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Abstract

Introduction: The global Mpox (MPX) disease outbreak caused by the Mpox virus (MPXV) 

in 2022 alarmed the World Health Organization (WHO) and health regulation agencies of 

individual countries leading to the declaration of MPX as a Public Health Emergency. Owing 

to the genetic similarities between smallpox-causing poxvirus and MPXV, vaccine JYNNEOS, and 

anti-smallpox drugs brincidofovir and tecovirimat were granted emergency use authorization by 

the United States Food and Drug Administration. The WHO also included cidofovir, NIOCH-14, 

and other vaccines as treatment options.

Areas covered: This article covers the historical development of EUA-granted antivirals, 

resistance to these antivirals, and the projected impact of signature mutations on the potency 

of antivirals against currently circulating MPXV. Since a high prevalence of MPXV infections in 

individuals coinfected with HIV and MPXV, the treatment results among these individuals have 

been included.

Expert opinion: All EUA-granted drugs have been approved for smallpox treatment. These 

antivirals show good potency against Mpox. However, conserved resistance mutation positions in 

MPXV and related poxviruses, and the signature mutations in the 2022 MPXV can potentially 

compromise the efficacy of the EUA-granted treatments. Therefore, MPXV-specific medications 

are required not only for the current but also for possible future outbreaks.
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1. Introduction

The 2022 Mpox (MPX) outbreak has spread to more than 110 countries with approximately 

90,000 documented cases. Due to the volume of the outbreak, and lessons learned from the 

Coronavirus Disease 19 COVID-19 pandemic, the WHO quickly acted by declaring MPX 

a Public Health Emergency (PHE) of international concern on July 23, 2022. Subsequently, 

the United States Human Health Services Administration (US-HHS) declared MPX as 

a PHE on August 5, 2022. Similar actions were taken by health regulatory agencies of 

individual countries worldwide. Although the PHE status of MPX was lifted on Jan. 31, 

2023, by the US-HHS, new cases of MPXV will likely be identified. Additionally, the 

emergence of a virus closely related to MPXV in future outbreaks cannot be ruled out.

MPX is a zoonotic disease. It is caused by infection with Mpox (formerly known as 

monkeypox) virus (MPXV). MPXV is transmitted via infected skin, body fluids, and 

respiratory droplets. Symptoms include Flu-like conditions and rashes. MPXV is a linear 

double-stranded DNA virus with a genome length of ~200 kb, which encodes ~200 proteins. 

It belongs to the order Chitovirales, the family Poxviridae, and the genus Orthopoxvirus. 

The other examples of the Orthopoxvirus genus are the cowpox virus (CPXV), vaccinia 

viruses (VACV), and the variola virus (VARV). VACV has been extensively studied since all 

smallpox vaccines have been derived from VACV.

MPXV was first discovered in 1958 when two outbreaks of pox-like non-fatal disease 

were identified in cynomolgus monkeys during the summer of 19581. These outbreaks 

occurred 51 and 62 days after the transport of monkeys from Singapore to Denmark, with 

6% and 10% of the animals developing a pox-like disease, respectively. Additional MPX 

outbreaks were reported in 1968 from various countries (Panama, India, France, the USA, 

the Netherlands, Trinidad, Brazil, and Indonesia) in non-human primates2, 3. Concurrently, a 

pox-like disease was reported in humans, although the possibility of MPXV infections was 

ruled out at the time.4 The first documented human MPXV infection was reported in 1970 in 

a 9-month old boy from the Democratic Republic of Congo5.

Many sporadic outbreaks of MPXV have since been reported in different countries. 

Most of these were travel-related cases and restricted to travelers without any secondary 

transmission6–11. The first exported cases of MPXV infections were identified in the 

Midwestern USA in 2003, with 37 confirmed and 10 suspected infections8, 12. This outbreak 

was associated with exotic pocket pets (Prairie dogs) that were imported from Ghana. It 

is believed that the MPXV reservoir was the Gambian pouched rat, which transmitted the 

virus to the Prairie dogs. Therefore, while initially seemingly appropriate, the long-used 

name monkeypox is a misnomer as MPXV infects many animals13, 14, and a definite MPXV 

reservoir has yet to be conclusively identified7, 15.
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2. MPXV genome replication cycle and therapeutic targets

In principle, all viral and host cell proteins that participate in viral replication can be 

antiviral therapeutic targets. However, as discussed in the following sections, only a few 

viral and/or host proteins routinely turn out to be viable therapeutic targets.

2.1 MPXV genome replication cycle

Details of the MPXV replication cycle steps have not been established. Therefore, other 

well-studied and closely related poxviruses, such as VACV, must be used as a surrogate for 

our understanding of the MPXV replication cycle. Two distinct forms of infectious poxvirus 

virions can infect a host cell: (i) a mature virion (MV), and (ii) an extracellular enveloped 

virion (EV) (Fig. 1). MV has a single membrane, whereas the EV has an additional outer 

membrane16. The additional EV outer membrane is disrupted prior to fusion, rendering EV 

similar to MV at the point of entry into the host cell16. A multitude (20–30) of VACV 

proteins constitute the MV membrane, while the EV has ~6 additional proteins within 

the outer membrane. Entry and fusion of the MVs and EVs involve multiple viral and 

cell-surface proteins17–19. In addition, the attachment of MV and EV differs significantly16. 

For example, proteinase treatment disrupts the binding of MV but not EV16, 20. Thus, 

poxvirus entry and fusion are multiplayer and complex processes, making it challenging to 

select feasible antiviral targets from many viral proteins.

A distinct structure of MV/EV particles is the core21, 22, which contains a linear dsDNA 

genome, virus-encoded enzymes, and factors required to transcribe early viral genes. 

Following entry and fusion, the uncoating of the viral core releases the genome into the 

cytosol, where the synthesis of early mRNA and genes begins, which is succeeded by 

DNA genome replication. The replicated DNA serves as the template for the synthesis of 

intermediate and late mRNAs. After the late genes’ translation, the assembly of new viral 

particles initiates, resulting in the formation of infectious MVs (Fig. 1). Some MVs are 

released from the cell by lysis, whereas a population of MVs acquires trans-Golgi and/or 

endosomal membranes to become triple membrane wrapped particles called wrapped virions 

(WVs)16. These virions are transported to the cell surface, where the outer membrane fuses 

with the plasma membrane, and the virion is released as an EV.

2.2 MPXV replication-associated proteins as therapeutic targets

The most sought-after antiviral targets for all viruses are the components of the nucleic 

acid replication machinery. To date, ~100 antivirals are available in the US. The majority 

of these drugs target Human Immunodeficiency Virus (HIV) (42), hepatitis C (18), hepatitis 

B (10), and herpesviruses (10). Fifteen out of 42 currently approved antiretrovirals target 

HIV-1 reverse transcriptase (HIV-1 RT), underlining that nucleic acid polymerase is the most 

important therapeutic target. In poxviruses, there are at least two nucleic acid replicating 

complexes: (i) a multi-subunit DNA-dependent RNA polymerase (vRNAP) complex and (ii) 

a multi-subunit DNA replication holoenzyme. The cryo-EM structure of the VACV vRNAP 

transcription complex provided the details of subunit arrangements and the mechanism 

of poxvirus transcription23. No antiviral drugs targeting vRNAP components have been 

approved for any poxvirus RNA transcription component.
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VACV DNA genome replication is conducted by a holoenzyme consisting of multiple 

proteins22. An essential component of this holoenzyme is E9, the DNA-dependent DNA 

polymerase belonging to B family DNA polymerases. The MPXV genome encodes F8L 

(OPG71)24, also a B family DNA-dependent DNA polymerase25, which shares ~98% 

identity with VACV E9. The first B family DNA polymerase (RB69) structure showed 

an overall architecture of this class of enzymes26. This structure showed a canonical 

polymerase domain consisting of the Thumb, Palm, and Fingers subdomains, as seen in the 

structure of the Klenow Fragment (KF) of E. coli DNA polymerase I27. A notable difference 

between these polymerases is the relative position of the 3’ – 5’ exonuclease domain, 

which was ~180° opposite to that in KF relative to the polymerase active site. Subsequent 

crystal structures of the RB69 polymerase showed that residues of a β-hairpin positioned 

in the major groove of the template-primer played a role in the partitioning of primer 

to the 3’ – 5’ exonuclease site upon mismatch nucleotide incorporation26, 28–30. Indeed, 

a resistance mutation on topologically similar β-hairpin in poxviruses’ DNA polymerase 

showed the relevance of the resistance mechanism of nucleotide analogs mediated by 3’ – 5’ 

exonuclease function (discussed below).

Numerous structures of B family DNA polymerases have since been reported28, 31–39. 

The most notable viral DNA polymerase structures include the structure of unliganded 

herpes simplex virus 1 (HSV-1) DNA polymerase35, HSV1 DNA polymerase in complex 

with template-primer and 4-oxo-dihydroquinoline39, the crystal structure of VACV DNA 

polymerase E938, and a recently reported cryo-EM structure of the MPVX DNA 

polymerase holoenzyme40. Notably, the VACV E9 structure was the first to provide 

details of poxvirus-specific inserts38. Before the cryo-EM structure of MPXV DNA 

polymerase holoenzyme, a homology built MPXV F8L based on this structure, AlphaFold41, 

and ColabFold42, predicted structures of processivity factor A22R (OPG148), PCNA 

(Proliferation Cell Nuclear Antigen) ortholog G9R (OPG93), homology-derived MPXV 

uracil DNA glycosylase (OPG116) were used to assemble an MPXV replication complex43. 

This MPXV replication complex was guided by a low-resolution structure of the vaccinia 

virus DNA replication machinery44 and the structure of eukaryotic DNA polymerase δ 
bound to PCNA45. Mutations presented in the 2022 MPXV outbreak were mapped onto the 

assembled complex to predict the impact of these mutations on the replication of MPXV 

genome replication43.

At least 8 proteins participate in VACV DNA replication22 (Table 1) and are conserved 

between VACV and MPXV. The DNA polymerase, helicase/primase, UDG, processivity 

factor (A20R/A22R), and SSB are essential for viral replication16, 22. Host protein kinase 

VRK1 can complement the replication defect due to the B1R VACV kinase mutant46. 

Similarly, host DNA ligase I has been shown to substitute for VACV A50R47. The absence 

of the FEN1 family endonuclease results in the reduced mean size of the replicated DNA 

and packaged virion with little or no viral DNA48. VACV A20R and MPXV A22R are 

processivity factors, and SSB is an ssDNA coating protein; neither protein exhibits any 

enzymatic activity. In addition to these, H5R (a multifunctional phosphoprotein), A22R 

(A23R in MPXV, Holliday junction resolvase), and H6R (G7R in MPXV, a Topoisomerase) 

participate in the completion of poxvirus (VACV) genome replication21. Thus, DNA 
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polymerase, helicase-primase, and topoisomerase remain attractive antiviral targets of 

MPXV infection.

2.2.1 DNA polymerase structure and the mechanism of CDV/BCV inhibition
—As the poxvirus DNA polymerase (e.g., VACV E9 or MPXV F8L) is essential for 

viral replication21, 49, it is the most sought-after antiviral therapeutic target against MPX. 

The FDA-approved drug brincidofovir (BCV) has been granted EUA, while the WHO 

has included the parent compound cidofovir (CDV) (Fig. 2) for the treatment of MPX. 

CDV is an acyclic nucleoside phosphonate (ANP), which was developed by Antonin 

Holy as an antiviral compound50, 51. ANPs have been extremely successful antivirals as 

tenofovir disoproxil (TDF) and tenofovir alafenamide (TAF), the prodrugs of tenofovir are 

the integral part of antiretroviral therapy against HIV. BCV is a CDV prodrug converted 

into CDV-diphosphate (CDVpp) by cellular kinases, becoming a ready-to-use substrate 

for the viral DNA polymerase. CDV is a broad-spectrum inhibitor of dsDNA viruses’ 

DNA polymerases52. It inhibits viral DNA replication by multiple mechanisms: as a dCTP 

competitor, a nonobligate chain-terminator, resistant to 3’−5’ exonuclease (when present at 

the penultimate 3’OH position), an inhibitor of template-directed trans-lesion synthesis, and 

as a mutagen53–56 when present in the template strand. Since BCV is eventually metabolized 

to CDV-diphosphate (CDVpp), the inhibition mechanism of BCV is identical to CVD as far 

as the mutations in poxvirus DNA polymerases are concerned.

2.2.2 Resistance to CDV/BCV—CDV resistance mutations in multiple 

orthopoxviruses have been identified52, 57–62. These mutations are ΔK174 (deletion of 

K174), A314T, S338F, A613T61, A684V/T, T688A, T808M61, T831I, and S851Y (Fig. 

3a). The wild-type residues are conserved in all poxvirus DNA polymerases studied to date. 

Therefore, the CDV resistance mechanism appears to be shared among orthopoxviruses61. 

The crystal structure of VACV E9 was the first solved structure that provided the topological 

positions of the CDV resistance mutations relative to the two active sites (polymerase and 

3’−5’ exonuclease)38. However, a recently reported structure of MPXV DNA replication 

holoenzyme41 showed the proximity of CDV resistance mutations to the template-primer 

and dNTP substrate (Fig. 3a). While this cryo-EM structure is a breakthrough in poxvirus 

structural biology, it is not a complete DNA replication holoenzyme, as the helicase-primase, 

an integral part of the holoenzyme, is missing44.

Three CDV resistance mutation positions (174, 314, and 338) are in the 3’−5’ exonuclease 

domain, whereas six (613, 684, 688, 808, 831, and 851), are in the polymerase domain 

(Fig. 3a). A CDV resistance mutation A314V/T has been identified in multiple poxviruses52. 

Mutation A314V in VACV DNA polymerase enhances the excision of CDV from the primer 

terminus52. A314 is part of a β-hairpin located within the major groove at the active site 

(Fig. 3b). Mutation A314V/T may change the interactions of this hairpin structure with the 

template-primer, resulting in the enhanced partitioning of the primer to the exonuclease site.

Two resistance mutation positions (684 and 688) are proximal to the CDVpp binding site 

(Fig. 3c). While these residues do not interact directly with the CDVpp (or dCTP), they 

do interact with critical dNTP binding pocket residues (Y554 and Y668) (Fig. 3c). Y554 

is at the 5th position downstream of the first Motif A catalytic residue D549. A bulky 
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residue is essential at this position for the exclusion of ribonucleotides (NTPs) to bind at the 

DNA polymerase site63–66. Y668 is at a topologically equivalent position to F762 of E. coli 
DNA polymerase I. Mutation F762Y enables E. coli DNA polymerase I to accept dideoxy 

nucleotide triphosphate substrates67. Therefore, mutations at residues 684 and 688 can alter 

the dNTP pocket by indirectly changing the interactions of Y554 and Y668 such that the 

polymerase discriminates against CDVpp. Another CDV resistance mutation at position 831 

is close to the primer strand. All other CDV resistance mutation positions are not within 

the interacting distance to either template-primer or the dNTP substrate. However, these 

resistance mutations can indirectly interfere with the binding of CDVpp or the primer 3’OH 

position.

2.2.3 Mutations in F8L 2022 outbreak—A temporal analysis showed that two 

mutations in F8L (L108F and W411L) emerged during the 2022 outbreak43. Residue 

position 411 belongs to poxvirus-specific ‘insert 2’. Many phosophonoacetic acid (PAA) 

resistance mutations are in this insert68. Insert 2 is close to the Fingers subdomain which 

is involved in substrate binding. Therefore, W411 may affect the binding affinity of dNTP 

substrate resulting in the change in replication kinetics of the polymerase. Alternately, 

as seen in the reported MPXV replication holoenzyme40, L411 is exposed to the surface 

(Fig. 4a). For a hydrophobic residue to be exposed at the surface is highly unusual. It 

is possible that ‘insert 2’ also interacts with another factor, and this residue is buried 

at the interface of two proteins43. F8L amino acid position 108 is close to the ssDNA 

overhang of the template strand. As previously proposed, mutation L108F should increase 

the binding affinity of template-primer with F8L, which can enhance the processivity 

and/or polymerase strand-displacement DNA synthesis69. The phenylalanine residues at 

a topologically equivalent position in HIV-1 reverse transcriptase70, 71 and E. coli DNA 

polymerase I have been shown to interact with the template base in the ssDNA region and 

to contribute to strand-displacement DNA synthesis69, 72, 73. Therefore, it is possible that 

mutation L108F emerged to enhance the binding of template-primer with the polymerase 

and facilitate strand-displacement DNA synthesis.

3. ST-246 or tecovirimat

Tecovirimat (initially known as ST-246) (Fig. 2) was first reported in 2005 as an inhibitor of 

extracellular virus formation, and it protected mice from multiple orthopoxviruses including 

VACV, MPXV, camelpox, cowpox, mousepox, and VARV74. The G277C resistance 

mutation that emerged in the cowpox V061 gene suggested that ST-246 targeted the 

V061 gene74, an ortholog of F13L (VACV) and C19L (MPXV). F13L and C19L have 

phospholipase activity75, are palmitylated76, and participate in enveloping the intracellular 

MV to generate extracellular EV particle77, 78.

Tecovirimat is the most characterized among three poxvirus antivirals (CDV, BCV and 

ST-246). Its efficacy against MPXV infection has been tested in cell culture79–81, and animal 

models82–85 including non-human primates86–89. ST-246 showed strong inhibitory activity 

with good pharmacokinetics in all models (reviewed by Duraffour et al.90, and by Smee91). 

In vitro potency of tecovirimat (IC50 = 12.7 nM) was recently reported in cell-based assays 

using MPXV/France/IRBA2211i/2022 isolate92. Tecovirimat showed a synergistic effect 
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when combined with BCV82. Co-administration of tecovirimat and vaccine ACAM2000 

suggested that tecovirimat can be safely used after vaccination93.

Tecovirimat resistance mutations have been identified in F13L and its orthologs in 

different orthopoxviruses74, 94. Seven resistance mutations (F25V, H194N, G277C, D283Y, 

A290V, L315M , and I372N) and an insertion of an SVK triplet at positions 303–305 

have been reported94. Most of these resistance mutations emerge in combination with 

other mutations94. Two resistance mutations, A290V, and L315M, were identified by next-

generation sequencing of a clinical isolate obtained from an immunosuppressed patient with 

progressive vaccinia who received ST-246 and vaccinia immune globulin intravenous and 

BCV94, 95.

The structure of F13L or its orthologs has not been solved. However, a homology-derived 

model of MPXV C19L using the crystal structure of Phospholipase D from Streptomyces 
sp. as a template (PDB entry 1V0W)96 shows that there is only one pocket in Streptomyces 
sp. Phospholipase D or in the C19L homology model, where tecovirimat can be docked 

with a minimal conformational change in the protein. The best docked pose obtained 

based on the ‘Glide’ score (Schrödinger LLC, NY) is shown in Fig. 5. Most of the 

resistance mutations are around the docked tecovirimat. Three mutations emerged in the 

2022 outbreak: V5A, S250N, and E353K (our unpublished results). The selection pressure 

of these mutations remains unknown. One of these mutations, S250N is in the vicinity 

of docked tecovirimat (Fig. 5). It is possible that S250N may impart some resistance to 

tecovirimat. A prodrug of tecovirimat, NIOCH-14 has been reported to have comparable 

efficacy in animal model97–99.

4. Efficacy of CDV, BCV, and tecovirimat against currently circulating 

MPXV

The FDA has not approved CDV for treating MPXV infections. Instead, it has been 

approved for cytomegalovirus retinitis in HIV-infected patients. However, CDV has shown 

antiviral activity against molluscum contagiosum in HIV-infected patient100. BCV has been 

approved for smallpox treatment as an oral drug. The efficacy studies of these drugs 

against currently circulating MPXV viruses are limited. In a recent report, the efficacy of 

CDV, BCV and tecovirimat was evaluated using 12 patient isolates in relevant cell models 

(human foreskin fibroblasts and human foreskin keratinocytes)101. The IC50 of tecovirimat, 

cidofovir, and brincidofovir was 4000 nmol, 80 μmol, and 600 nmol, respectively101, and 

were reportedly within the range of therapeutic concentrations in plasma101. In another 

study, the plaque formation assay was used to evaluate the potency of tecovirimat, and 

CDV using a patient isolate (MPXV/France/IRBA2211i/2022). The results showed that 

tecovirimat IC50 was 12.7 nM whereas CDV IC50 was 30.4 μM, suggesting that tecovirimat 

was ~2400-fold more potent than CDV. This difference in Mpox inhibition92 does not 

corroborate with the results of Bojkova et al.101, where CDV is only 80-fold less potent than 

tecovirimat.
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5. Efficacy of CDV, BCV, and tecovirimat MPXV in the context of HIV co-

infection

Clinical studies have shown a significant prevalence (20% - 74%) of MPXV infection 

among HIV-infected patients102–109. Additionally, most (95% – 98%) MPXV infections 

among these clinical studies involved men with sex men (MSM) and bisexuals, suggesting 

that MSM and bisexual individuals may be highly susceptible to MPXV infection. 

Therefore, an MPXV treatment strategy for this group of individuals must be in place. 

CDV has broad-spectrum antiviral activities110, 111. However, only a few studies have been 

reported where orthopoxvirus infections have been treated with CDV, BCV and tecovirimat 

as described below. Early studies demonstrated that lipid esters of CDV (including BCV) 

were effective as prophylaxis in mice infected with cowpox or vaccinia virus112. CDV 

treatment cleared recalcitrant molluscum contagiosum, a poxvirus, in an AIDS patient100. 

Recently, a patient coinfected with HIV, MPXV, and primary syphilis was successfully 

treated with CDV113. There are a few examples of successful MPXV treatment by 

tecovirimat among patients coinfected with MPXV and HIV114, 115. One report showed 

that one of the two patients (Patient A) coinfected with HIV and ocular MPXV infection 

suffered profound visual impairment despite treatment with tecovirimat115. In contrast, the 

other patient (Patient B) recovered from the ocular MPXV infection after treatment with 

tecovirimat115. It is unclear why CDV or BCV was not prescribed to Patient A. In a 

28-year-old patient infected with HIV and MPXV, the treatment with tecovirimat for 14 

days resulted in decreased skin lesions and decreased MPXV viral load without any adverse 

events114.

6. Summary

Here we presented our opinion on the feasibility of EUA-granted antivirals for the treatment 

of MPX. We discussed the impact of resistance mutations to these antivirals, the probable 

effect of signature mutations in the 2022 outbreak on the antiviral targets at the atomic 

level, the potency of these antivirals on currently circulating MPXV, and the latest results 

on the outcomes of EUA-granted MPXV treatments in the cases of MPXV and HIV 

co-infections. The limited number of clinical trials show that all three drugs: CDV, BCV, 

and tecovirimat appear to have good efficacy against currently circulating MPXV viruses. 

Future clinical results will provide a clearer picture of the antiviral activities of these 

compounds. It is almost certain that resistance mutations will emerge as the treatment 

becomes widely available or the population that has received treatment becomes significant. 

Since the resistance mutations of the three drugs have been evaluated in MPXV-related 

poxviruses, analogous mutations in MPXV can also be reasonably deduced. However, new 

resistance mutations may emerge as the current MPXV circulates among various conditions, 

including HIV infected/immunocompromised patients. An additional challenge is that only 

three currently available anti-MPXV drugs (as access to NIOCH-14 is limited). Therefore, 

more drugs targeting F8L and C19L are needed for the current outbreak or for possible 

future outbreaks with variants of MPXV. Thus, broad-spectrum inhibitors such as cytosine 

arabinoside (ara-C, also known as cytarabine) and 9-β-D-arabinofuranosyladenine (ara-A) 

that have shown antiviral activities should also be considered116. Due to the reported high 
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prevalence of MPX among MSM and bisexual individuals, individuals from this community 

must be advised to adopt safe practices and treatment strategies to control the spread of 

MPXV118.
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Article highlights

1. The 2022 Mpox outbreak and the volume of infections showed that 

poxviruses remain a constant threat to global health. Signature mutations 

in currently circulating Mpox viruses (MPXV) may be contributing in 

unknown ways to the outbreak. Therefore, the role of these mutations in viral 

replication needs to be established.

2. There are no Mpox-specific treatments available. Limited studies indicate that 

the treatments that have been granted emergency use authorization (EUA) 

have good efficacy against MPXV. However, additional, and more robust 

studies are needed to establish the potency of these drugs against MPXV.

3. Nucleic acid polymerases are the most sought-after antiviral targets. 

Considering their essential role in virus replication, research to discover 

poxvirus DNA polymerase inhibitors is needed. Additionally, other 

components of viral DNA replication holoenzyme, such as DNA helicase, 

should be extensively characterized so that new antivirals can be developed 

against such targets.

4. The current MPXV was most prevalent among a specific group of individuals 

(men who have sex with men, and bisexuals). Many of these individuals are 

coinfected with HIV and MPXV. Therefore, drugs targeting MPXV and HIV 

coinfection need to be developed.
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Figure 1. Replication cycle of MPXV and steps targeted by CDV, BCV and tecovirimat
– The orthopoxviruses enter the cell either directly by binding to the cell surface receptors 

or through micropinocytosis. Following fusion, the core containing linear dsDNA genome 

and proteins required for early transcriptions are released into the cytosol. The replication 

of the dsDNA genome at this step serves as the template for intermediate and late gene 

transcription. CDV and BCV target the replication of the dsDNA genome. Late proteins and 

viral genomes assemble to form the MV. Some MVs acquire trans-Golgi and/or endosomal 

membranes to become triple-membrane-wrapped particles. The membrane biogenesis is 

mediated by the orthopoxvirus phospholipase protein (e.g., MPXV C19L), which is targeted 

by tecovirimat. The wrapped virions are transported to the cell surface, where the outer 

membrane fuses with the plasma membrane, and the virion is released as an EV.
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Figure 2. 
Chemical structures of CDV, BCV, and tecovirimat.
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Figure 3. The topological position of CDV/BCV resistance mutations in MPXV F8L
– Panel a shows Cα trace of F8L structure and topological position of the CDV/BCV 

resistance mutation positions in 3’ – 5’ exonuclease domain (purple), and subdomains 

fingers (blue), thumb (green) and palm (dark pink). The N-terminal domain of F8L is 

colored orange. The Cα atom of the resistance mutation residues is shown as a solid 

sphere. This structure was generated by homology modeling using a recently reported 

cryo-EM structure of MPXV holoenzyme40 (PDB entry 8HG1) as a template structure with 

Modeller117. Mg2+ and D549 represent the polymerase active site of F8L, whereas D268 

represents 3’ – 5’ exonuclease active site. Panel b shows the resistance mutation position 

314 on a β-hairpin located in the major groove of the template (light pink) and primer 

(yellow). Panel c shows the resistance mutation positions 684 and 688 and critical amino 

acids near these residues. The CDVpp was modeled using the dNTP substrate in PDB entry 

8HG1. It is clear from this figure that the dNTP binding residues are in the proximity 

of resistance mutation positions 684 and 688. The α-helices and β-sheets are rendered as 

ribbons in panels b and c.
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Figure 4. The topological position of signature mutations emerged in the 2022 outbreak in 
MPXV F8L
– Panel a depicts the signature mutation W411L in the poxvirus-specific ‘insert 2’ (rendered 

as forestgreen ribbons). The relative position of the 3’- 5’ exonuclease site (D268) is also 

a reference. Panel b shows that the 2022 MPXV signature mutation L108F (ball-and-stick) 

within the N-terminal domain (represented as orange ribbons) stacks against the template 

base as seen in the cryo-EM structure of MPXV DNA replication holoenzyme (PDB entry 

8HG1).
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Figure 5. Docked tecovirimat in the homology-derived molecular model of C19L
– This figure shows the most favorable docked pose of tecovirimat in the modeled structure 

of MPXV C19L phospholipase rendered as ribbons in cyan (N-terminal domain) and 

green (C-terminal domain). This figure also shows tecovirimat resistance mutation positions 

(in magenta balls-and-sticks) and signature mutations that emerged in the 2022 outbreak 

(in orange balls-and-sticks). Most of the tecovirimat resistance mutations are close to 

tecovirimat. The red loop represents the SVK triplet insertion at positions 303–305.
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Table 1.

Potential MPXV Therapeutic targets.

Proteina VACV MPXV Essential

Replication

 DNA polymerase E9L F8L Yes

 Helicase–primase D5R E5R Yes

 UDG D4R E4R Yes

 Processivity factor A20R A22R Yes

 Protein kinase B1R B3R Host-dependent

 SSB I3L I3L Yes

 DNA ligase A50R A50R Host-dependent

 FEN1-like nuclease G5R G5R Impaired

a
SSB – single strand DNA binding protein

UDG – Uracil DNA glycosylase
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