Skip to main content
. 2023 Sep 19;13(12):7706–7718. doi: 10.21037/qims-23-441

Table 3. ML results for each classifier. Soft voting comprised of a combination of the four ML algorithms.

Classification algorithm Training set Internal validation set
AUC Accuracy Recall Precision AUC Accuracy Recall Precision
Linear Support Vector Machine 0.906±0.020 0.857±0.021 0.857±0.021 0.857±0.021 0.766±0.059 0.711±0.056 0.711±0.056 0.711±0.056
Random Forest 0.901±0.018 0.823±0.024 0.823±0.024 0.823±0.024 0.922±0.034 0.858±0.045 0.858±0.046 0.858±0.046
Adaptive Boost 0.894±0.020 0.810±0.024 0.811±0.024 0.810±0.024 0.882±0.043 0.816±0.051 0.817±0.051 0.816±0.050
Extreme Gradient Boost 0.949±0.013 0.877±0.021 0.880±0.021 0.878±0.021 0.910±0.037 0.833±0.047 0.833±0.046 0.833±0.046
Soft Voting Classifier 0.921±0.016 0.837±0.023 0.837±0.023 0.837±0.023 0.890±0.040 0.820±0.046 0.822±0.046 0.820±0.046

Data are shown as performance value ± 95% confidence interval. ML, machine learning; AUC, area under the receiver operating characteristic curve.