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Abstract

Proteins and enzymes generally achieve their function by creating well-defined 3D 

architectures that pre-organize reactive functionalities. Mimicking this approach to supramolecular 

preorganization is leading to the development of highly versatile artificial chemical environments, 

including new biomaterials, medicines, artificial enzymes, and enzyme-like catalysts. The use of 

beta-turn and alpha-helical motifs is one approach that enables the precise placement of reactive 

functional groups to enable selective substrate activation and reactivity/selectivity that approaches 

natural enzymes. Our recent work has demonstrated that helical peptides can serve as scaffolds for 

pre-organizing two reactive groups to achieve enzymelike catalysis. In this study, we used CYANA 

and AmberTools to develop a computational approach for determining how the structure of our 

peptide catalysts can lead to enhancements in reactivity. These results support our hypothesis that 

the bifunctional nature of the peptide enables catalysis by pre-organizing the two catalysts in 

reactive conformations that accelerate catalysis by proximity. We also present evidence that the 

low reactivity of monofunctional peptides can be attributed to interactions between the peptide-

bound catalyst and the helical backbone, which are not observed in the bifunctional peptide.
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1. INTRODUCTION

The precisely tuned functions of proteins and enzymes are intimately connected to the 

exquisite control nature achieves over supramolecular 3-D structure. Significant interest 

has been invested in translating this strict control over the 3D structure from biological 

systems into artificial environments, including for new biomaterials and medicines,1–4 

artificial enzymes,5–7 and enzyme-like catalysts.8–11 In the field of peptide catalysis, the 

use of beta-turn and alpha-helical motifs can enable the precise placement of reactive 

functional groups in close proximity to enable reactivity and selectivity that approaches that 

of natural enzymes.11 For example, work by Gellman has shown that having two different 

amine groups one turn apart on a helical alpha-beta-peptide can facilitate highly selective 

macrocyclization via condensations of aldehydes (Figure 1).12–13 Ball and coworkers have 

also used helical peptides to enable protein binding and selective protein modifications 

with dirhodium catalysts.14 Our group has utilized a helical peptide to pre-organize 

multiple catalysts to facilitate novel approaches to cooperative catalysis in Diels-Alder, 

indole alkylation, and nitroolefin addition reactions (Figure 1).15–16 We are particularly 

interested in using peptide secondary structures such as α-helices to develop highly efficient 

cooperative catalysts. Our efforts in this area,15–16 as well as the efforts of others,11 span the 

divide between biological and synthetic chemistry. Moreover, they require the development 

of new computational and mechanistic tools that investigate the impact of structure on 

cooperative reactivity and selectivity.4–7

The defining aspect of macromolecular catalysts such as our bifunctional peptides is that 

the well-defined, yet flexible nature of the peptide backbone can pre-organize catalytic 

groups to maximize reactivity. In addition, the chiral nature of a peptide scaffold can have 

a dramatic impact on optimizing the enantioselectivity of the desired transformation.14,16 

We recently demonstrated that the placement of two reactive groups, an imidazolidinone 

catalyst, and a thiourea hydrogen bonding group, in proximity of each other on a peptide 

backbone leads to the recruitment and pre-organization of two substrates and enzyme-like 

acceleration of catalysis (Figure 2).15 The chiral nature of the peptide backbone also let to 

an increase in the enantioselectivity of the reactions. The rational design of such catalysts 
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requires an in-depth understanding of the 3D structure of the peptide backbone and how it 

influences or interacts with the attached catalysts. To gain such an understanding, we set out 

to develop a modeling approach that could provide insights into how the peptide scaffold 

was interacting with the peptide-bound catalysts and influencing reactivity. To achieve this, 

we used NMR Nuclear Overhauser Effect spectroscopy (NOE) experiments, combined with 

CYANA17–21 and AmberTools22–23 calculations to model the solution-phase structures of 

our catalysts. Our studies compliment previous computational efforts to model peptide-based 

catalysts that focused on understanding the folded structure of short (3-4 residues) peptides 

and the importance of structure in catalysis.24–28 Our results support our hypothesis that the 

helical structure is present in solution and important for bifunctional catalysis. We also find 

that the low reactivity of our monofunctional imidazolidinone peptide likely results from 

non-productive interactions between the peptide and the catalyst that change the backbone 

structure and prevent catalyst interactions with the substrate. These studies are aiding in the 

design of new bifunctional catalysts capable of achieving improved cooperativity.

2. RESULTS AND DISCUSSION

Our goal of modeling the structures of our peptide-based catalysts relies on a two-prong 

approach, where we used experimental NMR NOE data combined with both CYANA 2.1 

calculations and AmberTools MD simulations. CYANA uses conformational constraints 

from nuclear magnetic resonance (NMR) experiments and an angle dynamics algorithm to 

determine the in-solution peptide structure.17–21 CYANA provides a torsional angle space 

for our structures but is limited because it does not account for bond length variability 

and electrostatic interactions. The benefit of CYANA-based computations is that they have 

low computational costs and provide rapid access to possible structures by simplifying 

structure determination to a few parameters. AmberTools, a molecular dynamic (MD) 

suite,22 provides a comprehensive model that complements CYANA’s deficiencies but 

is more computationally expensive. In addition, AmberTools-based structures can often 

become stuck in local minima,23 which can provide incorrect overall structures for our 

peptide catalysts. By comparing the results from CYANA with AmberTools models, we 

create a working model of the solution structures of our peptide catalysts, which provides an 

avenue to understand how peptide structure can impact catalysis in our system.

In our previous report on the development of bifunctional helical peptide catalysts,15 we 

found that the reactivity of imidazolidinone catalyst 1 was vastly different from that of 

peptide-based catalysts 2 and 3 (Figure 2). Mono-functional peptide 2 had much lower 

reactivity than 1 alone (7% vs 46% yield in 48 h), while bi-functional peptide 3 showed 

dramatically improved catalysis (88% yield). Non-functionalized peptides (containing no 

imidazolidinone catalyst) were unreactive. We also tested a non-helical bifunctional peptide 

catalyst (not shown) where the helical structure had been disrupted by introduction of 

helix-breaking proline residues. This non-helical peptide showed little to no catalysis, 

demonstrating that catalysis is supported by the helical backbone structure. From these 

studies, we hypothesized that the bifunctional peptide can bind both substrates in proximity, 

thus accelerating the reaction via cooperative effects. To obtain a better understanding of 

how peptide structure is influencing catalysis, we set out to develop a systematic approach to 

understanding the solution structure of our peptide catalysts.
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2.1 CYANA Calculations.

Our first goal was to investigate the solution-phase structure of our peptide catalyst using the 

CYANA modeling software.17–21 Because our peptide catalysts are small (11 residues), we 

could use CYANA without the need to employ 14C and 15N isotopically labeled amino acids. 

We used a range of NMR experiments to fully assign the catalyst structures and the relevant 

NOE signals (see supporting information for details). We then used these assignments to 

obtain a series of probable calculated structures of our peptides using CYANA. We did 

not find the use of the CYANA software particularly intuitive and a tutorial of how we 

performed these calculations is included in the supporting information. For the non-natural, 

catalyst-containing side chains, we used Cylib 2.0 to generate the required force field 

parameters.29 Each of the computed structures for peptides 2 and 3 were evaluated using 

MolProbity30, a molecular structure evaluation and validation program for NMR structures. 

This software scores each structure by a series of evaluation tests based on a database of 

known structures.

From our preliminary CYANA-computed structures (Figure 3), we already see indications 

of how structure can affect reactivity. For example, Figure 3 shows one of the CYANA 

structures of our mono-functional peptide catalyst 2 with the best MolProbity score. The 

computed structures show an overall loosely helical backbone with a reverse turn in the 

middle of the backbone. Moreover, from the Ramachandran plots31,32 of 2 (see supporting 

information), a wide range of dihedral angles (Phi and Psi) are in the helix and reverse 

helix regions. The reverse turn structure could be caused by attachment of the catalyst to 

peptide backbone, as a similar reverse turn is observed in the bifunctional catalyst 3 (Figure 

3). The CYANA structure of 2 also shows the imidazolidinone interacting with the peptide 

backbone through H-bonding interactions. This interaction between the imidazolidinone 

and the peptide backbone could help explain the very low reactivity of monofunctional 

catalyst 2 when compared to catalyst 1. The imidazolidinone catalyst is tied up in stabilizing 

interactions with the peptide backbone, making it inaccessible to interact with substrates and 

undergo catalysis. Thus, minimizing these types of interactions with the backbone could be a 

productive method for improving catalysis (vide infra).

In contrast to the monofunctional peptide 2, the structure of bi-functional peptide catalyst 

3 suggests a tighter, more helical peptide backbone (Figure 3). The Ramachandran plots 

for 3 show a wide range of dihedral angles like 2, but with more groupings in the helical 

regions that suggests a tighter helical structure. As with peptide 2, a reverse turn is present 

in the middle, likely caused by the catalyst side chain. With peptide 3, we see two different 

converging structures from the different CYANA calculations. The first structure shows the 

two catalysts are interacting, causing the helix to fold slightly inward (3, Figure 3). The 

second structure has the catalyst not interacting with each other and the backbone forming 

a stronger helix instead (3’). These two structures show that the catalysts are spending 

most of their time interacting with each other or the solvent and not interacting with the 

peptide backbone. This means that both catalysts are more available to interact with their 

respective substrates, bring them into proximity, and facilitate catalysis. This observation is 

consistent with the observed reactivity of peptide 3, which displays higher catalysis than 

both monofunctional catalysts 2 and non-peptide catalyst 1. Importantly, introducing these 
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types of interactions between catalysts and functional side chains, such as by introduction 

of H-bonding residues (Gln, Asn, Asp, Ser, etc), could be a strategy for helping enhance 

catalyst activity by minimizing interactions of the catalyst with the peptide backbone itself.

Overall, the CYANA solution-phase structures of our peptides provided preliminary insights 

into how the structure of our peptide catalyst can influence the observed reactivity. One 

remaining challenge from these calculations is that almost all the CYANA structures showed 

high Van der Waals collisions. This means that CYANA is not able to account for steric 

interactions that could change the computed structures of our peptides. To address this 

concern, we next turned to molecular dynamics simulations using AmberTools to correct 

and relax the solution-phase structures of our peptides.

2.2 AmberTools Calculations.

Our next goal was to compare our CYANA structures with molecular dynamics simulations 

obtained using AmberTools.22,23 To accomplish this, we first pursued two different 

approaches to generate MD simulations of our peptide catalysts without any physical 

data input. In the first approach, we made our peptide catalysts in a linear, non-folded 

confirmation, heated the structures in silico to eliminate any structural bias, then allowed 

the structures to relax into their most desired conformation. Second, we initiated the MD 

simulations with the peptides already folded into a helical or beta turn secondary structure. 

We then allowed the MD simulations to relax these starting structures into the most favored 

conformations. This allowed us to avoid local minima structures that we observed with the 

first method. Finally, we performed NOE-restricted MD simulations using the NOE data and 

CYANA structure to restrain the MD simulations. This final combination of NMR restraints 

and MD simulations provided a more reliable and detailed structure of our peptide catalysts 

and addressed some of the limitations of the CYANA modeling approach.

To perform our MD simulations on our non-natural peptide catalysts, we first had to 

develop force field parameters for our non-natural catalyst side chains. The Ambertools 

force fields34 are more descriptive than CYANA’s angle dynamics algorithm and can 

be more accurate if performed correctly. The accuracy of these force fields dramatically 

depends on the parameters or variables of the force field equations. However, more accurate 

force fields require more resources and time to develop highly accurate parameters. To 

achieve moderately accurate parameters without requiring excessively long calculations, our 

group used a combination of AmberTools ff14SB forcefields,35 and general force fields 

(GAFF2) with AM1-BCC charges.36 The later forcefields were used for our non-natural, 

catalyst-containing amino acid side chains. Because our peptide catalysis occurs in organic 

solvents, we used organic solvent models in our MD simulations that had been previously 

developed and tested 37–41.

2.2.1 AmberTools Approach One.—Our first MD approach uses a classic sampling 

method by starting with a linear conformation of the peptide backbone and allowing the 

system to evolve naturally over time. We used our previously reported CAN program 

to build coordinate files, including for catalyst-containing non-natural amino acids.37 We 

then heated the system above 500 K, allowed the system to cool, and then ran the 
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simulation at the target temperature (273 K). Each calculation was allowed to run for 

1200 ns duration. From these simulations, we sorted the top clusters using a bottom-up 

hierarchy algorithm22 and visualized some of the best MolProbity29 scored structures 

(Figure 4). This was the same method used to obtain our most representative CYANA 

structures. With monofunctional catalyst 2, we observed an overall loosely helical backbone 

with a reverse helix near the catalyst structure, like the CYANA structures. However, an 

essential difference between the CYANA structures and these MD structures is that they 

do not always anneal properly, even when given a generous time to fold (1200 ns). This 

occurs because the structures become stuck in a local minimum. Other methods that were 

developed to address this challenge, such as replica exchange,43–45 were attempted with our 

peptides catalysts, but similar results occurred despite the increase in computational cost. 

Figure 4 shows an MD structure of 2 with a similar backbone structure as obtained using 

CYANA, but the frequency of structures like this was low in our runs. Nevertheless, the 

Ramachandran plot of the MD structure for 2 does show the torsional angles of the amino 

acids in more favorable regions than the CYANA structures, which was the overall goal of 

our Ambertools MD simulations (see supporting information for details).

As with monofunctional peptide 2, we were able to locate AmberTools MD structures for 

3 with the same backbone shape as seen in our CYANA structure (helical ends and a 

reverse twist in the middle, Figure 4). This helical structure is one of the best MolProbity-

scored structures from our runs. However, most of the structures did not converge and 

anneal properly, and an even lower frequency of helical structures was observed. This 

low frequency of helical structures could result from the high complexity of the two-

catalyst system, which may need more time to evolve into the lower energy states. The 

Ramachandran plot of catalyst 3 does show many tortional angles in the helical regions, but 

also suggests significant linear character.

To benchmark our Ambertools structures, we next performed MD simulations on the non-

functionalized peptide backbone (4) containing only natural amino acid side chains (catalyst 

residues were replaced with alanines). This peptide is a derivative of a known peptide 

(Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe) reported by Balaram and which is known to have 

significant helical character.46 This benchmark peptide would increase accuracy by using 

only ff14SB force fields when calculating the peptide structure. Figure 4 also shows one of 

the best MolProbity-scored structures of 4, which does display significant helical character. 

However, this structure is not as helical as peptides 2 and 3. Thus, it may be that our catalyst 

side chains have significant helix inducing character. The Ramachandran plot of 4 shows 

similar tortional angles to 2 and 3, but in less favorable regions.

When comparing the structures obtained from Ambertools vs CYANA, it is important to 

note that the computed structures for 2 and 3 from both methods have similar characteristics. 

However, CYANA structures show a greater definition in the helical structure of the 

backbone and AmberTools showes better energy profiles in its Ramachandran plots. Thus, 

we desired to improve upon these results by preorganizing the peptide backbones into helical 

structures prior to initiating the MD simulation to help minimize the number of simulations 

that got trapped in local minima.
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2.2.2 AmberTools Approach Two.—For our second approach, we arranged each 

peptide in four different starting configurations (alpha-helix, beta-fold, 3-10 helix, and π-

helix) to initiate each MD simulations. Our hypothesis was that preorganizing the peptides in 

this fashion would help avoid the structures getting stuck in local minima and provide more 

representative examples of low energy conformations. Each peptide simulation was heated 

to a target temperature (273 K) and run for ~400 ns. After the simulation was completed, 

we generated top clusters using the same bottom-up hierarchy algorithm and MolProbity 

scoring. The top MD structures for each of our peptides is shown in Figure 5. The structure 

of catalyst 2 shows a helical backbone with a reverse helix as observed previously, but these 

structures anneal better than with the approach one. The best starting structures for peptide 

2 were the 3-10 helix or the alpha helix conformations. Thus, preorganizing the peptide into 

a proposed low energy conformation helps avoid long computational times (400 vs 1200 

ns) and provides more representative low energy structures. The one drawback is that some 

notion of the low energy conformation of each peptide needs to be known to properly setup 

each run. In our case, we knew that our peptides existed in some form of a helical backbone 

due to the circular dichroism (CD) spectra obtained for peptides 2 and 3.15 However, our 

CD studies only provided information about the average structure of the peptides, and does 

not provide specific information about how helical the peptides are or what that helical 

structure looks like. The Ramachandran plot of 2 also shows better favorable regions than 

our CYANA structures. One additional feature of the new MD structure of peptide 2 is that 

we observe the imidazolidinone catalyst (green) interacting with the backbone of the catalyst 

in most structures. This result is consistent with the CYANA structure of peptide 2, which 

also indicates favorable interactions with the helix backbone and could be the cause of the 

low reactivity with peptide 2.

The MD structure of peptide 3 was also somewhat improved when the starting conformation 

was either a 3-10 or an alpha helix (Figure 5). However, these structures were not as 

much improved as the monofunctional catalyst. The two-catalyst system (3) still didn’t 

fold properly most of the time. The frequency of correctly folded structures did increase, 

but not as much as with peptide 2. The structures obtained via method two also had a 

higher frequency of forming a full alpha helix without the reverse helix (not shown) as 

was observed in the CYANA structures. Thus, the fully alpha helical backbone may be a 

low energy conformation that the peptide accesses in solution that is similar in energy to 

the structure observed with CYANA and method one. Both helical structures obtained from 

this method have more favorable regions in their Ramachandran plots than the CYANA 

structure, indicating that they are likely lower in energy and more stable.

When we used approach two to calculate the structure of non-functionalized peptide 4, 

we found a lower frequency of helical structures than expected (Figure 5). This result 

confirms the results obtained with method one, which suggested that the backbone peptide 

wasn’t as structured as the monofunctional or bifunctional peptides 2 and 3. For peptide 

4, the best structures came from the preorganized alpha helix starting point. However, the 

Ramachandran plots indicate few fully helical structures. This supports our hypothesis that 

the incorporation of catalysts, particularly in the two-catalyst peptide (3), helps improve the 

helical structure of our peptide.
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2.2.3 AmberTools Approach Three.—Our final approach to MD simulations 

employed NMR-restraints to direct the backbone folding. These simulations use the 

information from NMR NOE experiments (Similar to CYANA) and force the structures into 

a predetermined configuration with some ability to relax. For all structures, we started the 

peptides in linear configurations, and used the restraints to help guide proper folding. These 

NMR-restrained simulations help the structure to start in and maintain a better configuration 

during the simulation. It also helped the simulation to avoid local minima. Each peptide was 

heated up to target temperature and ran for ~400 ns. After the simulation was completed, we 

generated the top clusters as described previously. The best scoring structures for peptides 2 
and 3 are shown in Figure 6.

From this NOE-guided approach, peptides 2 and 3 showed similar secondary structure as the 

structures obtained using CYANA. The main difference between these new structures and 

the CYANA structures for peptide 2 is that its Ramachandran plots show improvements in 

the number of angles that are in favorable regions for alpha helical structures. Likewise, the 

MolProbity scoring for the NMR-guided structure of 2 is much improved over the CYANA 

structure. These improvements in the structures of our peptide catalysts likely result from the 

improved forcefields used by the Ambertools MD simulations over the CYANA simulations. 

For peptide 3, however, the CYANA structure, based on the Ramachandran plot and the 

Molprobity scoring, had slightly better angles for a helical peptide and a higher scoring 

structure. Thus, both the CYANA and Ambertools calculations, guided by NMR NOE 

data, provide important tools for investigating the best solution structures of peptide-based 

catalysts.

Two important effects are confirmed for our peptide catalysts based on these most refined 

structures. First, the bifunctional peptide (3) has a well-defined helical structure that places 

the two catalysts into proximity. This facilitates interactions between the two catalysts 

that we believe are important for catalysis and prevents the catalysts from interacting 

with the peptide backbone. Second, favorable interactions between the imidazolidinone and 

the peptide backbone are observed with monofunctional peptide 2. These catalyst-peptide 

interaction are likely the cause of the low reactivity of peptide 2, when compared to the 

non-peptide bound imidazolidinone catalyst 1 (see Figure 2). To validate the importance 

of this interaction, we performed a time lapse study on the structure of 2 from approach 

three. What we observed is that over 600 ns, the imidazolidinone oxygen remains within 

two angstroms of the nearby valine alpha-hydrogen, which suggests that this folded structure 

persists over time (see Figure S1 in the supporting information).

3. CONCLUSIONS

The overarching goal of this work was to use MD simulations to investigate the solution-

phase structure of short, non-natural peptide-based catalysts. Because this class of catalyst 

relies on well-defined 3-D arrangements of catalysts, understanding the structure of the 

peptide can help guide the design of new catalysts. We have demonstrated that the use of 

NMR-NOE restraints for either CYANA or Ambertools MD simulations provides the most 

reasonable solution-phase structures of our peptide catalysts. We employed Ramachandran 

plot analysis and MolProbity scoring to validate our structures to ensure that they were 
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representative of the solution-phase structure. When comparing these two approaches, the 

Ambertools MD simulations provided higher scoring (MolProbity) structures that also 

showed better structural alignment in the Ramachandran plots. However, both methods 

provided similar overall structures, which confirms that the folded structures are likely those 

favored in solution. The structures obtained are also in agreement with previously obtained 

circular dichroism measurements, which suggested helical structures in solution.

We also used two different approaches to obtaining MD-simulated structures with 

Ambertools that did not rely on physical data such as NMR NOE interactions. Of the 

two methods reported, preorganizing the peptide into a folder structure (rather than a linear 

structure) before initiating the MD simulation provided better structures and avoided the 

peptide getting stuck in local minima. Thus, having some idea of the folded structure of 

our peptide catalysts was useful in obtaining potential structures without having to run 

excessively long computational runs.

By using MD simulations to investigate the solution phase structure of our peptide catalysts, 

we were also able to observe interactions that we believe are important for and influence 

catalysis. For example, our monofunctional peptide catalyst (2) experiences interactions 

between the catalyst and the peptide backbone that likely lower catalyst availability and 

reactivity. This result is consistent with the observed low reactivity with peptide 2. Thus, 

changes to the backbone structure that minimize this type of interaction could be important 

to enhance catalyst activity. We also showed that the bifunctional peptide (3) experiences 

interactions between that two catalysts that prevent interactions with the peptide backbone 

and may be essential for the observed cooperative catalysis with this peptide.

We believe that these results provide a useful framework for using MD simulations to 

understand the structure and reactivity of peptide-based catalysts that contain non-natural 

catalytic units. Our method can also be used to understand how interactions between the 

backbone peptide and the catalysts can influence reactivity. Our approach also provides 

several avenues for obtaining reasonable MD structures, depending on whether physical 

interactions data (NMR NOE data) is available for the peptide catalyst of interest. Our 

future work with these tools will involve the design of new catalytic systems that enhance 

cooperative effects by maximizing intercatalyst interactions and minimizing interactions 

between catalysts and the peptide. This application would allow a more direct and custom 

approach to discovering new and faster multifunctional catalysts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of helical polypeptide-based catalysts.
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Figure 2. 
Catalyst structures and their reactivity in Diels-Alder reactions. Primary peptide sequence: 

AcNH-VXLBVXLBVAL-NH2; B=aminoisobutyric acid, X = Ala, or catalyst-modified 

reside.
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Figure 3. 
CYANA-calculated solution-phase structures of peptide 2 and peptide 3. NMR experiments 

were run in DMSO-d6 at room temperature. All amino acid side chains were omitted for 

clarity except the thiourea catalyst (orange) and the imidazolidinone catalyst (green). All 

images of our models were created using Chimera.33
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Figure 4. 
Ambertools-generated structures with high MolProbity scores for peptides 2, 3, and non-

functionalized peptide 4. Computations were run with a nitromethane solvent gradient at 

−10 °C for ~1200 ns. All natural amino acid side chains were omitted for clarity except the 

thiourea catalyst (orange) and the imidazolidinone catalyst (green).

Parkman et al. Page 16

J Phys Chem A. Author manuscript; available in PMC 2024 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Ambertools-generated structures with high MolProbity scores for peptides 2, 3, and non-

functionalized peptide 4. Computations were run with a nitromethane solvent gradient at 

−10 °C for ~1200 ns. All natural amino acid side chains were omitted for clarity except the 

thiourea catalyst (orange) and the imidaz-olidinone catalyst (green).
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Figure 6. 
NMR-restrained MD simulated structures with the highest MolProbity scores of peptides 2, 

and 3. Calculations were run in DMSO at room temperature for about ~400 ns. All natural 

amino acid side chains were omitted for clarity except the thiourea catalyst (orange) and the 

imidazolidinone catalyst (green).

Parkman et al. Page 18

J Phys Chem A. Author manuscript; available in PMC 2024 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Abstract Graphic:
	INTRODUCTION
	RESULTS AND DISCUSSION
	CYANA Calculations.
	AmberTools Calculations.
	AmberTools Approach One.
	AmberTools Approach Two.
	AmberTools Approach Three.


	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

