Table 2. The performance of the LDA model on the test folds.
Flavour | Balanced accuracy | F1 score | ROC AUC | mAP |
---|---|---|---|---|
Vanilla | 0.67±0.08 | 0.79±0.08 | 0.73±0.12 | 0.88±0.09 |
TVC | 0.77±0.06 | 0.85±0.07 | 0.83±0.09 | 0.92±0.08 |
Bins 1-to-100 | 0.73±0.08 | 0.82±0.09 | 0.78±0.06 | 0.92±0.04 |
V | 0.68±0.08 | 0.79±0.09 | 0.65±0.14 | 0.84±0.10 |
VC | 0.69±0.09 | 0.87±0.02 | 0.82±0.06 | 0.93±0.03 |
Data are presented as mean ± standard deviation. ROC, receiver operator characteristic; LDA, linear discriminant analysis; AUC, area under the curve; mAP, mean average precision; TVC, combination of image translation (T), segmentation volume adaptation (V) and contour randomization (C).