Skip to main content
. 2023 Nov 7;13(12):7680–7694. doi: 10.21037/qims-23-163

Table 2. The performance of the LDA model on the test folds.

Flavour Balanced accuracy F1 score ROC AUC mAP
Vanilla 0.67±0.08 0.79±0.08 0.73±0.12 0.88±0.09
TVC 0.77±0.06 0.85±0.07 0.83±0.09 0.92±0.08
Bins 1-to-100 0.73±0.08 0.82±0.09 0.78±0.06 0.92±0.04
V 0.68±0.08 0.79±0.09 0.65±0.14 0.84±0.10
VC 0.69±0.09 0.87±0.02 0.82±0.06 0.93±0.03

Data are presented as mean ± standard deviation. ROC, receiver operator characteristic; LDA, linear discriminant analysis; AUC, area under the curve; mAP, mean average precision; TVC, combination of image translation (T), segmentation volume adaptation (V) and contour randomization (C).