ratio of presence to background/ab-
sence points in the final model so that metrics such as AUC-PR 
would be comparable between the original and final modeling ef-
forts. Therefore, we had to generate additional background points 
to balance the increase in presence points available in the final 
model. These background points were randomly generated as in the 
original model.

Lastly, we took two new steps in filtering the final set of points 
before modeling. We filtered presence observations so that no ob-
servations were closer than 2 meters. This prevented some areas 
with many closely packed point observations from overwhelming 
the model. We also filtered the background and true absence points 
so that none were closer than 100 meters to any presence points. 
This step helped ensure that absence points were sufficiently dis-
similar from the presence points.

With the final set of filtered presence and background/absence 
points we again randomly split the data into training and validation 
sets, with two-thirds in the training set and one-third in the valida-
tion set.

2.4.2  |  Environmental covariates

All environmental covariates from the original model were included 
in the final model, and one new covariate was added, soil color index. 
During field validation, we noted that some locations identified as 
the Smoky Hill member of the Mancos Shale in our geology layer did 
not have the distinctive gray color expected in this geologic stratum. 
Soil textures also differed, with these soils being loamier than where 
ERPE is typically found.

We used satellite imagery as an additional way to identify soil 
color and thus the relevant geologic stratum. We downloaded a 
clear Landsat scene of the study area and used the red and green 
bands to calculate the soil color index (Mandal, 2016), calculated as: 
(Red − Green)/(Red + Green). The soil color index was calculated with 
a Landsat scene from Landsat 9 Collection 2 (USGS, 2022). Soil color 
index was resampled by bilinear interpolation from the original 30-m 
resolution to 1-m resolution to match the other predictors.

2.4.3  | Modeling

We altered our modeling approach to obtain a more diverse set of 
model types. In the original model effort, we employed two Random 
Forest (RF) implementations, BRT, and MaxEnt. RF and BRT are 
both tree-based machine-learning algorithms so their results are 
likely more similar than other methods. MaxEnt shares qualities of 
both regression-based algorithms and machine learning algorithms 
(Phillips et al., 2006), but was not included in the original weighted 
ensemble.
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Confidence in modeling results is increased when diverse mod-
els with different assumptions reach similar conclusions (Zimmer 
et al., 2021), so we used a more varied set of model approaches in 
the final model. We again ran the downsampled RF, BRT, and MaxEnt 
models. We also included Multivariate Adaptive Regression Splines 
(MARS) fit in the ‘earth’ package (Milborrow, 2019) and Generalized 
Additive Models (GAM) fit in ‘mgcv’ (Wood, 2015), two additional 
regression-based modeling methods (Valavi et al., 2021). Unlike in 
the original model, we did not run the shallow random forest model 
from the ‘ranger’ package. The model parameters utilized are shown 
in Appendix S1.

We again used AUC-PR to calculate a weighted ensemble model. 
This new weighted ensemble included RF, BRT, MaxEnt, MARS, and 
GAM. Therefore, the final ensemble was based on two tree-based 
machine learning algorithms, two regression-based methods, and 
one method with characteristics of each. This is much more varied 
than the original ensemble model, which included only three tree-
based regression models.

3  |  RESULTS

3.1  |  Original model

Validation metrics for each algorithm used in the original model 
were computed using the validation data held-out from model 
construction. AUC-ROC for these validation data was very similar 
for all models (between 0.980 and 0.989) (Table  1). AUC-PR was 
more variable (from 0.618 to 0.793), with MaxEnt having the worst 
performance. The weighted ensemble model, which was weighted 
by AUC-PR and did not include the MaxEnt model, had the highest 
AUC-PR, slightly above RF Downsample. BRT had the highest score 
for Correlation.

To account for differences in performance across these valida-
tion metrics, we calculated a normalized average of each model's 
validation scores. RF Downsample had the highest score by this 
normalized average, followed by the weighted ensemble, BRT, RF 
Shallow, and MaxEnt.

3.2  |  Field validation

Field validation of the original ensemble model was carried out over 
near-field days totaling approximately 112 person-hours of sampling 
effort. This sampling yielded 55 new subpopulations of ERPE cover-
ing 0.01 km2 (2.47 acres). In total, 1.47 km2 (362.35 acres) was sur-
veyed during this sampling effort.

Model suitability predictions in cells where ERPE was pres-
ent and absent were significantly different from each other 
(Figure 2). The mean model prediction in cells where ERPE was 
absent was 0.411 (SD = 0.290), while the mean model prediction 
where ERPE was present was 0.703 (SD = 0.168). A one-sided 

Wilcoxon rank sum test showed this difference was highly sta-
tistically significant (p < .0001), and Cliff's delta showed a large 
effect size (d = 0.575).

We ran the same statistics for each of the individual models as 
well as the ensemble. For Cliff's delta effect size, RF Shallow had the 
highest score (0.594), followed by the weighted ensemble (0.575), 
BRT (0.557), RF Downsample (0.549), and finally Maxent with a me-
dium effect size (0.349). Though these effect sizes varied between 
models, the Wilcoxon rank sum test showed they were all highly sta-
tistically significant (p < .0001).

We also divided model suitability predictions into cells predicted 
to be suitable and unsuitable based on each model's fixed sensitivity 
threshold of 0.95, and performed a Chi-square test comparing the 
number of cells in each of these classes where ERPE was observed 
and not observed. In the original ensemble model, the prediction 
value corresponding to this sensitivity was 0.388. This analysis also 
showed a statistically significant difference, with ERPE observed in 
1.27% of the cells predicted to be suitable, and 0.09% of cells pre-
dicted to be unsuitable (Appendix S1: Tables S1 and S2).

3.3  |  Final model

Compared to the original ensemble model, performance of the 
final ensemble model was improved in all the validation metrics 
(Table 2). AUC-PR rose from 0.793 to 0.825, Correlation rose from 
0.599 to 0.663, and AUC-ROC rose very slightly from 0.989 to 
0.990.

The weighted ensemble model was similar to the individual mod-
els in all metrics (Table 2; Figure 3). Though the ensemble was not 
best in any metric, it had the second-highest normalized average of 
the three metrics. The GAM model had the lowest performance for 
all metrics.

F I G U R E  2 Boxplots of ensemble model predictions in cells 
surveyed in field validation, comparing predictions where ERPE 
was observed and not observed. Asterisks represent statistical 
significance of the Wilcoxon rank sum test (p < .0001 = ***).
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The models calculated relative variable importance differently. 
To compare variable importance between them, we determined the 
ranked variable importance from each model (Table 3). Some rela-
tionships are evident, with elevation and geology among the most 
important variables for all models. Precipitation was the most im-
portant variable in three of the five models, and eastness was the 
least important variable in all models.

The MARS model evaluated all variable interactions and dis-
carded many individual variables and interaction terms. Only precip-
itation, geology, and soil color index were utilized in the MARS model 
in non-interaction terms. However, all variables besides eastness 
were utilized in interaction terms. For example, the second-most 
important variable was the interaction of elevation, slope, soil color 
index, and precipitation, but elevation and slope were not utilized in 
the model as individual terms. This model feature “pruning” is a fea-
ture of MARS models (Kartal & Bozdogan, 2015; Milborrow, 2019) 
and simple variable importance tests showed all variables were im-
portant, though variable selection prior to modeling could poten-
tially have improved fit.

3.4  |  Habitat characteristics

Comparing environmental covariates at the presence points and 
background points used in the final model reveals several impor-
tant habitat characteristics of ERPE (Figure  4). Geology had the 
strongest association with ERPE presence. Mean geology class at 
presence points was 1.23, compared to 2.81 at background points. 
This difference was strong and statistically significant (Cliff's 
d = −0.618, p < .0001). For ERPE presence points, 86.55% were in 
geology class 1, meaning they were within the Smoky Hill member 
or within 1 meter of it, while only 30.77% of background points 
were in class 1.

ERPE presence was associated with significantly more north-
facing aspects, with mean northness of 0.33 at presence points, com-
pared to 0.08 at background points (Cliff's d = 0.204, p < .0001). ERPE 
presence points were on slightly more east-facing slopes, with a mean 
of −0.10 compared to −0.16 at background points. This was a weak 
but statistically significant association (Cliff's d = 0.048, p = .0014). 
Mean soil color index at ERPE presence points was 0.05 compared to 

AUC-ROC AUC-PR Correlation
Normalized 
average

RF 0.991 0.845 0.619 0.917

BRT 0.992 0.844 0.682 0.999

MaxEnt 0.980 0.727 0.679 0.792

MARS 0.967 0.684 0.654 0.597

GAM 0.960 0.347 0.392 0

Weighted Ensemble 0.990 0.825 0.663 0.942

Note: The bolded number in each column denotes the model with the highest score for that 
validation metric. Normalized average was calculated by scaling the data range of each validation 
metric from zero to one, then averaging the scaled result of the three metrics for each model.

TA B L E  2 Validation metrics of models 
in the final model effort.

F I G U R E  3 Three-dimensional scatterplot of final model validation metrics.
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0.03 at background points. This was a strong association despite the 
small magnitude of difference (Cliff's d = 0.357, p < .0001).

3.5  |  Habitat suitability predictions

For estimating suitable and unsuitable ERPE habitat from raw model 
predictions, we applied a fixed sensitivity threshold of 0.95 to 
model predictions. In the original model, the prediction value cor-
responding to this sensitivity was 0.388. Therefore, 95% of species 
presences should be correctly identified at a cutoff value of 0.388 
delineating suitable and unsuitable. Our field validation of the model 
showed that this was extremely accurate—of the locations where 
we observed ERPE (i.e., true presences), 93.69% had a model predic-
tion greater than the cutoff value. Specificity at this 95% sensitivity 
threshold was 0.941, meaning 94.1% of absences should be correctly 

identified with this cutoff value. However, in our field validation, we 
found only 49.94% of absences were correctly identified.

In the final model, the prediction corresponding to the 0.95 sensitiv-
ity threshold was 0.330. Setting the prediction cutoff of the models to 
this 0.95 sensitivity threshold ensured that sensitivity of the models was 
high, but specificity remained high as well (0.941 for the original model, 
and 0.934 for the final model). A high sensitivity was necessary for our 
purpose of identifying potential habitat of a rare species. Choosing the 
prediction threshold where sensitivity plus specificity is maximized is 
often suggested (Liu et al., 2013), but we preferred the more easily in-
terpretable and consistent threshold of a fixed 95% sensitivity.

When applied to the raw model predictions, the fixed 95% sen-
sitivity threshold yielded similar determinations of suitable habitat 
and a similar percentage of the study area being identified as suit-
able (Figure 5). The cutoff showed 6.04% of the study area was suit-
able in the original model, and 6.48% was suitable in the final model. 

TA B L E  3 Relative variable importance rank from each model.

Precipitation Elevation Slope Northness Eastness Geology class
Soil color 
index

RF 1 2 5 6 7 3 4

BRT 1 3 5 6 7 2 4

Maxent 3 2 5 6 7 1 4

MARS 1 NA NA NA NA 2 3

GAM 6 3 4 4 7 1 2

Note: MARS and GAM models have variable interaction terms, but these are not shown. For RF, the Mean Decrease GINI rank is shown. NA indicates 
variables not utilized in the MARS model in non-interaction terms.

F I G U R E  4 Comparisons of environmental covariates at the presence points and background points used in the final model. Asterisks 
represent statistical significance of the Wilcoxon rank sum test (p < .01 = **; p < .0001 = ***).
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For other commonly used prediction thresholds, the cutoff predic-
tion values and suitable habitat percents were also similar between 
the models (Appendix S1: Table S3).

For the final model, this translated to a total of 33.66 km2 of suit-
able ERPE habitat (8318 acres). Of this area, however, only 12.98 km2 
(3208 acres) occurs on BLM land. The remaining habitat is on private 
lands, much of which are currently agricultural fields or adjacent to 
fields, and not thought to support ERPE populations.

4  |  DISCUSSION

4.1  |  Species habitat

We used a 1-meter resolution LiDAR-derived DEM in our model, 
and derived northness, eastness, and slope from this DEM. 
Few analyses have used LiDAR in species distribution models, 
though see Ackers et al. (2015), Keppel et al. (2017), and Questad 
et al. (2014). For species with highly specific habitats, higher res-
olution data from LiDAR and other remote sensing methods (He 

et al., 2015) should provide the best opportunity to accurately cap-
ture fine-scale microtopography such as the small swales where E. 
pelinophilum is often found. Our high-resolution predictions also 
capture habitat suitability at a scale relevant to the species' patch 
size (Gogol-Prokurat, 2011).

Our analysis confirmed that E. pelinophilum is very strongly as-
sociated with a single geologic stratum, the Smoky Hill member 
of the Mancos Shale, and availability of a high-resolution 1:24 k 
geology mapping allowed accurate identification of this stratum. 
However, one geology quadrangle with known ERPE populations 
was not available at this resolution and was not included in our 
modeling (Figure  5). Additional mapping to complete this survey 
would allow us to make predictions in this missing portion of the 
species' habitat.

4.2  |  Model validation

Appropriate model validation remains an issue in species distribution 
models, with many metrics used and the most appropriate metric 

F I G U R E  5 Maps comparing predicted habitat suitability from the original (a) and final (b) ensemble models. Raw model predictions have 
a 95% sensitivity threshold applied to delineate suitable and unsuitable habitat. The inset map (c) shows close-up model results in one 
location, comparing areas with predicted habitat suitability from each model.
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depending on characteristics like species rarity (Sofaer et al., 2019). 
We evaluated only threshold-independent metrics including AUC-
ROC, AUC-PR, and Correlation. We considered AUC-PR to be the 
most important metric, and removed the MaxEnt model from inclu-
sion in the original weighted ensemble due to its somewhat lower 
AUC-PR. However, closer scrutiny after the final modeling showed 
the original MaxEnt model had the second-highest correlation, sug-
gesting MaxEnt may have been a positive contribution to the original 
weighted ensemble.

In the final model effort, no model performed best in all valida-
tion metrics, demonstrating the tradeoffs and differences in per-
formance between these metrics. The weighted ensemble had the 
second-highest normalized average of all metrics, but was not best 
in any one metric. Ambiguity in individual model performance and 
validation metrics is a primary argument for considering ensemble 
models (Araújo & New, 2007), though the performance improve-
ment of ensemble species distribution models in general remains 
unclear (Hao et al., 2019). However, ensemble models have been 
promoted for at-risk species in particular due to their ability to 
reduce uncertainty between models (Ramirez-Reyes, Street, 
et al., 2021).

4.3  |  Field validation

Field validation of the original model provided a secondary form of 
model validation. Direct validation of species distribution models 
remains extremely rare (Araújo & Guisan, 2006; Fois et al., 2018), 
but we believe this provides crucial information about a model's 
predictive capabilities (Tredennick et al., 2021) and increases confi-
dence in results. We found model suitability predictions were very 
strongly associated with ERPE observation for all models (Figure 2; 
Appendix  S1: Table  S2). The weighted ensemble model was the 
model with the highest AUC-PR, and the second-highest Cliff's d 
effect size and Cramer's V effect size comparing prediction values 
where ERPE was observed and not. AUC-PR appeared to be the vali-
dation metric most predictive of a model's ability to make suitability 
predictions associated with new observations in the field, but we 
found it was not perfectly associated with the field validation per-
formance in our limited sample.

Field validation helped us find a new variable to include in the 
final model, the soil color index. This represented a biologically rel-
evant improvement since some soils we observed during field vali-
dation were beige-colored, with a loamier texture and substantially 
lower clay content than soils ERPE is known to occupy. This micro-
site variation was not captured in the geology mapping. However, 
the soil color index variable helped to distinguish this variation and 
was an important contribution to the final models, with greater 
variable importance than northness, eastness, and slope.

In field validation, we found that 93.69% of new ERPE ob-
servations were correctly identified using the 95% sensitivity 
value to delineate suitable and unsuitable species habitat. This 
is extremely close to the expectation that 95% of true presences 

should be correctly identified at this level. Model specificity at 
this prediction value was 0.941, meaning 94.1% of true species ab-
sences should be correctly identified, but field validation showed 
only 49.94% of absences were correctly identified. This difference 
is likely due to our field validation taking place very near to spe-
cies presences in generally high suitability areas, rather than at the 
edges of the study area. This likely led to spatial autocorrelation 
between the species presence data used to train the model and 
the cells surveyed in the field validation. Areas surveyed in valida-
tion were between 25 and 2000 m from known species presences, 
but much of the surveyed area was closer than 200 m from known 
presences. This increased the likelihood of surveyed cells having 
habitat conditions similar to those of species presences, favoring 
model misclassification of species absences. This was somewhat 
unavoidable given the limited spatial scale of the study area, but 
surveying some locations farther from known presences may have 
limited this effect.

4.4  |  Management implications

The original and final models help more definitively distinguish the 
potential occupied habitat of clay-loving wild buckwheat (E. pelino-
philum). This information has numerous benefits for the Bureau 
of Land Management, and directly addresses BLM conservation 
priorities for special status species. The BLM's Strategic Plan for 
Special Status Species Conservation and Recovery specifically 
states “science-related activities (e.g., research, inventory, monitor-
ing, and habitat models) should be directly related toward the im-
plementation of on-the-ground conservation and recovery efforts” 
(BLM, 2022b) to prioritize the Endangered Species Act section 7(a)
(1) proactive recovery mandate.

Our models identify where E. pelinophilum may be threatened by 
existing land use activities and new roads, off-highway recreation, 
or other developments, and can help redirect these developments 
when feasible or inform where additional surveys are needed before 
projects can be initiated. The models help inform survey efforts to 
focus on areas where the species is most likely to occur, maximizing 
survey effort and reducing costs while also increasing the likelihood 
of detecting previously undocumented populations. Our results 
definitively quantify and greatly refine species managers' under-
standing of how narrowly restricted suitable habitat for the species 
is within its range. This has greatly informed the USFWS Species 
Status Assessment process and informed their decision-making re-
garding the status of E. pelinophilum under the Endangered Species 
Act.

Lastly, separate analyses have documented that E. pelinophi-
lum has experienced significant population declines range-wide in 
recent years. Long-term monitoring sites indicate a 70% reduction 
in mature individuals throughout the range between 2017 and 
2022, likely due to persistent drought (BLM, 2022a). The severity 
of current drought conditions has been most impacting in lower el-
evations, overlapping E. pelinophilum habitat. With the possibility 
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of extirpation in some portions of the range, our models can also 
be used to identify potential areas for E. pelinophilum restoration, 
since areas with high habitat suitability offer the best possibility 
for successful restoration.

5  |  CONCLUSION

We constructed a series of species distribution models and a 
weighted ensemble model of an endangered species in western 
Colorado, clay-loving wild buckwheat. The inclusion of a LiDAR-
derived DEM and a high-resolution mapping of geologic strata 
helped to fit models with high accuracy. We validated our weighted 
ensemble model in the field, finding 55 new subpopulations of the 
species and demonstrating that new species observations were 
strongly associated with model suitability predictions and that the 
model can be used to guide species surveys. With the new species 
observations and additional information learned during the origi-
nal modeling effort and field sampling, we then further refined the 
models and marginally improved model performance. The model 
outputs have direct management implications for the Bureau of 
Land Management, as they can be used to identify conflicts with 
land use activities and potential restoration sties and inform ad-
ditional survey efforts.
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