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Abstract
Understanding	the	suitable	habitat	of	endangered	species	is	crucial	for	agencies	such	
as	the	Bureau	of	Land	Management	to	plan	management	and	conservation.	However,	
few	species	distribution	models	are	directly	validated,	potentially	 limiting	their	appli-
cation	in	management.	 In	preparation	for	a	Species	Status	Assessment	of	clay-	loving	
wild	buckwheat	(Eriogonum pelinophilum),	an	endangered	subshrub	found	in	southwest	
Colorado,	we	ran	a	series	of	species	distribution	models	to	estimate	the	species'	poten-
tial	occupied	habitat	and	validated	these	models	in	the	field.	A	1-	meter	resolution	digital	
elevation	model	derived	 from	LiDAR	and	a	high-	resolution	geology	mapping	helped	
identify	 biologically	 relevant	 characteristics	 of	 the	 species'	 habitat.	We	 employed	 a	
weighted	ensemble	model	based	on	two	Random	Forest	and	one	Boosted	Regression	
Tree	model,	and	discrimination	performance	of	the	ensemble	model	was	high	(AUC-	PR	
=	0.793).	We	then	conducted	a	systematic	field	survey	of	model	habitat	suitability	pre-
dictions,	during	which	we	discovered	55	new	subpopulations	of	the	species	and	demon-
strated	that	new	species	observations	were	strongly	associated	with	model	predictions	
(p < .0001,	Cliff's	delta = 0.575).	We	further	refined	our	original	models	by	incorporating	
the	additional	species	occurrences	collected	in	the	field	survey,	a	new	explanatory	vari-
able,	and	a	more	diverse	set	of	models.	These	iterative	changes	marginally	 improved	
performance	of	the	ensemble	model	(AUC-	PR = 0.825).	Direct	validation	of	species	dis-
tribution	models	is	extremely	rare,	and	our	field	survey	provides	strong	validation	of	our	
model	results.	This	helps	increase	confidence	to	utilize	predictions	in	planning.	The	final	
model	predictions	greatly	 improve	the	Bureau	of	Land	Management's	understanding	
of	the	species'	habitat	and	increase	our	ability	to	consider	potential	habitat	in	planning	
land	use	activities	such	as	road	development	and	travel	management.
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1  |  INTRODUC TION

Species	distribution	models	(SDMs)	are	widely	used	tools	to	under-
stand	 the	 primary	 habitat	 characteristics	 associated	 with	 species	
occurrence	 patterns	 (Guisan	 &	 Thuiller,	 2005).	 These	 models	 can	
aid	 prioritization	 of	 conservation	 decisions	 (Guisan	 et	 al.,	 2013) 
and	 can	 guide	 further	 survey	 and	management	 priorities	 (Graham	
et al., 2004;	Hernandez	et	al.,	2006).	SDMs	broadly	compare	habitat	
characteristics	where	a	 species	has	been	observed	 to	characteris-
tics	throughout	a	species'	range	to	determine	the	conditions	associ-
ated	with	species	presence	and	predict	potential	habitat	(Araújo	&	
Guisan,	2006; Phillips et al., 2009).

SDMs	have	particular	importance	for	rare,	at-	risk,	or	endangered	
species.	Estimation	of	a	rare	species'	distribution	is	central	to	their	
assessment	under	 International	Union	 for	Conservation	of	Nature	
guidelines	(IUCN,	2001),	and	accurate	predictions	of	the	habitat	of	
rare	species	 is	crucial	 for	making	 informed	conservation	and	man-
agement	decisions	(Ramirez-	Reyes,	Nazeri,	et	al.,	2021).	At	the	same	
time,	rare	species	pose	unique	challenges	and	opportunities	for	mod-
eling.	SDMs	may	have	high	accuracy	 if	 rare	 species	occupy	highly	
specialized	habitats	and	limited	geographic	areas,	but	accuracy	may	
also	be	limited	by	small	population	size	and	presence	data	gathered	
over	long	periods	(Lomba	et	al.,	2010;	Sousa-	Silva	et	al.,	2014).

There	 has	 been	 growing	 interest	 in	 using	 SDMs	 to	 guide	 field	
surveys,	 with	 some	 relevant	 examples	 found	 in	 a	 review	 (Fois	
et al., 2018),	 but	 given	 the	 ubiquity	 of	 SDMs	 these	 examples	 are	
still	very	uncommon.	Furthermore,	direct	validation	of	model	pre-
dictions	 is	 difficult	 and	 extremely	 rare	 (Araújo	 &	 Guisan,	 2006), 
though	 some	 relevant	 examples	 exist	 (Halvorsen,	 2012; Johnson 
et al., 2023;	Searcy	&	Shaffer,	2014;	Westwood	et	al.,	2020;	Williams	
et al., 2009). Model validation is a central tool to assess the pre-
dictive	capabilities	of	models	(Tredennick	et	al.,	2021), and without 
robust	model	validation	of	SDMs	their	relevance	and	application	for	
planning	is	unclear	(Loiselle	et	al.,	2003).

We	ran	a	series	of	species	distribution	models	and	a	weighted	
ensemble	model	of	clay-	loving	wild	buckwheat	(Eriogonum pelinophi-
lum),	an	endangered	species	in	western	Colorado,	United	States.	We	
then	conducted	a	systematic	field	survey	of	the	model	predictions	
as	a	direct	model	validation	procedure.	This	rare	opportunity	helped	
us	discover	55	new	 subpopulations	of	 the	 species	 and	 allowed	us	
to	directly	validate	our	model,	greatly	increasing	our	confidence	in	
using	the	model	predictions	in	planning.

Our	goal	through	this	analysis	was	to	obtain	high-	resolution	pre-
dictions	of	the	species'	potential	habitat	and	better	understand	the	
ecology	of	the	species	to	promote	conservation.	This	was	completed	
in	preparation	for	a	Species	Status	Assessment	(SSA)	of	E. pelinoph-
ilum.	The	SSA	process	was	developed	by	the	U.S.	Fish	and	Wildlife	
Service	 to	 inform	 all	 Endangered	 Species	 Act	 decisions,	 and	 is	 a	
standardized,	 repeatable	analytical	 approach	 that	provides	a	com-
prehensive	analysis	of	the	ecology,	current	condition,	and	expected	
future	condition	of	at-	risk	 species	 (Smith	et	al.,	2018). E. pelinoph-
ilum	 is	 a	 long-	lived	perennial	 subshrub,	generally	growing	5–10 cm	
tall	and	8–20 cm	across	(USFWS,	1988).	The	U.S.	Fish	and	Wildlife	

Service	 determined	 that	E. pelinophilum	met	 the	 criteria	 of	 an	 en-
dangered	species	and	listed	it	under	the	Endangered	Species	Act	in	
1984,	based	on	the	species'	small	known	population	size,	limited	dis-
tribution,	and	land-	use	conflicts	in	its	range	(USFWS,	1984).

2  |  METHODS

2.1  |  Study area

The	 study	 area	 was	 western	 Colorado,	 USA,	 including	 the	 entire	
known	 range	 of	E. pelinophilum	 (hereafter,	 “ERPE”)	 (Figure 1). The 
species'	known	distribution	encompasses	a	narrow	band	of	badlands	
derived	from	the	Mancos	Shale	formation	east	of	U.S.	Highway	50	
between	the	towns	of	Delta	and	Montrose,	in	Delta	and	Montrose	
counties	 (Peterson,	1982).	This	formation	 is	 found	on	both	private	
lands	and	Bureau	of	Land	Management	(BLM)	lands	managed	by	the	
Uncompahgre	Field	Office.	Mancos	Shale-	derived	soils	tend	to	have	
high	clay	and	silt	content,	as	well	as	high	salt	and	selenium	concen-
trations.	 These	 easily	 erodible	 soils	 form	 a	 variety	 of	 topographic	
features	 including	 steep	badlands,	 gently	 rolling	hills,	 alluvial	 fans,	
and	flats.

Total	annual	precipitation	 in	the	study	area	ranges	from	an	av-
erage	of	22 cm	at	the	northern	extent	of	the	range,	to	32 cm	at	the	
southern	 extent	 (PRISM	 Climate	 Group,	 2016).	 In	 the	 northern,	
lower	elevation	areas	(1600 m	above	sea	level),	ERPE	is	thought	to	
be	more	restricted	to	northerly	aspects	and	swales	that	accumulate	
snow	in	the	winter	(O'Kane	Jr,	1985).	In	the	higher	elevation	(1900 m	
above	sea	level)	southern	extent	of	the	range,	the	species	is	less	re-
stricted,	but	abundance	tends	to	be	greatest	on	northerly	aspects	
(BLM,	2022a).

Plant	 communities	 associated	with	 clay-	loving	wild	 buckwheat	
are	best	described	as	an	 Inter-	Mountain	Basins	Mixed	Salt	Desert	
Scrub	ecological	system	(Crawford	et	al.,	2016).	The	vegetation	com-
munity	is	characterized	by	an	open	shrubland	and	is	predominantly	
comprised	 of	 halophytic	 shrubs	 and	 subshrubs	 including	 shad-
scale	 (Atriplex confertifolia),	 Gardner's	 saltbush	 (Atriplex gardneri), 
mat	 saltbush	 (Atriplex corrugata),	 budsage	 (Artemisia spinescens), 
and Halogeton glomeratus.	Higher	elevation	sites	display	more	het-
erogeneous	 black	 sagebrush	 (Artemisia nova)	 communities	 with	
Achnatherum hymenoides, Xylorhiza venusta, and another local en-
demic,	Adobe	Hills	beardtongue	(Penstemon retrorsus)	(Neely,	1985; 
O'Kane,	1985).

2.2  |  Original model

2.2.1  |  Input	points

The	original	model	included	1009	points	of	ERPE	presence.	The	ma-
jority	of	 these	points	 (858)	 represented	 locations	where	point	ob-
servations	of	individuals	had	been	collected	in	the	field	by	the	BLM	
and	others	 since	 the	 listing	of	 the	 species	 in	1984.	The	 remaining	
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151	 points	were	manually	 generated	within	 polygon	 observations	
also	collected	 in	 the	 field	which	were	geographically	distinct	 from	
the	point	observations	(typically	separated	by	1–2 km).	The	polygon	
observations	 represent	 larger,	 more	 continuous	 ERPE	 subpopula-
tions	that	observers	chose	to	map	as	polygons.	Points	were	manually	
added	in	these	polygons	to	obtain	a	more	representative	sample	of	
conditions	across	the	species'	habitat	in	areas	where	no	point	obser-
vations	were	available.	Multiple	points	were	generated	within	larger	
polygons,	but	were	not	closer	 together	 than	10 m.	The	 total	1009	
ERPE	presence	points	spanned	much	of	the	species'	known	range.

Background	points	were	obtained	by	generating	random	points	
within	 the	 study	 area	 extent	 (Hefley	 &	Hooten,	2016).	 A	 total	 of	
43,334	 random	background	points	overlapping	 the	predictor	data	
were	generated.	Though	some	background	points	may	be	generated	
very	close	to	ERPE	presence	points,	the	very	large	number	of	ran-
dom	points	generated	ensured	that	these	points	as	a	whole	substan-
tially	differed	from	the	presence	points.

All	analysis	described	in	this	paper	was	carried	out	in	R	4.1.2	(R	
Core	 Team,	2021),	 with	 the	 ‘terra’	 package	 (Hijmans	 et	 al.,	2022) 
used	 for	 raster	 manipulation	 and	 ‘ggplot2’	 package	 (Wickham	 &	
Chang, 2016)	for	plotting.	Additional	packages	used	in	modeling	are	
detailed	below.

2.2.2  |  Environmental	covariates

Many	 of	 the	 covariates	 used	 in	 modeling	 were	 calculated	 from	 a	
1-	m	 resolution	 LiDAR-	derived	 digital	 elevation	model	 (DEM).	 This	
dataset	was	selected	because	of	 its	extremely	high	resolution	and	
ability	 to	most	accurately	capture	microtopography.	 In	addition	 to	

elevation,	 we	 calculated	 slope,	 northness,	 and	 eastness	 from	 the	
DEM.	Northness	was	 calculated	 by	 generating	 aspect	 in	 degrees,	
then	 transforming	 as	 follows:	 northness = cos	 (aspect * π/180). 
Eastness	 was	 similarly	 calculated:	 eastness = sin	 (aspect * π/180). 
Transforming	aspect	 into	eastness	and	northness	 is	necessary	be-
cause	aspect	is	circular	(Clark	et	al.,	1999).

We	 also	 included	 geologic	 formation	 as	 a	 covariate.	 Since	 we	
believed	 EPRE	 was	 associated	 with	 a	 single	 geologic	 formation	
(the	Smoky	Hill	member	of	the	Mancos	Shale,	formation	"kms"),	we	
generated	a	buffer	of	distance	from	this	formation	using	1:24 k	lay-
ers	of	geology	available	 in	the	majority	of	our	study	area	 (Morgan	
et al., 2007, 2008,	Noe	et	al.,	2007, 2013).	We	transformed	this	buf-
fer	distance	into	four	classes	rather	than	treating	it	as	a	continuous	
variable.	One	 class	 included	 distances	 from	 0 m	 (within	 formation	
"kms")	up	to	1 m	away,	the	next	 included	distances	from	1	to	10 m	
away,	then	10–100 m,	and	lastly	farther	than	100 m.	One	quadrangle	
of	1:24 k	geology	in	the	species'	range,	the	Red	Rock	Canyon	quad-
rangle,	was	not	available.	This	area	was	omitted	from	analysis.

Lastly,	 we	 included	 30-	year	 normal	 precipitation	 (1991–2020)	
from	 PRISM	 (PRISM	 Climate	 Group,	 2016).	 Originally	 available	 at	
800-	m	 resolution,	 we	 resampled	 precipitation	 to	 1-	m	 resolution	
by	bilinear	interpolation	to	align	cells	of	all	predictors.	Though	this	
method	creates	interpolated	data	and	does	not	truly	increase	data	
resolution,	we	employed	 it	 to	preserve	the	high-	resolution	LiDAR-	
derived	data	and	obtain	more	realistic	precipitation	values	for	pre-
diction	 without	 sharp	 cell	 transitions	 (Phillips	 et	 al.,	 2006;	 Wang	
et al., 2006).	Model	variable	coefficients	derived	from	interpolated	
data	may	be	suspect,	but	we	do	not	report	coefficients	for	this	rea-
son	and	because	we	mainly	employed	tree-	based	methods	without	
such	coefficients.

F I G U R E  1 Map	of	the	entire	study	area	
within western Colorado, within Delta 
and	Montrose	counties,	with	neighboring	
counties	also	labeled.
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We	extracted	the	values	of	each	of	these	environmental	covari-
ates	onto	the	presence	and	background	points,	then	used	these	val-
ues	in	modeling.

2.2.3  | Modeling

We	randomly	selected	a	subset	of	two-	thirds	of	both	the	presence	
and	background	points	to	include	in	modeling.	This	allowed	one-	third	
of	 the	 points	 to	 serve	 as	 true	model	 validation	 points	which	were	
never	 included	 in	model	 construction.	 All	 modeling	 and	 validation	
was	performed	with	these	split	training	and	validation	data.

We	 ran	 four	modeling	 approaches	 in	 our	 original	modeling	 ef-
fort:	 two	 different	 implementations	 of	 Random	 Forest—a	 downs-
ampled	 random	 forest	 from	 the	 ‘randomForest’	 package	 (Liaw	 &	
Wiener,	2002)	and	a	shallow	random	forest	from	the	‘ranger’	pack-
age	 (Wright	et	 al.,	 2019)—and	Boosted	Regression	Tree	 (BRT)	 and	
MaxEnt	both	fit	in	the	‘dismo’	package	(Hijmans	et	al.,	2017). These 
modeling	methods	are	widely	used	in	species	distribution	modeling	
(Valavi	et	al.,	2022).	 In	the	downsampled	random	forest,	each	tree	
included	a	random	subset	of	an	equal	number	of	presence	and	back-
ground	points,	while	 in	 the	 shallow	 random	 forest,	 each	 tree	was	
restricted	to	a	maximum	depth	of	only	two	splits	(Valavi	et	al.,	2021).

From	the	models,	we	generated	raster	layers	of	habitat	suitability	
predictions	corresponding	to	all	cells	in	the	environmental	covariate	
rasters.	 These	 represent	 predictions	 of	 species	 habitat	 suitability,	
which	should	be	interpreted	as	similarity	to	the	species'	currently	oc-
cupied	habitat	because	current	presence	was	the	basis	of	our	model	
(Latif	et	al.,	2015).

We	 calculated	 many	 metrics	 of	 model	 accuracy.	 Many	 have	
identified	 AUC-	PR	 (area	 under	 the	 precision-	recall	 curve)	 as	 the	
most	relevant	for	rare	species	(Sofaer	et	al.,	2019).	AUC-	ROC	(area	
under the receiver operating characteristic curve) is typically pre-
sented	as	well,	but	this	metric	is	more	strongly	influenced	by	true	
absences,	which	can	overwhelm	presences	in	models	of	rare	spe-
cies	(Sofaer	et	al.,	2019).	Pearson's	correlation	between	predicted	
suitability	and	occurrence	observations	has	 the	advantage	of	ad-
dressing	model	value	calibration	(Phillips	&	Elith,	2010).	Some	have	
promoted	similarity	indices	such	as	Sørensen's	similarity	index	for	
model	 validation	 (Leroy	 et	 al.,	2018).	 However,	 similarity	 indices	
require	thresholding	model	results,	which	causes	information	loss	

and	may	 lead	 to	misleading	 results	 (Guillera-	Arroita	 et	 al.,	2015; 
Lawson et al., 2014).

We	 used	 only	 threshold-	independent	 metrics	 for	 model	 vali-
dation	 (AUC-	PR,	AUC-	ROC,	 and	 correlation)	 and	 used	AUC-	PR	 to	
calculate	a	weighted	ensemble	model.	The	weighted	ensemble	was	
produced	by	 first	dividing	each	model's	AUC-	PR	by	 the	sum	of	all	
models'	AUC-	PR.	 This	 determined	 each	model's	weight	 in	 the	 en-
semble.	 Each	model	was	 then	multiplied	 by	 its	 respective	weight,	
and	then	added	to	obtain	the	ensemble	prediction	(Ramirez-	Reyes,	
Nazeri,	 et	 al.,	2021).	We	 did	 not	 include	MaxEnt	 in	 the	 ensemble	
model	 because	 its	 AUC-	PR	 was	 somewhat	 lower	 than	 the	 other	
models	(Table 1).

To	account	for	differences	in	performance	across	validation	met-
rics,	we	calculated	a	normalized	average	of	each	model's	validation	
scores.	We	did	this	by	scaling	the	data	range	for	each	validation	met-
ric	 from	0	 to	1,	 then	 averaging	 the	 scaled	 results	 across	 the	met-
rics	we	utilized	(AUC-	PR,	AUC-	ROC,	and	correlation).	This	provided	
a	single	score	for	each	model	which	considered	performance	in	all	
three	validation	metrics.

We	applied	a	threshold	on	raw	model	predictions	as	a	final	man-
agement	tool	to	delineate	suitable	and	unsuitable	habitat.	Selection	
of	 this	 threshold	 has	 a	 significant	 impact	 on	 suitability	 determi-
nations	 (Nenzén	 &	 Araújo,	 2011), and the appropriate threshold 
depends	 on	 a	 model's	 purpose	 and	 the	 costs	 of	 misclassification	
(Fielding	&	Bell,	1997; Pearson et al., 2004).	For	identifying	the	hab-
itat	of	 rare	 species,	 the	cost	of	 false	negatives	 (i.e.,	misidentifying	
true	 suitable	 habitat	 as	 unsuitable)	 is	much	 greater	 than	 the	 cost	
of	false	positives.	Therefore,	we	selected	a	fixed	sensitivity	of	0.95	
in	thresholding	our	model	results	to	ensure	that	areas	identified	as	
suitable	encompassed	a	high	proportion	of	true	ERPE	presences.

2.3  |  Field validation

We	conducted	field	surveys	in	the	fall	of	2022	to	assess	the	accuracy	
of	the	original	ensemble	model.	These	surveys	were	conducted	by	
generating	a	series	of	50-	m	cells	overlapping	the	ensemble	model's	
suitability	 predictions.	 We	 systematically	 surveyed	 these	 cells	 in	
groups	of	at	least	three	individuals	by	slowly	walking	in	a	straight	line	
through	cells	(Williams	et	al.,	2009;	Willoughby,	2000).	Where	ERPE	
individuals	were	observed,	we	then	mapped	new	subpopulations.

AUC- ROC AUC- PR Correlation
Normalized 
average

RF	Downsample 0.989 0.792 0.606 0.924

RF	Shallow 0.987 0.773 0.547 0.537

BRT 0.989 0.728 0.623 0.874

MaxEnt 0.980 0.618 0.608 0.268

Weighted	Ensemble 0.989 0.793 0.599 0.897

Note:	The	bolded	number	in	each	column	denotes	the	model(s)	with	the	highest	score.	Normalized	
average	was	calculated	by	scaling	the	data	range	of	each	validation	metric	from	zero	to	one,	then	
averaging	the	scaled	result	of	the	three	metrics	for	each	model.

TA B L E  1 Validation	metrics	of	models	
in	the	original	model.
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We	 kept	 records	 of	 all	 cells	 surveyed	 during	 field	 validation.	
These	 records	were	used	 to	assess	how	much	area	was	surveyed,	
the	suitability	value	predicted	by	the	ensemble	model	in	all	surveyed	
cells,	 and	 the	 cells	 in	which	new	ERPE	 individuals	were	observed.	
Areas	where	no	ERPE	individuals	were	detected	within	these	cells	
were	considered	true	absence	observations.

We	 used	 a	Wilcoxon	 rank	 sum	 test	 to	 analyze	 whether	 en-
semble	 model	 suitability	 predictions	 at	 locations	 where	 ERPE	
was	observed	differed	 from	model	 predictions	where	ERPE	was	
not	observed.	We	also	calculated	Cliff's	delta	effect	size	because	
effect	 sizes	 are	 more	 meaningful	 for	 comparison	 than	 metrics	
such	 as	 p-	value	 and	 test	 statistics	 (Sullivan	&	 Feinn,	2012). The 
Wilcoxon	 rank	 sum	 test	 and	Cliff's	 delta	were	used,	 rather	 than	
a	t-	test,	because	model	suitability	predictions	were	not	normally	
distributed.

2.4  |  Final model

2.4.1  |  Input	points

We	 included	 all	 new	 species	 observations	 from	 field	 validation	 as	
input	points	in	the	final	model.	We	also	altered	our	selection	of	pres-
ence	points	to	better	include	accurately	mapped	polygon	observa-
tions	of	ERPE	individuals.	In	the	original	model,	we	primarily	utilized	
point	 observations	 of	 the	 species,	with	 some	manually	 generated	
points	in	mapped	polygons	distinct	from	any	point	observations.	In	
the	final	model,	we	included	all	point	observations	and	all	accurately	
mapped	polygons.

However,	mapped	polygons	were	very	large	in	many	cases,	and	
considering	all	the	area	within	each	mapped	polygon	yielded	an	ex-
tremely	high	number	of	species	presences	which	overwhelmed	the	
point	observations.	We	utilized	the	mapped	polygons	by	first	isolat-
ing	those	with	an	area	less	than	20-	m2.	For	these	polygons,	we	gen-
erated	one	point	in	the	polygon	centroid.	For	polygons	larger	than	
20-	m2,	we	rasterized	polygons	on	a	10-	m	resolution	grid	and	gen-
erated	one	point	in	the	centroid	of	each	polygon	cell.	We	then	fur-
ther	restricted	these	points	by	filtering	them	so	that	no	points	were	
closer	together	than	40	meters.	This	two-	step	approach	helped	to	
ensure	 smaller	 polygons	 had	 at	 least	 one	 point	 generated	 within	
them,	but	large	polygons	did	not	have	hundreds	of	points.

The	true	point	observations	and	the	points	generated	from	the	
mapped	polygons	were	then	merged.	This	set	 included	892	points	
from	point	observations	and	655	points	from	mapped	polygons,	for	
a	total	of	1547	species	observations.

True	absence	data	were	also	available	from	the	field	validation	
of	the	original	model	because	we	considered	surveyed	areas	with	no	
ERPE	observations	as	true	absences.	However,	we	did	not	want	to	
overwhelm	the	model	with	these	true	absence	points,	which	were	
overall	very	near	and	similar	to	presence	points.	We	generated	true	
absence	 points	 through	 a	 similar	 process	 as	 generating	 presence	
from	mapped	polygons.	Starting	with	the	set	of	cells	surveyed	in	the	
field	validation,	we	first	masked	out	areas	with	ERPE	observations,	

then	rasterized	the	remaining	areas	at	20-	meter	resolution	and	gen-
erated	one	point	 in	 each	 cell	 centroid.	This	 yielded	2061	 true	ab-
sence points.

We	 preserved	 the	 same	 ratio	 of	 presence	 to	 background/ab-
sence	 points	 in	 the	 final	 model	 so	 that	 metrics	 such	 as	 AUC-	PR	
would	be	 comparable	 between	 the	original	 and	 final	modeling	 ef-
forts.	Therefore,	we	had	to	generate	additional	background	points	
to	 balance	 the	 increase	 in	 presence	 points	 available	 in	 the	 final	
model.	These	background	points	were	randomly	generated	as	in	the	
original	model.

Lastly,	we	took	two	new	steps	in	filtering	the	final	set	of	points	
before	modeling.	We	filtered	presence	observations	so	that	no	ob-
servations	were	 closer	 than	 2	meters.	 This	 prevented	 some	 areas	
with	many	 closely	 packed	 point	 observations	 from	 overwhelming	
the	model.	We	also	filtered	the	background	and	true	absence	points	
so	that	none	were	closer	than	100	meters	to	any	presence	points.	
This	step	helped	ensure	 that	absence	points	were	sufficiently	dis-
similar	from	the	presence	points.

With	the	final	set	of	filtered	presence	and	background/absence	
points	we	again	randomly	split	the	data	into	training	and	validation	
sets, with two- thirds in the training set and one- third in the valida-
tion set.

2.4.2  |  Environmental	covariates

All	environmental	covariates	from	the	original	model	were	included	
in	the	final	model,	and	one	new	covariate	was	added,	soil	color	index.	
During	field	validation,	we	noted	that	some	 locations	 identified	as	
the	Smoky	Hill	member	of	the	Mancos	Shale	in	our	geology	layer	did	
not	have	the	distinctive	gray	color	expected	in	this	geologic	stratum.	
Soil	textures	also	differed,	with	these	soils	being	loamier	than	where	
ERPE	is	typically	found.

We	used	satellite	 imagery	as	an	additional	way	 to	 identify	 soil	
color	 and	 thus	 the	 relevant	 geologic	 stratum.	 We	 downloaded	 a	
clear	Landsat	scene	of	 the	study	area	and	used	the	red	and	green	
bands	to	calculate	the	soil	color	index	(Mandal,	2016), calculated as: 
(Red − Green)/(Red + Green).	The	soil	color	index	was	calculated	with	
a	Landsat	scene	from	Landsat	9	Collection	2	(USGS,	2022).	Soil	color	
index	was	resampled	by	bilinear	interpolation	from	the	original	30-	m	
resolution	to	1-	m	resolution	to	match	the	other	predictors.

2.4.3  | Modeling

We	altered	our	modeling	approach	to	obtain	a	more	diverse	set	of	
model	types.	In	the	original	model	effort,	we	employed	two	Random	
Forest	 (RF)	 implementations,	 BRT,	 and	 MaxEnt.	 RF	 and	 BRT	 are	
both	 tree-	based	 machine-	learning	 algorithms	 so	 their	 results	 are	
likely	more	similar	than	other	methods.	MaxEnt	shares	qualities	of	
both	regression-	based	algorithms	and	machine	 learning	algorithms	
(Phillips	et	al.,	2006),	but	was	not	included	in	the	original	weighted	
ensemble.
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Confidence	in	modeling	results	is	increased	when	diverse	mod-
els	 with	 different	 assumptions	 reach	 similar	 conclusions	 (Zimmer	
et al., 2021),	so	we	used	a	more	varied	set	of	model	approaches	in	
the	final	model.	We	again	ran	the	downsampled	RF,	BRT,	and	MaxEnt	
models.	We	also	included	Multivariate	Adaptive	Regression	Splines	
(MARS)	fit	in	the	‘earth’	package	(Milborrow,	2019)	and	Generalized	
Additive	Models	 (GAM)	 fit	 in	 ‘mgcv’	 (Wood,	2015), two additional 
regression-	based	modeling	methods	 (Valavi	et	al.,	2021).	Unlike	 in	
the	original	model,	we	did	not	run	the	shallow	random	forest	model	
from	the	‘ranger’	package.	The	model	parameters	utilized	are	shown	
in	Appendix	S1.

We	again	used	AUC-	PR	to	calculate	a	weighted	ensemble	model.	
This	new	weighted	ensemble	included	RF,	BRT,	MaxEnt,	MARS,	and	
GAM.	Therefore,	the	final	ensemble	was	based	on	two	tree-	based	
machine	 learning	 algorithms,	 two	 regression-	based	 methods,	 and	
one	method	with	characteristics	of	each.	This	is	much	more	varied	
than	the	original	ensemble	model,	which	 included	only	three	tree-	
based	regression	models.

3  |  RESULTS

3.1  |  Original model

Validation	 metrics	 for	 each	 algorithm	 used	 in	 the	 original	 model	
were	 computed	 using	 the	 validation	 data	 held-	out	 from	 model	
construction.	AUC-	ROC	for	these	validation	data	was	very	similar	
for	 all	models	 (between	 0.980	 and	 0.989)	 (Table 1).	 AUC-	PR	was	
more	variable	(from	0.618	to	0.793),	with	MaxEnt	having	the	worst	
performance.	The	weighted	ensemble	model,	which	was	weighted	
by	AUC-	PR	and	did	not	include	the	MaxEnt	model,	had	the	highest	
AUC-	PR,	slightly	above	RF	Downsample.	BRT	had	the	highest	score	
for	Correlation.

To	account	for	differences	 in	performance	across	these	valida-
tion	metrics,	we	 calculated	 a	 normalized	 average	 of	 each	model's	
validation	 scores.	 RF	 Downsample	 had	 the	 highest	 score	 by	 this	
normalized	 average,	 followed	 by	 the	weighted	 ensemble,	 BRT,	 RF	
Shallow,	and	MaxEnt.

3.2  |  Field validation

Field	validation	of	the	original	ensemble	model	was	carried	out	over	
near-	field	days	totaling	approximately	112	person-	hours	of	sampling	
effort.	This	sampling	yielded	55	new	subpopulations	of	ERPE	cover-
ing	0.01 km2	 (2.47	acres).	 In	total,	1.47 km2	 (362.35	acres)	was	sur-
veyed	during	this	sampling	effort.

Model	 suitability	 predictions	 in	 cells	where	ERPE	was	pres-
ent	 and	 absent	 were	 significantly	 different	 from	 each	 other	
(Figure 2).	The	mean	model	prediction	 in	cells	where	ERPE	was	
absent	was	0.411	(SD = 0.290),	while	the	mean	model	prediction	
where	 ERPE	 was	 present	 was	 0.703	 (SD = 0.168).	 A	 one-	sided	

Wilcoxon	 rank	 sum	 test	 showed	 this	difference	was	highly	 sta-
tistically	 significant	 (p < .0001),	and	Cliff's	delta	 showed	a	 large	
effect	size	(d = 0.575).

We	ran	the	same	statistics	for	each	of	the	individual	models	as	
well	as	the	ensemble.	For	Cliff's	delta	effect	size,	RF	Shallow	had	the	
highest	 score	 (0.594),	 followed	by	 the	weighted	ensemble	 (0.575),	
BRT	(0.557),	RF	Downsample	(0.549),	and	finally	Maxent	with	a	me-
dium	effect	size	(0.349).	Though	these	effect	sizes	varied	between	
models,	the	Wilcoxon	rank	sum	test	showed	they	were	all	highly	sta-
tistically	significant	(p < .0001).

We	also	divided	model	suitability	predictions	into	cells	predicted	
to	be	suitable	and	unsuitable	based	on	each	model's	fixed	sensitivity	
threshold	of	0.95,	and	performed	a	Chi-	square	test	comparing	the	
number	of	cells	in	each	of	these	classes	where	ERPE	was	observed	
and	not	 observed.	 In	 the	original	 ensemble	model,	 the	prediction	
value corresponding to this sensitivity was 0.388. This analysis also 
showed	a	statistically	significant	difference,	with	ERPE	observed	in	
1.27%	of	the	cells	predicted	to	be	suitable,	and	0.09%	of	cells	pre-
dicted	to	be	unsuitable	(Appendix	S1: Tables S1 and S2).

3.3  |  Final model

Compared	 to	 the	 original	 ensemble	 model,	 performance	 of	 the	
final	 ensemble	model	was	 improved	 in	 all	 the	 validation	metrics	
(Table 2).	AUC-	PR	rose	from	0.793	to	0.825,	Correlation	rose	from	
0.599	 to	 0.663,	 and	 AUC-	ROC	 rose	 very	 slightly	 from	 0.989	 to	
0.990.

The	weighted	ensemble	model	was	similar	to	the	individual	mod-
els	in	all	metrics	(Table 2; Figure 3).	Though	the	ensemble	was	not	
best	in	any	metric,	it	had	the	second-	highest	normalized	average	of	
the	three	metrics.	The	GAM	model	had	the	lowest	performance	for	
all	metrics.

F I G U R E  2 Boxplots	of	ensemble	model	predictions	in	cells	
surveyed	in	field	validation,	comparing	predictions	where	ERPE	
was	observed	and	not	observed.	Asterisks	represent	statistical	
significance	of	the	Wilcoxon	rank	sum	test	(p < .0001 = ***).
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The	models	 calculated	 relative	variable	 importance	differently.	
To	compare	variable	importance	between	them,	we	determined	the	
ranked	variable	 importance	from	each	model	 (Table 3).	Some	rela-
tionships	are	evident,	with	elevation	and	geology	among	the	most	
important	variables	 for	 all	models.	Precipitation	was	 the	most	 im-
portant	variable	 in	three	of	the	five	models,	and	eastness	was	the	
least	important	variable	in	all	models.

The	 MARS	 model	 evaluated	 all	 variable	 interactions	 and	 dis-
carded	many	individual	variables	and	interaction	terms.	Only	precip-
itation,	geology,	and	soil	color	index	were	utilized	in	the	MARS	model	
in	 non-	interaction	 terms.	 However,	 all	 variables	 besides	 eastness	
were	 utilized	 in	 interaction	 terms.	 For	 example,	 the	 second-	most	
important	variable	was	the	interaction	of	elevation,	slope,	soil	color	
index,	and	precipitation,	but	elevation	and	slope	were	not	utilized	in	
the	model	as	individual	terms.	This	model	feature	“pruning”	is	a	fea-
ture	of	MARS	models	(Kartal	&	Bozdogan,	2015;	Milborrow,	2019) 
and	simple	variable	importance	tests	showed	all	variables	were	im-
portant,	 though	 variable	 selection	 prior	 to	modeling	 could	 poten-
tially	have	improved	fit.

3.4  |  Habitat characteristics

Comparing	environmental	 covariates	 at	 the	presence	points	 and	
background	points	used	in	the	final	model	reveals	several	impor-
tant	 habitat	 characteristics	 of	 ERPE	 (Figure 4).	Geology	 had	 the	
strongest association with ERPE presence. Mean geology class at 
presence	points	was	1.23,	compared	to	2.81	at	background	points.	
This	 difference	 was	 strong	 and	 statistically	 significant	 (Cliff's	
d = −0.618,	p < .0001).	For	ERPE	presence	points,	86.55%	were	in	
geology	class	1,	meaning	they	were	within	the	Smoky	Hill	member	
or	within	1	meter	of	 it,	while	only	30.77%	of	background	points	
were in class 1.

ERPE	 presence	 was	 associated	 with	 significantly	 more	 north-	
facing	aspects,	with	mean	northness	of	0.33	at	presence	points,	com-
pared	to	0.08	at	background	points	(Cliff's	d = 0.204,	p < .0001).	ERPE	
presence	points	were	on	slightly	more	east-	facing	slopes,	with	a	mean	
of	−0.10	compared	to	−0.16	at	background	points.	This	was	a	weak	
but	 statistically	 significant	 association	 (Cliff's	 d = 0.048,	 p = .0014).	
Mean	soil	color	index	at	ERPE	presence	points	was	0.05	compared	to	

AUC- ROC AUC- PR Correlation
Normalized 
average

RF 0.991 0.845 0.619 0.917

BRT 0.992 0.844 0.682 0.999

MaxEnt 0.980 0.727 0.679 0.792

MARS 0.967 0.684 0.654 0.597

GAM 0.960 0.347 0.392 0

Weighted	Ensemble 0.990 0.825 0.663 0.942

Note:	The	bolded	number	in	each	column	denotes	the	model	with	the	highest	score	for	that	
validation	metric.	Normalized	average	was	calculated	by	scaling	the	data	range	of	each	validation	
metric	from	zero	to	one,	then	averaging	the	scaled	result	of	the	three	metrics	for	each	model.

TA B L E  2 Validation	metrics	of	models	
in	the	final	model	effort.

F I G U R E  3 Three-	dimensional	scatterplot	of	final	model	validation	metrics.
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0.03	at	background	points.	This	was	a	strong	association	despite	the	
small	magnitude	of	difference	(Cliff's	d = 0.357,	p < .0001).

3.5  |  Habitat suitability predictions

For	estimating	suitable	and	unsuitable	ERPE	habitat	from	raw	model	
predictions,	 we	 applied	 a	 fixed	 sensitivity	 threshold	 of	 0.95	 to	
model	predictions.	 In	 the	original	model,	 the	prediction	value	cor-
responding	to	this	sensitivity	was	0.388.	Therefore,	95%	of	species	
presences	should	be	correctly	identified	at	a	cutoff	value	of	0.388	
delineating	suitable	and	unsuitable.	Our	field	validation	of	the	model	
showed	 that	 this	was	 extremely	 accurate—of	 the	 locations	where	
we	observed	ERPE	(i.e.,	true	presences),	93.69%	had	a	model	predic-
tion	greater	than	the	cutoff	value.	Specificity	at	this	95%	sensitivity	
threshold	was	0.941,	meaning	94.1%	of	absences	should	be	correctly	

identified	with	this	cutoff	value.	However,	in	our	field	validation,	we	
found	only	49.94%	of	absences	were	correctly	identified.

In	the	final	model,	the	prediction	corresponding	to	the	0.95	sensitiv-
ity	threshold	was	0.330.	Setting	the	prediction	cutoff	of	the	models	to	
this	0.95	sensitivity	threshold	ensured	that	sensitivity	of	the	models	was	
high,	but	specificity	remained	high	as	well	(0.941	for	the	original	model,	
and	0.934	for	the	final	model).	A	high	sensitivity	was	necessary	for	our	
purpose	of	identifying	potential	habitat	of	a	rare	species.	Choosing	the	
prediction	threshold	where	sensitivity	plus	specificity	 is	maximized	 is	
often	suggested	(Liu	et	al.,	2013),	but	we	preferred	the	more	easily	in-
terpretable	and	consistent	threshold	of	a	fixed	95%	sensitivity.

When	applied	to	the	raw	model	predictions,	the	fixed	95%	sen-
sitivity	threshold	yielded	similar	determinations	of	suitable	habitat	
and	a	similar	percentage	of	the	study	area	being	identified	as	suit-
able	(Figure 5).	The	cutoff	showed	6.04%	of	the	study	area	was	suit-
able	in	the	original	model,	and	6.48%	was	suitable	in	the	final	model.	

TA B L E  3 Relative	variable	importance	rank	from	each	model.

Precipitation Elevation Slope Northness Eastness Geology class
Soil color 
index

RF 1 2 5 6 7 3 4

BRT 1 3 5 6 7 2 4

Maxent 3 2 5 6 7 1 4

MARS 1 NA NA NA NA 2 3

GAM 6 3 4 4 7 1 2

Note:	MARS	and	GAM	models	have	variable	interaction	terms,	but	these	are	not	shown.	For	RF,	the	Mean	Decrease	GINI	rank	is	shown.	NA indicates 
variables	not	utilized	in	the	MARS	model	in	non-	interaction	terms.

F I G U R E  4 Comparisons	of	environmental	covariates	at	the	presence	points	and	background	points	used	in	the	final	model.	Asterisks	
represent	statistical	significance	of	the	Wilcoxon	rank	sum	test	(p < .01 = **;	p < .0001 = ***).
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For	other	commonly	used	prediction	thresholds,	the	cutoff	predic-
tion	values	and	suitable	habitat	percents	were	also	similar	between	
the	models	(Appendix	S1: Table S3).

For	the	final	model,	this	translated	to	a	total	of	33.66 km2	of	suit-
able	ERPE	habitat	(8318	acres).	Of	this	area,	however,	only	12.98 km2 
(3208	acres)	occurs	on	BLM	land.	The	remaining	habitat	is	on	private	
lands,	much	of	which	are	currently	agricultural	fields	or	adjacent	to	
fields,	and	not	thought	to	support	ERPE	populations.

4  |  DISCUSSION

4.1  |  Species habitat

We	used	a	1-	meter	 resolution	LiDAR-	derived	DEM	in	our	model,	
and	 derived	 northness,	 eastness,	 and	 slope	 from	 this	 DEM.	
Few	 analyses	 have	 used	 LiDAR	 in	 species	 distribution	 models,	
though	see	Ackers	et	al.	(2015),	Keppel	et	al.	(2017), and Questad 
et	al.	(2014).	For	species	with	highly	specific	habitats,	higher	res-
olution	data	 from	LiDAR	and	other	 remote	 sensing	methods	 (He	

et al., 2015)	should	provide	the	best	opportunity	to	accurately	cap-
ture	fine-	scale	microtopography	such	as	the	small	swales	where	E. 
pelinophilum	 is	 often	 found.	Our	high-	resolution	predictions	 also	
capture	habitat	suitability	at	a	scale	relevant	to	the	species'	patch	
size	(Gogol-	Prokurat,	2011).

Our	analysis	confirmed	that	E. pelinophilum is very strongly as-
sociated	 with	 a	 single	 geologic	 stratum,	 the	 Smoky	 Hill	 member	
of	 the	 Mancos	 Shale,	 and	 availability	 of	 a	 high-	resolution	 1:24 k	
geology	mapping	 allowed	 accurate	 identification	 of	 this	 stratum.	
However,	 one	 geology	 quadrangle	with	 known	ERPE	populations	
was	 not	 available	 at	 this	 resolution	 and	 was	 not	 included	 in	 our	
modeling	 (Figure 5).	 Additional	 mapping	 to	 complete	 this	 survey	
would	allow	us	 to	make	predictions	 in	 this	missing	portion	of	 the	
species'	habitat.

4.2  |  Model validation

Appropriate	model	validation	remains	an	issue	in	species	distribution	
models,	with	many	metrics	 used	 and	 the	most	 appropriate	metric	

F I G U R E  5 Maps	comparing	predicted	habitat	suitability	from	the	original	(a)	and	final	(b)	ensemble	models.	Raw	model	predictions	have	
a	95%	sensitivity	threshold	applied	to	delineate	suitable	and	unsuitable	habitat.	The	inset	map	(c)	shows	close-	up	model	results	in	one	
location,	comparing	areas	with	predicted	habitat	suitability	from	each	model.
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depending	on	characteristics	like	species	rarity	(Sofaer	et	al.,	2019). 
We	evaluated	only	 threshold-	independent	metrics	 including	AUC-	
ROC,	AUC-	PR,	and	Correlation.	We	considered	AUC-	PR	 to	be	 the	
most	important	metric,	and	removed	the	MaxEnt	model	from	inclu-
sion	 in	 the	original	weighted	ensemble	due	to	 its	somewhat	 lower	
AUC-	PR.	However,	closer	scrutiny	after	the	final	modeling	showed	
the	original	MaxEnt	model	had	the	second-	highest	correlation,	sug-
gesting	MaxEnt	may	have	been	a	positive	contribution	to	the	original	
weighted	ensemble.

In	the	final	model	effort,	no	model	performed	best	in	all	valida-
tion	metrics,	demonstrating	the	tradeoffs	and	differences	in	per-
formance	between	these	metrics.	The	weighted	ensemble	had	the	
second-	highest	normalized	average	of	all	metrics,	but	was	not	best	
in	any	one	metric.	Ambiguity	in	individual	model	performance	and	
validation	metrics	is	a	primary	argument	for	considering	ensemble	
models	(Araújo	&	New,	2007),	though	the	performance	improve-
ment	of	ensemble	species	distribution	models	in	general	remains	
unclear	(Hao	et	al.,	2019).	However,	ensemble	models	have	been	
promoted	 for	 at-	risk	 species	 in	 particular	 due	 to	 their	 ability	 to	
reduce	 uncertainty	 between	 models	 (Ramirez-	Reyes,	 Street,	
et al., 2021).

4.3  |  Field validation

Field	validation	of	the	original	model	provided	a	secondary	form	of	
model	 validation.	 Direct	 validation	 of	 species	 distribution	 models	
remains	extremely	 rare	 (Araújo	&	Guisan,	2006;	Fois	et	al.,	2018), 
but	 we	 believe	 this	 provides	 crucial	 information	 about	 a	 model's	
predictive	capabilities	(Tredennick	et	al.,	2021)	and	increases	confi-
dence	in	results.	We	found	model	suitability	predictions	were	very	
strongly	associated	with	ERPE	observation	for	all	models	(Figure 2; 
Appendix	 S1: Table S2).	 The	 weighted	 ensemble	 model	 was	 the	
model	with	 the	 highest	 AUC-	PR,	 and	 the	 second-	highest	 Cliff's	 d	
effect	size	and	Cramer's	V	effect	size	comparing	prediction	values	
where	ERPE	was	observed	and	not.	AUC-	PR	appeared	to	be	the	vali-
dation	metric	most	predictive	of	a	model's	ability	to	make	suitability	
predictions	 associated	with	 new	observations	 in	 the	 field,	 but	we	
found	it	was	not	perfectly	associated	with	the	field	validation	per-
formance	in	our	limited	sample.

Field	validation	helped	us	find	a	new	variable	to	include	in	the	
final	model,	the	soil	color	index.	This	represented	a	biologically	rel-
evant	improvement	since	some	soils	we	observed	during	field	vali-
dation	were	beige-	colored,	with	a	loamier	texture	and	substantially	
lower	clay	content	than	soils	ERPE	is	known	to	occupy.	This	micro-
site	variation	was	not	captured	in	the	geology	mapping.	However,	
the	soil	color	index	variable	helped	to	distinguish	this	variation	and	
was	 an	 important	 contribution	 to	 the	 final	 models,	 with	 greater	
variable	importance	than	northness,	eastness,	and	slope.

In	 field	 validation,	 we	 found	 that	 93.69%	 of	 new	 ERPE	 ob-
servations	 were	 correctly	 identified	 using	 the	 95%	 sensitivity	
value	 to	 delineate	 suitable	 and	 unsuitable	 species	 habitat.	 This	
is	extremely	close	to	the	expectation	that	95%	of	true	presences	

should	 be	 correctly	 identified	 at	 this	 level.	 Model	 specificity	 at	
this	prediction	value	was	0.941,	meaning	94.1%	of	true	species	ab-
sences	should	be	correctly	identified,	but	field	validation	showed	
only	49.94%	of	absences	were	correctly	identified.	This	difference	
is	 likely	due	to	our	field	validation	taking	place	very	near	to	spe-
cies	presences	in	generally	high	suitability	areas,	rather	than	at	the	
edges	of	the	study	area.	This	 likely	 led	to	spatial	autocorrelation	
between	 the	 species	presence	data	used	 to	 train	 the	model	and	
the	cells	surveyed	in	the	field	validation.	Areas	surveyed	in	valida-
tion	were	between	25	and	2000 m	from	known	species	presences,	
but	much	of	the	surveyed	area	was	closer	than	200	m	from	known	
presences.	This	 increased	the	 likelihood	of	surveyed	cells	having	
habitat	conditions	similar	to	those	of	species	presences,	favoring	
model	misclassification	of	 species	absences.	This	was	somewhat	
unavoidable	given	the	limited	spatial	scale	of	the	study	area,	but	
surveying	some	locations	farther	from	known	presences	may	have	
limited	this	effect.

4.4  |  Management implications

The	original	and	final	models	help	more	definitively	distinguish	the	
potential	occupied	habitat	of	clay-	loving	wild	buckwheat	(E. pelino-
philum).	 This	 information	 has	 numerous	 benefits	 for	 the	 Bureau	
of	 Land	 Management,	 and	 directly	 addresses	 BLM	 conservation	
priorities	 for	 special	 status	 species.	 The	 BLM's	 Strategic	 Plan	 for	
Special	 Status	 Species	 Conservation	 and	 Recovery	 specifically	
states	“science-	related	activities	(e.g.,	research,	inventory,	monitor-
ing,	and	habitat	models)	 should	be	directly	 related	 toward	 the	 im-
plementation	of	on-	the-	ground	conservation	and	recovery	efforts”	
(BLM,	2022b)	to	prioritize	the	Endangered	Species	Act	section	7(a)
(1)	proactive	recovery	mandate.

Our	models	identify	where	E. pelinophilum	may	be	threatened	by	
existing	 land	use	activities	and	new	roads,	off-	highway	recreation,	
or	other	developments,	and	can	help	redirect	these	developments	
when	feasible	or	inform	where	additional	surveys	are	needed	before	
projects	can	be	initiated.	The	models	help	inform	survey	efforts	to	
focus	on	areas	where	the	species	is	most	likely	to	occur,	maximizing	
survey	effort	and	reducing	costs	while	also	increasing	the	likelihood	
of	 detecting	 previously	 undocumented	 populations.	 Our	 results	
definitively	 quantify	 and	 greatly	 refine	 species	 managers'	 under-
standing	of	how	narrowly	restricted	suitable	habitat	for	the	species	
is	within	 its	 range.	 This	 has	 greatly	 informed	 the	USFWS	 Species	
Status	Assessment	process	and	informed	their	decision-	making	re-
garding	the	status	of	E. pelinophilum	under	the	Endangered	Species	
Act.

Lastly,	 separate	 analyses	 have	 documented	 that	E. pelinophi-
lum	has	experienced	significant	population	declines	range-	wide	in	
recent	years.	Long-	term	monitoring	sites	indicate	a	70%	reduction	
in	 mature	 individuals	 throughout	 the	 range	 between	 2017	 and	
2022,	likely	due	to	persistent	drought	(BLM,	2022a). The severity 
of	current	drought	conditions	has	been	most	impacting	in	lower	el-
evations, overlapping E. pelinophilum	habitat.	With	the	possibility	
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of	extirpation	in	some	portions	of	the	range,	our	models	can	also	
be	used	to	identify	potential	areas	for	E. pelinophilum restoration, 
since	areas	with	high	habitat	suitability	offer	the	best	possibility	
for	successful	restoration.

5  |  CONCLUSION

We	 constructed	 a	 series	 of	 species	 distribution	 models	 and	 a	
weighted	 ensemble	model	 of	 an	 endangered	 species	 in	western	
Colorado,	clay-	loving	wild	buckwheat.	The	 inclusion	of	a	LiDAR-	
derived	 DEM	 and	 a	 high-	resolution	 mapping	 of	 geologic	 strata	
helped	to	fit	models	with	high	accuracy.	We	validated	our	weighted	
ensemble	model	in	the	field,	finding	55	new	subpopulations	of	the	
species	 and	 demonstrating	 that	 new	 species	 observations	 were	
strongly	associated	with	model	suitability	predictions	and	that	the	
model	can	be	used	to	guide	species	surveys.	With	the	new	species	
observations	and	additional	information	learned	during	the	origi-
nal	modeling	effort	and	field	sampling,	we	then	further	refined	the	
models	and	marginally	 improved	model	performance.	The	model	
outputs	 have	 direct	management	 implications	 for	 the	Bureau	 of	
Land	Management,	as	they	can	be	used	to	identify	conflicts	with	
land	use	activities	and	potential	 restoration	sties	and	 inform	ad-
ditional	survey	efforts.

AUTHOR CONTRIBUTIONS
Scott N. Zimmer:	Conceptualization	(lead);	data	curation	(lead);	for-
mal	 analysis	 (lead);	methodology	 (lead);	 resources	 (lead);	 software	
(lead);	supervision	(equal);	validation	(lead);	visualization	(lead);	writ-
ing	–	original	draft	(lead);	writing	–	review	and	editing	(lead).	Kenneth 
W. Holsinger:	 Conceptualization	 (equal);	 data	 curation	 (equal);	
formal	 analysis	 (supporting);	 methodology	 (supporting);	 supervi-
sion	 (equal);	 validation	 (equal);	 visualization	 (supporting);	writing	–	
original	draft	(supporting);	writing	–	review	and	editing	(supporting).	
Carol A. Dawson:	 Methodology	 (supporting);	 supervision	 (equal);	
validation	(equal);	writing	–	review	and	editing	(supporting).

ACKNO WLE DG E MENTS
We	would	 like	 to	 thank	 Carlos	 Ramirez-	Reyes	 for	 providing	 guid-
ance	 on	 our	 manuscript,	 Phil	 Krening	 for	 review	 of	 the	 species	
background,	and	Jedd	Sondergard	for	initial	scrutiny	of	the	species'	
habitat.	We	would	also	like	to	thank	everyone	who	helped	with	the	
field	 validation	 of	 the	 model	 (Grace	 Elison,	 Cole	 Patton,	 Phoebe	
Roberts,	 Naomi	 Oberg,	 Hannah	 Lovell,	 Cragen	 Davies,	 Mikayla	
Marsich,	 Megan	 Bach),	 as	 well	 as	 the	 anonymous	 reviewers	 who	
provided	helpful	comments	on	the	manuscript.

CONFLIC T OF INTERE S T S TATEMENT
The	authors	declare	no	competing	interests.

OPEN RE SE ARCH BADG E S

This	 article	 has	 earned	 an	Open	Materials	 badge	 for	making	 pub-
licly	available	the	components	of	the	research	methodology	needed	
to	reproduce	the	reported	procedure	and	analysis.	All	materials	are	
available	at	https://	doi.	org/	10.	5061/	dryad.	dfn2z	357c.

DATA AVAIL ABILIT Y S TATEMENT
The	data	that	support	the	findings	of	this	study	are	openly	available	
for	 download	 from	Dryad	 at:	 https://	doi.	org/	10.	5061/	dryad.	dfn2z	
357c.

ORCID
Scott N. Zimmer  https://orcid.org/0009-0000-6389-6826 

R E FE R E N C E S
Ackers,	S.	H.,	Davis,	R.	J.,	Olsen,	K.	A.,	&	Dugger,	K.	M.	(2015).	The	evo-

lution	of	mapping	habitat	for	northern	spotted	owls	(Strix occiden-
talis caurina):	 A	 comparison	 of	 photo-	interpreted,	 landsat-	based,	
and	lidar-	based	habitat	maps.	Remote Sensing of Environment, 156, 
361–373.

Araújo,	M.	B.,	&	Guisan,	A.	(2006).	Five	(or	so)	challenges	for	species	dis-
tribution	modelling.	Journal of Biogeography, 33,	1677–1688.

Araújo,	M.	B.,	&	New,	M.	(2007).	Ensemble	forecasting	of	species	distri-
butions.	Trends in Ecology & Evolution, 22,	42–47.

Bureau	of	Land	Management.	(2022a).	Clay- loving buckwheat (Eriogonum 
pelinophilum) population trend monitoring summary.	Bureau	of	Land	
Management.

Bureau	of	Land	Management.	 (2022b).	Threatened and endangered spe-
cies Program's strategic plan for special status species conservation and 
recovery.	Bureau	of	Land	Management.

Clark,	D.	B.,	Palmer,	M.	W.,	&	Clark,	D.	A.	(1999).	Edaphic	factors	and	the	
landscape-	scale	distributions	of	tropical	rain	forest	trees.	Ecology, 
80,	2662–2675.

Crawford,	 R.,	 Reid,	M.	 S.,	 &	 Shulz,	 K.	 A.	 (2016).	 Inter- Mountain basins 
mixed Salt Desert scrub. https://	explo	rer.	natur	eserve.	org/	Taxon/		
ELEME	NT_	GLOBAL.2.	722888/	Inter	-		Mount	ain_	Basins_	Mixed_	
Salt_	Desert_	Scrub#	Docum	entat	ion/	Autho	rs_	and_	Contr	ibutors

Fielding,	A.	H.,	&	Bell,	J.	F.	(1997).	A	review	of	methods	for	the	assess-
ment	of	prediction	errors	in	conservation	presence/absence	mod-
els. Environmental Conservation, 24,	38–49.

Fois,	M.,	Cuena-	Lombraña,	A.,	Fenu,	G.,	&	Bacchetta,	G.	 (2018).	Using	
species	 distribution	models	 at	 local	 scale	 to	 guide	 the	 search	 of	
poorly	 known	 species:	 Review,	methodological	 issues	 and	 future	
directions. Ecological Modelling, 385,	124–132.

Gogol-	Prokurat,	M.	(2011).	Predicting	habitat	suitability	for	rare	plants	
at	local	spatial	scales	using	a	species	distribution	model.	Ecological 
Applications, 21,	33–47.

Graham,	 C.	 H.,	 Ferrier,	 S.,	 Huettman,	 F.,	Moritz,	 C.,	 &	 Peterson,	 A.	 T.	
(2004).	New	developments	 in	museum-	based	informatics	and	ap-
plications	in	biodiversity	analysis.	Trends in Ecology & Evolution, 19, 
497–503.

Guillera-	Arroita,	G.,	Lahoz-	Monfort,	J.	J.,	Elith,	J.,	Gordon,	A.,	Kujala,	H.,	
Lentini,	P.	E.,	McCarthy,	M.	A.,	Tingley,	R.,	&	Wintle,	B.	A.	(2015).	
Is	 my	 species	 distribution	 model	 fit	 for	 purpose?	Matching	 data	
and	 models	 to	 applications.	Global Ecology and Biogeography, 24, 
276–292.

Guisan,	A.,	&	Thuiller,	W.	(2005).	Predicting	species	distribution:	Offering	
more	than	simple	habitat	models.	Ecology Letters, 8,	993–1009.

Guisan,	A.,	Tingley,	R.,	Baumgartner,	J.	B.,	Naujokaitis-	Lewis,	I.,	Sutcliffe,	
P.	R.,	Tulloch,	A.	I.	T.,	Regan,	T.	J.,	Brotons,	L.,	McDonald-	Madden,	
E.,	 Mantyka-	Pringle,	 C.,	 Martin,	 T.	 G.,	 Rhodes,	 J.	 R.,	 Maggini,	
R.,	 Setterfield,	 S.	 A.,	 Elith,	 J.,	 Schwartz,	 M.	 W.,	 Wintle,	 B.	 A.,	
Broennimann,	O.,	Austin,	M.,	…	Buckley,	Y.	M.	 (2013).	 Predicting	

https://doi.org/10.5061/dryad.dfn2z357c
https://doi.org/10.5061/dryad.dfn2z357c
https://doi.org/10.5061/dryad.dfn2z357c
https://orcid.org/0009-0000-6389-6826
https://orcid.org/0009-0000-6389-6826
https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.722888/Inter-Mountain_Basins_Mixed_Salt_Desert_Scrub#Documentation/Authors_and_Contributors
https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.722888/Inter-Mountain_Basins_Mixed_Salt_Desert_Scrub#Documentation/Authors_and_Contributors
https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.722888/Inter-Mountain_Basins_Mixed_Salt_Desert_Scrub#Documentation/Authors_and_Contributors


12 of 13  |     ZIMMER et al.

species	distributions	for	conservation	decisions.	Ecology Letters, 16, 
1424–1435.

Halvorsen,	 R.	 (2012).	 A	 gradient	 analytic	 perspective	 on	 distribution	
modelling.	Sommerfeltia, 35,	1–165.

Hao,	T.,	Elith,	J.,	Guillera-	Arroita,	G.,	&	Lahoz-	Monfort,	J.	J.	(2019).	A	re-
view	of	evidence	about	use	and	performance	of	species	distribu-
tion	modelling	ensembles	like	BIOMOD.	Diversity and Distributions, 
25,	839–852.

He,	 K.	 S.,	 Bradley,	 B.	 A.,	 Cord,	 A.	 F.,	 Rocchini,	 D.,	 Tuanmu,	 M.-	N.,	
Schmidtlein,	S.,	Turner,	W.,	Wegmann,	M.,	&	Pettorelli,	N.	(2015).	
Will	 remote	 sensing	 shape	 the	 next	 generation	 of	 species	 dis-
tribution	models?	Remote Sensing in Ecology and Conservation, 1, 
4–18.

Hefley,	 T.	 J.,	&	Hooten,	M.	B.	 (2016).	Hierarchical	 species	 distribution	
models.	Current Landscape Ecology Reports, 1,	87–97.

Hernandez,	P.	A.,	Graham,	C.	H.,	Master,	L.	L.,	&	Albert,	D.	L.	(2006).	The	
effect	of	 sample	size	and	species	characteristics	on	performance	
of	different	species	distribution	modeling	methods.	Ecography, 29, 
773–785.

Hijmans,	R.	J.,	Bivand,	R.,	Forner,	K.,	Ooms,	J.,	Pebesma,	E.,	&	Sumner,	M.	
D.	(2022).	Package ‘terra’.

Hijmans,	R.	J.,	Phillips,	S.,	Leathwick,	J.,	&	Elith,	J.	(2017).	Package	‘dismo’.	
Circles, 9,	1–68.

IUCN.	 (2001).	 IUCN Red List categories and criteria: Version 3.1.	 IUCN	
Species	Survival	Commission.

Johnson,	S.,	Molano-	Flores,	B.,	&	Zaya,	D.	 (2023).	Field	validation	as	a	
tool	for	mitigating	uncertainty	in	species	distribution	modeling	for	
conservation planning. Conservation Science and Practice, 5,	e12978.

Kartal,	 K.	 E.,	 &	 Bozdogan,	 H.	 (2015).	 Model	 selection	 in	 multivariate	
adaptive	 regression	 splines	 (MARS)	 using	 information	 complexity	
as	the	fitness	function.	Machine Learning, 101,	35–58.

Keppel,	G.,	Robinson,	T.	P.,	Wardell-	Johnson,	G.	W.,	Yates,	C.	J.,	Van	Niel,	
K.	P.,	Byrne,	M.,	&	Schut,	A.	G.	T.	(2017).	A	low-	altitude	mountain	
range	 as	 an	 important	 refugium	 for	 two	 narrow	 endemics	 in	 the	
southwest	Australian	Floristic	Region	biodiversity	hotspot.	Annals 
of Botany, 119,	289–300.

Latif,	Q.	S.,	Saab,	V.	A.,	Mellen-	Mclean,	K.,	&	Dudley,	J.	G.	(2015).	Evaluating	
habitat	suitability	models	for	nesting	white-	headed	woodpeckers	in	
unburned	forest.	The Journal of Wildlife Management, 79,	263–273.

Lawson,	 C.	 R.,	 Hodgson,	 J.	 A.,	Wilson,	 R.	 J.,	 &	 Richards,	 S.	 A.	 (2014).	
Prevalence,	thresholds	and	the	performance	of	presence–absence	
models.	Methods in Ecology and Evolution, 5(1),	54–64.

Leroy,	B.,	Delsol,	R.,	Hugueny,	B.,	Meynard,	C.	N.,	Barhoumi,	C.,	Barbet-	
Massin,	M.,	&	Bellard,	C.	(2018).	Without	quality	presence–absence	
data,	discrimination	metrics	such	as	TSS	can	be	misleading	measures	
of	model	performance.	Journal of Biogeography, 45,	1994–2002.

Liaw,	 A.,	 &	Wiener,	M.	 (2002).	Classification and regression by random-
Forest. 2.

Liu,	C.,	White,	M.,	&	Newell,	G.	(2013).	Selecting	thresholds	for	the	pre-
diction	of	 species	occurrence	with	presence-	only	data.	Journal of 
Biogeography, 40,	778–789.

Loiselle,	B.	A.,	Howell,	C.	A.,	Graham,	C.	H.,	Goerck,	 J.	M.,	Brooks,	T.,	
Smith,	 K.	 G.,	 &	Williams,	 P.	 H.	 (2003).	 Avoiding	 pitfalls	 of	 using	
species	distribution	models	in	conservation	planning.	Conservation 
Biology, 17,	1591–1600.

Lomba,	A.,	Pellissier,	L.,	Randin,	C.,	Vicente,	J.,	Moreira,	F.,	Honrado,	J.,	&	
Guisan,	A.	(2010).	Overcoming	the	rare	species	modelling	paradox:	
A	novel	hierarchical	framework	applied	to	an	Iberian	endemic	plant.	
Biological Conservation, 143,	2647–2657.

Mandal,	 U.	 (2016).	 Spectral color indices based geospatial modeling of 
soil organic matter in Chitwan District, Nepal	 (pp.	 43–48).	 ISPRS	–	
International	 Archives	 of	 the	 Photogrammetry,	 Remote	 Sensing	
and	Spatial	Information	Sciences	XLI-	B2.

Milborrow,	S.	(2019).	Package ‘earth’.	R	Software	package.

Morgan,	M.	L.,	Noe,	D.	C.,	&	Keller,	S.	M.	(2007).	OF- 07- 01 Geologic map 
of the Olathe Quadrangle, Delta and Montrose Counties, Colorado. 
Colorado	Geological	Survey,	Department	of	Natural	Resources.

Morgan,	M.	L.,	Noe,	D.	C.,	White,	J.	L.,	&	Townley,	S.	M.	(2008).	OF- 08- 02 
Geologic map of the Delta Quadrangle, Delta and Montrose Counties, 
Colorado.	 Colorado	 Geological	 Survey,	 Department	 of	 Natural	
Resources.

Neely,	E.	E.	 (1985).	Eriogonum pelinophilum inventory.	Colorado	Natural	
Areas	Program.

Nenzén,	H.	K.,	&	Araújo,	M.	B.	 (2011).	Choice	of	 threshold	alters	pro-
jections	 of	 species	 range	 shifts	 under	 climate	 change.	 Ecological 
Modelling, 222,	3346–3354.

Noe,	D.	C.,	Morgan,	M.	L.,	Keller,	S.	M.,	&	Hanson,	P.	R.	(2007).	OF- 07- 02 
Geologic Map of the Montrose East Quadrangle, Montrose County, 
Colorado.	 Colorado	 Geological	 Survey,	 Department	 of	 Natural	
Resources.

Noe,	D.	C.,	Morgan,	M.	L.,	&	Townley,	S.	M.	(2013).	OF- 13- 07 Geologic Map of 
the Olathe Northwest Quadrangle, Delta and Montrose Counties, Colorado. 
Colorado	Geological	Survey,	Department	of	Natural	Resources.

O'Kane,	 S.	 L.,	 Jr.	 (1985).	Endangered species information system, species 
biology workbook for Eriogonum pelinophilum.	US	Fish	and	Wildlife	
Service.

Pearson,	R.	G.,	Dawson,	T.	P.,	&	Liu,	C.	(2004).	Modelling	species	distribu-
tions	in	Britain:	A	hierarchical	integration	of	climate	and	land-	cover	
data. Ecography, 27,	285–298.

Peterson,	J.	S.	(1982).	Threatened and endangered plants of Colorado.	U.S.	
Fish	and	Wildlife	Service.

Phillips,	S.	J.,	Anderson,	R.	P.,	&	Schapire,	R.	E.	(2006).	Maximum	entropy	
modeling	of	species	geographic	distributions.	Ecological Modelling, 
190,	231–259.

Phillips,	S.	J.,	Dudík,	M.,	Elith,	J.,	Graham,	C.	H.,	Lehmann,	A.,	Leathwick,	
J.,	&	Ferrier,	S.	(2009).	Sample	selection	bias	and	presence-	only	dis-
tribution	models:	Implications	for	background	and	pseudo-	absence	
data. Ecological Applications, 19,	181–197.

Phillips,	S.	J.,	&	Elith,	J.	(2010).	POC	plots:	Calibrating	species	distribution	
models	with	presence-	only	data.	Ecology, 91,	2476–2484.

PRISM	 Climate	 Group.	 (2016).	 PRISM climate data.	 Oregon	 State	
University.

Questad,	E.	J.,	Kellner,	J.	R.,	Kinney,	K.,	Cordell,	S.,	Asner,	G.	P.,	Thaxton,	
J.,	Diep,	 J.,	 Uowolo,	 A.,	 Brooks,	 S.,	 Inman-	Narahari,	N.,	 Evans,	 S.	
A.,	&	Tucker,	B.	(2014).	Mapping	habitat	suitability	for	at-	risk	plant	
species	 and	 its	 implications	 for	 restoration	 and	 reintroduction.	
Ecological Applications, 24,	385–395.

R	Core	Team.	(2021).	R: A language and environment for statistical comput-
ing.	R	Foundation	for	Statistical	Computing.

Ramirez-	Reyes,	C.,	Nazeri,	M.,	Street,	G.,	Jones-	Farrand,	D.	T.,	Vilella,	F.	
J.,	&	Evans,	K.	O.	(2021).	Embracing	ensemble	species	distribution	
models	to	inform	At-	risk	species	status	assessments.	Journal of Fish 
and Wildlife Management, 12,	98–111.

Ramirez-	Reyes,	C.,	Street,	G.,	Vilella,	F.	J.,	Jones-	Farrand,	D.	T.,	Wiggers,	
M.	S.,	&	Evans,	K.	O.	(2021).	Ensemble	species	distribution	model	
identifies	 survey	 opportunities	 for	 At-	risk	 bearded	 Beaksedge	
(Rhynchospora crinipes)	 in	the	southeastern	United	States.	Natural 
Areas Journal, 41,	55–63.

Searcy,	 C.	 A.,	 &	 Shaffer,	 H.	 B.	 (2014).	 Field	 validation	 supports	 novel	
niche	 modeling	 strategies	 in	 a	 cryptic	 endangered	 amphibian.	
Ecography, 37,	983–992.

Smith,	D.	R.,	Allan,	N.	 L.,	McGowan,	C.	P.,	 Szymanski,	 J.	A.,	Oetker,	 S.	
R.,	&	Bell,	H.	M.	 (2018).	Development	of	a	species	status	assess-
ment	process	for	decisions	under	the	U.S.	Endangered	Species	Act.	
Journal of Fish and Wildlife Management, 9,	302–320.

Sofaer,	H.	R.,	Hoeting,	 J.	A.,	&	 Jarnevich,	C.	S.	 (2019).	The	area	under	
the	precision-	recall	curve	as	a	performance	metric	for	rare	binary	
events. Methods in Ecology and Evolution, 10,	565–577.



    |  13 of 13ZIMMER et al.

Sousa-	Silva,	R.,	Alves,	P.,	Honrado,	J.,	&	Lomba,	A.	(2014).	Improving	the	as-
sessment	and	reporting	on	rare	and	endangered	species	through	spe-
cies	distribution	models.	Global Ecology and Conservation, 2,	226–237.

Sullivan,	G.	M.,	&	Feinn,	R.	(2012).	Using	effect	size—Or	why	the	P	value	
is not enough. Journal of Graduate Medical Education, 4,	279–282.

Tredennick,	A.	T.,	Hooker,	G.,	Ellner,	S.	P.,	&	Adler,	P.	B.	(2021).	A	practical	
guide	to	selecting	models	for	exploration,	inference,	and	prediction	
in ecology. Ecology, 102, e03336.

US	Fish	and	Wildlife	Service.	(1984).	Final	rule	to	determine	Eriogonum	
pelinophilum	 to	 be	 an	 endangered	 species.	 Federal Register, 49, 
28562–28565.

US	 Fish	 and	 Wildlife	 Service.	 (1988).	 Clay- loving wild buckwheat 
(Eriogonum	pelinophilum) recovery plan.

USGS.	(2022).	Landsat collection,	9.
Valavi,	 R.,	 Elith,	 J.,	 Lahoz-	Monfort,	 J.	 J.,	 &	 Guillera-	Arroita,	 G.	 (2021).	

Modelling	 species	 presence-	only	 data	 with	 random	 forests.	
Ecography, 44,	1731–1742.

Valavi,	 R.,	 Guillera-	Arroita,	 G.,	 Lahoz-	Monfort,	 J.	 J.,	 &	 Elith,	 J.	 (2022).	
Predictive	 performance	 of	 presence-	only	 species	 distribution	
models:	 A	 benchmark	 study	 with	 reproducible	 code.	 Ecological 
Monographs, 92, e01486.

Wang,	 T.,	 Hamann,	 A.,	 Spittlehouse,	 D.	 L.,	 &	 Aitken,	 S.	 N.	 (2006).	
Development	 of	 scale-	free	 climate	 data	 for	Western	 Canada	 for	
use	 in	 resource	management.	 International Journal of Climatology, 
26,	383–397.

Westwood,	R.,	Westwood,	A.	R.,	Hooshmandi,	M.,	Pearson,	K.,	LaFrance,	
K.,	&	Murray,	C.	(2020).	A	field-	validated	species	distribution	model	
to	 support	 management	 of	 the	 critically	 endangered	 Poweshiek	
skipperling	(Oarisma	poweshiek)	butterfly	in	Canada.	Conservation 
Science and Practice, 2, e163.

Wickham,	H.,	&	Chang,	W.	(2016).	Package ‘ggplot2.’ Create elegant data 
visualisations using the grammar of graphics.	Version	2,	1–189.

Williams,	 J.	N.,	 Seo,	 C.,	 Thorne,	 J.,	Nelson,	 J.	 K.,	 Erwin,	 S.,	O'Brien,	 J.	
M.,	&	Schwartz,	M.	W.	(2009).	Using	species	distribution	models	to	
predict	new	occurrences	for	rare	plants.	Diversity and Distributions, 
15,	565–576.

Willoughby,	 J.	 W.	 (2000).	 Monitoring of special status plants in the 
Algodones Dunes, Imperial County, California: Results of 1998 moni-
toring and comparison with the data from WESTEC's 1977 monitoring 
study.	Bureau	of	Land	Management,	California	State	Office.

Wood,	S.	(2015).	Package ‘mgcv’.	R	package	version	1,	729.
Wright,	M.	N.,	Wager,	 S.,	&	Probst,	P.	 (2019).	Package ‘ranger’.	Version	

0.11 2.
Zimmer,	S.	N.,	Grosklos,	G.	J.,	Belmont,	P.,	&	Adler,	P.	B.	(2021).	Agreement	

and	uncertainty	among	climate	change	impact	models:	A	synthesis	
of	 sagebrush	 steppe	 vegetation	 projections.	Rangeland Ecology & 
Management, 75,	119–129.

SUPPORTING INFORMATION
Additional	 supporting	 information	 can	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	this	article.

How to cite this article: Zimmer,	S.	N.,	Holsinger,	K.	W.,	&	
Dawson,	C.	A.	(2023).	A	field-	validated	ensemble	species	
distribution	model	of	Eriogonum pelinophilum, an endangered 
subshrub	in	Colorado,	USA.	Ecology and Evolution, 13, 
e10816. https://doi.org/10.1002/ece3.10816

https://doi.org/10.1002/ece3.10816

	A field-validated ensemble species distribution model of Eriogonum pelinophilum, an endangered subshrub in Colorado, USA
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study area
	2.2|Original model
	2.2.1|Input points
	2.2.2|Environmental covariates
	2.2.3|Modeling

	2.3|Field validation
	2.4|Final model
	2.4.1|Input points
	2.4.2|Environmental covariates
	2.4.3|Modeling


	3|RESULTS
	3.1|Original model
	3.2|Field validation
	3.3|Final model
	3.4|Habitat characteristics
	3.5|Habitat suitability predictions

	4|DISCUSSION
	4.1|Species habitat
	4.2|Model validation
	4.3|Field validation
	4.4|Management implications

	5|CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	OPEN RESEARCH BADGES
	DATA AVAILABILITY STATEMENT

	REFERENCES


