Table 3. ML results for each classifier. Soft voting comprised of a combination of the four ML algorithms.
| Classification algorithm | Training set | Internal validation set | |||||||
|---|---|---|---|---|---|---|---|---|---|
| AUC | Accuracy | Recall | Precision | AUC | Accuracy | Recall | Precision | ||
| Linear Support Vector Machine | 0.906±0.020 | 0.857±0.021 | 0.857±0.021 | 0.857±0.021 | 0.766±0.059 | 0.711±0.056 | 0.711±0.056 | 0.711±0.056 | |
| Random Forest | 0.901±0.018 | 0.823±0.024 | 0.823±0.024 | 0.823±0.024 | 0.922±0.034 | 0.858±0.045 | 0.858±0.046 | 0.858±0.046 | |
| Adaptive Boost | 0.894±0.020 | 0.810±0.024 | 0.811±0.024 | 0.810±0.024 | 0.882±0.043 | 0.816±0.051 | 0.817±0.051 | 0.816±0.050 | |
| Extreme Gradient Boost | 0.949±0.013 | 0.877±0.021 | 0.880±0.021 | 0.878±0.021 | 0.910±0.037 | 0.833±0.047 | 0.833±0.046 | 0.833±0.046 | |
| Soft Voting Classifier | 0.921±0.016 | 0.837±0.023 | 0.837±0.023 | 0.837±0.023 | 0.890±0.040 | 0.820±0.046 | 0.822±0.046 | 0.820±0.046 | |
Data are shown as performance value ± 95% confidence interval. ML, machine learning; AUC, area under the receiver operating characteristic curve.