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Abstract

Complex statistical methods are continuously developed across the fields of ecology, evolution, 

and systematics (EES). These fields, however, lack standardized principles for evaluating methods, 

which has led to high variability in the rigor with which methods are tested, a lack of clarity 

regarding their limitations, and the potential for misapplication. In this review, we illustrate the 

common pitfalls of method evaluations in EES, the advantages of testing methods with simulated 

data, and best practices for method evaluations. We highlight the difference between method 

evaluation and validation and review how simulations, when appropriately designed, can refine the 

domain in which a method can be reliably applied. We also discuss the strengths and limitations of 

different evaluation metrics. The potential for misapplication of methods would be greatly reduced 

if funding agencies, reviewers, and journals required principled method evaluation.
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1. INTRODUCTION

The fields of ecology, evolution, and systematics (EES) have been revolutionized by 

advances in computation, data storage, sampling technology, and genomics over the 

last thirty years. With these advancements, biologists can address increasingly complex 

questions spanning topics from genes to ecosystems. The big data that result from these 
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inquiries increasingly are being analyzed using novel and often complex statistical methods. 

However, methods often see usage beyond their intended application and before their 

behavior is fully understood.

Method:

a statistical model, machine learning algorithm, and/or pipeline that is used in hypothesis 

testing, model selection, prediction, and/or forecasting

New methods are constantly being developed because, as scientists, we seek tools that 

accommodate the complexities of the real world. The vast variety of life forms and 

ways of studying them (and funding constraints) often result in nonrandom experimental 

designs (e.g., block designs or stratified sampling) and/or nonindependence in the data 

that must be accounted for in statistical analyses. Even random sampling designs may 

have nonindependence, due to spatial and/or temporal autocorrelation, as well as shared 

eco-evolutionary history among species, populations, individuals, and genes. New methods 

are also being developed to better account for nonlinearities and interactions, which are 

common in biological data sets, and machine learning increasingly is being applied to deal 

with these unique challenges (Lucas 2020, Schrider & Kern 2018). For these reasons, EES 

are emerging as fields in which knowledge of statistics is as important as knowledge of 

natural history so that methods can be reliably applied to complex data sets (Austin et al. 

2006). However, proper application of methods and interpretation of the inferences they 

provide requires rigorous evaluation to fully understand the methods’ behavior, strengths, 

and limitations.

Nonrandom:

samples were not collected with equal probability

Nonindependence:

samples are related in some way (e.g., via evolutionary history, ecological interactions, 

spatial or temporal proximity)

Inference:

a conclusion reached on the basis of evidence and reasoning

Evaluation:

a quantitative comparison of how well one or more methods perform on different data 

sets and/or relative to each other
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1.1. Evaluation Versus Validation

The goal of method evaluations is to quantify the reliability of methods in different 

scenarios. In comparing and testing methods, the terms evaluation and validation are often 

used interchangeably, but they are not the same. Evaluation is the process of assessing 

method(s) on ground-truth data set(s). Ideally, method evaluation is based on simulated data 

that capture the complexities of empirical data, as well as simulated data that are generated 

from alternative processes that have the potential to confound the method (Figure 1). The 

result of a successful evaluation is an understanding of the strengths and limitations of the 

method(s).

Validation:

providing a body of evidence that a method meets a set of a priori criteria for a specific 

real-world application

Ground-truth data set:

information that is known to be real or true, provided by direct simulation (in silico) or 

measurement (in situ)

Validation, however, is the process of determining the degree to which a method provides 

accurate inference about the real world based on the intended uses of the method (AIAA 

1998). The best model in an evaluation study may still have high error rates or low 

predictability for a particular situation. In other words, the best model may still be worse 

than no model at all. The result of a successful validation is an understanding of how well 

the method is expected to perform for a specific application or data set (Figure 1). Thus, 

important components of validation are the a priori designation of the minimum criteria a 

method should meet for a specific application and a quantitative evaluation of whether the 

method achieves these criteria (Natl. Res. Counc. 2012).

1.2. Why Test Methods with Simulations?

In this review, we illustrate common pitfalls of method evaluations in EES, the advantages 

of testing methods with simulated data, and the role of carefully planned evaluations in 

preventing the misuse of faulty methods. Testing methods with simulations offers a powerful 

approach because the true underlying process that generated the data is known (Lotterhos 

et al. 2018, Zurell et al. 2010). Much can be learned about black-box methods just by 

looking at what data go in and what results come out (Bergstrom & West 2021, Lucas 

2020). Simulations also have the benefit of conducting many replicate experiments in 
silico when traditional experiments may be more timely and costly or impossible. For 

example, Felsenstein (1985) used simulated data to illustrate the failure of traditional 

statistical approaches and to evaluate a new method, phylogenetic independent contrasts, 

that could account for phylogenetic relationships among data points. This application of 

simulations not only revealed the reason that an existing method failed but also catalyzed the 

development of phylogenetic comparative methods for decades.

Lotterhos et al. Page 3

Annu Rev Ecol Evol Syst. Author manuscript; available in PMC 2023 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. METHODS IN EVOLUTION, ECOLOGY, AND SYSTEMATICS: A 

CONSTANTLY SHIFTING LANDSCAPE

2.1. Methods Developed First, Broken Later

Now, here, you see, it takes all the running you can do, to keep in the same place.

—The Red Queen, Through the Looking Glass by Lewis 

Carroll

New methods that seem to do the same thing as existing methods—but have nuanced 

differences that may be critically important—are being developed constantly. For example, 

as of 2019, over 400 methods were available to analyze single-cell RNA sequencing 

data (Weber et al. 2019). Here, we illustrate the constantly shifting landscape of methods 

development, application (approximated as citation rate), and evaluation on three categories 

of widely used methods in EES: genome scans for local adaptation via outlier tests for 

genetic differentiation (Hoban et al. 2016), tests of differential diversification in systematics 

(Ng & Smith 2014), and species distribution models (SDMs) in ecology (Elith & Leathwick 

2009) (for detailed methods, see Supplemental Methods). For each category, we plotted 

citation rates for different methods relative to when one or more highly cited evaluation 

study was published (Figure 2).

Species distribution models (SDMs):

empirical models that relate species occurrences to environmental predictor variables to 

understand and predict species distributions across space and time

These three scenarios illustrate different dynamics between method development, 

application, and evaluation. For example, in the category of outlier tests for genetic 

differentiation, a method called FDIST and its extensions (LOSITAN) was widely used 

for ~15 years, until four evaluations between 2010 and 2014 (Lotterhos & Whitlock 

2014, Narum & Hess 2011, Pérez-Figueroa et al. 2010, Whitlock & Lotterhos 2015) used 

simulations to show that the algorithm had high false positive rates under more realistic 

species demographies. The citation rates for FDIST and LOSITAN started to decrease 

between 2015 and 2020 (Figure 2a). Likewise in systematics, a method called BiSSE was 

widely used for ~5 years before a 2015 evaluation of state dependent diversification methods 

(Rabosky & Goldberg 2015) demonstrated that BiSSE had an inflated false positive rate 

because it frequently chose the most complex model among all models considered (Figure 

2b). This led to an increase in the use of alternatives like BAMM and HiSSE, which do not 

suffer from this shortcoming (Figure 2b) (Beaulieu & O’Meara 2016). For SDMs, use of 

a method known as MaxEnt (Phillips & Dudík 2008) exploded in part due to its favorable 

performance in a large model evaluation study (Elith et al. 2006) and its implementation 

in a user-friendly software interface (Figure 2c). These examples demonstrate that although 

methods are constantly being developed, evaluation studies can lead to decreased citation 

rates for poorly performing methods and increased citation rates for highly performing 

methods, which reflects the frequency with which the method is used. There is, however, 
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typically a several-year lag between the publication of an evaluation and any change in 

citation rate.

2.2. Pitfalls in Developing Methods

Different (not mutually exclusive) hypotheses may explain the shifting landscape of methods 

development and use. On one hand, the scientific process itself is cyclical: As hypotheses are 

tested, the outcomes lead to new hypotheses to test. On the other hand, if new methods 

are not rigorously evaluated when they are first developed, they can become widely 

used for some time until their limitations are known, after which they fall out of use. 

Published studies comparing a new method to existing methods may be (intentionally or 

unintentionally) biased in favor of the new method (Boulesteix et al. 2017, 2018; Weber et 

al. 2019).

A number of pitfalls can occur during method development that result in a biased evaluation. 

For example, rather than using ground-truth data sets, it is not uncommon for methods to be 

evaluated using only empirical data (as in Elith et al. 2006) (Figure 2c) or simulations that 

align with the assumptions of the method (which leads to verification rather than evaluation 

or validation) (Natl. Res. Counc. 2012). An extension of the latter case is subjectivity in the 

choice of simulated (or empirical) data sets that are used to test the proposed method, which 

results in bias in favor of the proposed method (Weber et al. 2019). Other common pitfalls 

result from familiarity with the proposed method (when the developer tunes the parameters 

for the proposed method but uses default parameters for the other methods) and subjectivity 

in the choice of evaluation metrics used to compare methods, both of which can bias results 

in favor of the proposed method (Weber et al. 2019).

Verification:

process of determining how accurately a computer program correctly implements the 

equations of the mathematical or statistical model

Once a method is published, it becomes available for application, and if the assumptions 

and limitations of the method—and how to determine them—are not well described, then 

the method could be applied incorrectly. There are unquantified costs associated with the 

improper use of methods, such as conducting analyses to understand why changing a 

method led to a different result on the same data set, conducting assays to confirm results, 

and in worst case scenarios, using erroneous results to guide decision-making in health or 

conservation contexts.

3. GOALS IN TESTING METHODS

Every algorithm, no matter how well it performs generally, may have an Achilles’ 

heel—some weakness that will cause it to stumble when faced with a certain 

problem.

—Natl. Res. Counc. (2012, p. 24)
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The lack of standards in EES for method evaluations creates challenges for researchers who 

seek to apply methods to their data. These challenges share the common question of whether 

the user is making the correct inference based on the method output. Here, we review four 

common challenges that arise when applying methods to data, and the associated goal of 

method evaluation that is important for addressing each challenge (Table 1), with examples. 

To illustrate how method evaluations have helped to achieve these goals, we reviewed 37 

evaluation studies in EES (Supplemental Table 1).

3.1. Challenge #1: How Does One Know if Applying a Given Method to the Data Gave a 
True Result in a Hypothesis Test?

In the null hypothesis statistical framework, one tests the probability of obtaining the data, 

given a null hypothesis. Accurate results of a null hypothesis test depend on whether the data 

meet the assumptions of the method. A major goal when testing methods is to determine the 

frequency with which a method returns a true positive or false positive result (Table 1).

This is a common goal in the evaluation of genome scan methods, which are statistical tests 

that are used to determine the genetic basis of a trait or detect selection in sequence data. In 

this case, simulations have been used to evaluate how the degree of adaptation, population 

demography, recombination, admixture, and sampling design affect error rates in genome 

scans (Capblancq et al. 2018; Forester et al. 2018; Lotterhos 2019; Lotterhos & Whitlock 

2014, 2015; Luu et al. 2017) (Supplemental Table 1). For example, Forester et al. simulated 

genomes under selection by different types of spatial heterogeneity and used these data sets 

to compare univariate and multivariate methods for detecting selection (Forester et al. 2016). 

They showed that multivariate methods had lower false positive rates, but also lower power, 

than univariate methods (Forester et al. 2016).

SDMs also are frequently evaluated for their ability to discriminate presence from 

nonpresence (i.e., true absence, pseudoabsence, or background data). In one such study, 

Qiao et al. (2015) tested 8 SDM algorithms using 14 virtual species simulated with different 

niches in environmental space, with and without barriers to dispersal in geographic space. 

They found that no single algorithm performed best in all instances, with performance 

depending on the particular traits of the virtual species being modeled.

3.2. Challenge #2: Is the Prediction from This Method Accurate and Precise?

Methods are used to make predictions in a variety of ways, ranging from parameter 

estimation on a biological process [e.g., branch length estimation in phylogenetic trees 

(Brown et al. 2010)] to the development of a model that predicts response variable(s) from 

explanatory variable(s) [as in statistics and machine learning (Lucas 2020)]. For methods 

like SDMs that are routinely used to inform management decisions, it is especially important 

to determine whether models assign the correct probabilities to a given outcome (Chivers et 

al. 2014). Thus, another goal of testing methods is to quantify the bias and precision of a 

method prediction (Table 1).

This is a common goal of methods that estimate population parameters (such as population 

size, niche breadth, or recombination rate) or individual values (such as fitness or a trait 

value). For instance, the threshold model for discrete character evolution estimates an 
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unmeasured continuous trait value that leads to the observed discrete trait. In implementing 

this method, simulations provided ground-truth data sets for which this unobserved value 

was known, and this allowed for an evaluation of the method that would otherwise be 

impossible (Revell 2014).

This challenge also extends to the Bayesian model selection framework. For instance, 

phylogenetics methods seek to accurately infer the posterior probabilities for the correct 

tree topology among a number of hypothesized topologies. The Bayesian star tree paradox 

occurs when (informative) data with many nucleotides lead to an inaccurate phylogenetic 

tree with a high posterior probability, while (uninformative) data with a single nucleotide 

lead to accurate posterior probabilities for a set of hypothesized trees (Lewis et al. 2005). 

This result was paradoxical because the performance of methods is expected to improve 

with the use of a larger number of nucleotides. Simulations have been used to show that 

the paradox occurred because the true tree from which data were generated was not among 

the hypotheses being considered in the Bayesian analysis and to demonstrate how better 

algorithms can lead to more accurate results (Lewis et al. 2005).

3.3. Challenge #3: Equifinality: Did the Pattern in the Data Result from a Process Other 
Than the Process Originally Assumed?

Research in EES often aims to infer the process(es) responsible for a given pattern based 

on statistical analysis of that pattern alone. This can be challenging because a number of 

different processes can result in the same pattern in the data (Dormann et al. 2012, Oreskes 

et al. 1994). This is known as the problem of equifinality, which can confound method 

evaluation, for example, when several parameterizations of the model are statistically 

unidentifiable (many parameter estimates produce an equally good fit to the data) (Dormann 

et al. 2012). Thus, another goal of testing methods is to develop an understanding of 

confounding factors, hidden variables, and other processes that could change the inference 

of the underlying phenomenon (Table 1).

Equifinality:

when several parameterizations exist that equally fit a given data set (also known as 

nonidentifiability)

The use of simulations can help to identify these confounding processes and demonstrate (or 

rule out) equifinality, which can lead to more realistic interpretations of empirical data. In 

phylogenetics, Louca & Pennell (2020) used simulations to show that when diversification is 

correlated with fluctuating environments, a single phylogenetic tree can be consistent with a 

myriad of diversification histories (Supplemental Table 1). In ecological genomics, empirical 

studies have found a negative relationship between population size and a machine-learning 

prediction of genomic vulnerability, which was inferred to be driven by signals of selection 

in the genome (Bay et al. 2018, Ruegg et al. 2018). However, a simulation study showed that 

neutral demographic processes resulting from genetic drift could produce the same pattern 

(Láruson et al. 2022), illustrating that the empirical observation may not have been driven by 

the process of selection, as was first inferred (Supplemental Table 1).
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Another example comes from the use of so-called joint SDMs that infer signals of biotic 

interactions from residual covariation between species (Ovaskainen et al. 2017). Patterns 

of residual covariation in joint SDMs could also arise from statistical artifacts related to 

missing environmental covariates or poor model fit. In a simulation study, whether residual 

covariation from joint SDMs reflected biotic interactions depended on the spatial scale, 

prevalence of the modeled species, the nature of the interaction between species, and other 

factors (Zurell et al. 2018) (Supplemental Table 1).

3.4. Challenge #4: Were Correct Decisions Made When Designing the Experiment, 
Filtering Data, or Choosing a Method?

Inferences gained from research in EES are also sensitive to the numerous nuanced decisions 

made when designing experiments and analyzing data. Failing to detect an effect in a 

study (e.g., a nonsignificant result) raises questions about whether there truly was an effect 

and whether the experimental design had enough power to detect an effect. Thus, the 

fourth major goal of testing methods is to illustrate best practices for the scientific method, 

including experimental design and data filtering steps, among other nuanced decisions 

(Table 1).

Simulation studies have been useful for evaluating nuanced decisions. For example, 

simulations have been used to show that experimental designs in ecology with many 

levels and fewer replicates per level (but that were not necessarily fully factorial) can yield 

accurate parameter estimates while also requiring less experimental effort (Blanquart et al. 

2013, Cottingham et al. 2005, Inouye 2001) (Supplemental Table 1). Simulations are also 

becoming commonplace for evaluating SDMs and the numerous methodological decisions 

that go into fitting such models (Meynard et al. 2019). One consequential decision often 

encountered when fitting SDMs is determining how, where, and how many pseudoabsences 

(also known as background data in certain contexts) should be generated to build reliable 

models. Several studies have used simulations to inform selection strategies and have shown 

that the best approach depends on the nature of the occurrence data, study region, and 

statistical algorithm being used to fit SDMs, among other factors (Barbet-Massin et al. 2012, 

Liu et al. 2019, Lobo & Tognelli 2011).

Method evaluations using simulations have also played an important role in genomic 

research that requires a large number of choices at each step in the pipeline. For example, 

simulations have been used to illustrate how (a) bias in allele frequencies arises from the 

way tissue was prepared for sequencing (Arnold et al. 2013, Flanagan & Jones 2018, Gautier 

et al. 2013), (b) sequencing depth can influence error rates from different sequencing 

platforms (Harismendy et al. 2009), (c) bias in genetic diversity statistics is generated 

from de novo transcriptome assembly (Freedman et al. 2021, Hölzer & Marz 2019), and 

(d) failure to filter data properly for linkage disequilibrium can lead to false positive 

results in genome scans for selection (Lotterhos 2019) (for details on these simulation 

studies, see Supplemental Table 1). Simulations are critical for determining the context and 

boundaries within which data interpretations are valid, as well as providing guidance on 

decision-making for research.
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4. PRINCIPLED METHOD EVALUATION AND VALIDATION FOR 

EVOLUTION, ECOLOGY, AND SYSTEMATICS

While a mathematical understanding of the algorithms involved in a method can provide 

a conceptual understanding of its pitfalls and how it could lead to false inference, it is 

not essential. However, it is essential that simulations be carefully designed to ensure the 

simulated data provide a proper test of the variety of applications that a method may 

encounter. This includes considering which features of the data may confound a method and 

what kind of processes could lead to similar patterns in data.

4.1. Phase I: Plan Development

The first phase in a simulation study is to develop a conceptual plan that describes the 

problem to be addressed. Based on the assumptions of the methods or the way they are 

parameterized, it should be possible to hypothesize a domain of applicability that delineates 

the specific situations and data sets to which that method can be applied (sensu Natl. Res. 

Counc. 2012). For example, Zurell et al. (2009) simulated a spatially explicit multi-species 

dynamic population model with range shifts and tested how well SDMs predicted the 

simulated changes in species distributions. They found that some SDMs could accurately 

forecast range shifts when species were able to rapidly track climate change (via long-

distance dispersal, a slow rate of climate change, and/or a range contraction rather than 

shift), which helped to define the domain of applicability for SDMs in forecasting range 

dynamics (Zurell et al. 2009) (Supplemental Table 1).

Domain of applicability:

a region of a domain space in which a method returns acceptably accurate results

We also postulate that a domain of inference (what could be inferred from the method 

output) should be hypothesized. For example, a horseshoe pattern in a principal components 

analysis of microbial data was commonly inferred to be a statistical artifact for which a 

correction should be applied (Morton et al. 2017). However, Morton et al. (2017) showed 

with simulated data that the horseshoe pattern could be caused by niche differentiation along 

an ecological gradient, which altered the domain of inference (Supplemental Table 1).

Domain of inference:

the processes that can be deduced or concluded from a method based on evidence and 

reasoning

These domains should be informed by the goal of the methods to be evaluated (Table 1). 

Once these domains are hypothesized, the next step is to brainstorm ways to challenge 

the methods with adversarial data sets (sensu Molnar 2021) that will help to define these 

domains and also capture biological realism inherent in the empirical data that the methods 

may encounter in the future. In machine learning, the term adversarial is commonly used 

to describe challenging data sets that substantially degrade performance and thereby help 
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determine the domain of applicability (Hendrycks et al. 2021, Molnar 2021). Here, we use 

adversarial to refer to data sets that capture the extreme characteristics of data that users 

may choose to analyze with a given method, although they might not cause performance to 

degrade.

Adversarial data sets:

data sets that challenge a method because they capture the extreme characteristics of data 

that might be used in a method

4.2. Phase II: Simulation

The second phase in a simulation study is to create a set of ground-truth data sets that will 

be used for evaluating methods. How to construct simulations from a biologically reasonable 

description of the system has been reviewed elsewhere (Otto & Day 2011, chapter 2). 

Here, we review helpful techniques for focusing the simulations in the face of real-world 

complexity by using contrasting cases or response surface designs and by simulating signals 

on real data.

4.2.1. Contrasting cases.—Contrasting cases are a set of simulations that differ 

in important ways that may challenge methods, but these cases avoid confounding by 

controlling for important features of the data. As an example of contrasting cases, Lotterhos 

& Whitlock (2014) contrasted the performance of genome scans to identify outliers for 

the metric FST, which describes the degree of genetic differentiation between two or more 

populations at a locus. Spatially divergent selection can cause affected loci to have larger 

values of FST than the genome-wide background, and outlier identification can be used to 

discover the genetic basis of local adaptation. They used simulations that had the same mean 

FST but different variance in FST, which was created by different demographies (Figure 

3a). Importantly, to create data sets with the same mean FST, they did not use the same 

dispersal or deme size among demographies (Lotterhos & Whitlock 2014). A challenge with 

contrasting cases is to determine which features of the data to control for. While many 

of the method evaluations in our review fit into the category of using contrasting cases 

(Supplemental Table 1), few described whether features of the data were controlled for in 

different scenarios.

4.2.2. Response surface designs.—In the absence of prior knowledge on the 

simulation behavior across a range of input parameters, a simple rule of thumb is to 

explore as much of the input region as possible. Different approaches to response surface 

designs include sequential designs (Ranjan et al. 2008), Latin hypercube designs (McKay 

et al. 1979), and variants thereof (Lin et al. 2010, Tang 1993). In the context of statistical 

sampling, a Latin square contains one simulated data set in each row and each column, 

while the rows contain different levels of one parameter and the columns contain different 

levels of a second parameter (Figure 3b). A Latin hypercube maintains these criteria in many 

dimensions and allows the parameter space to be covered at a reduced effort compared to 

fully factorial designs.
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In our literature review, sequential designs, in which several values of each parameter 

are simulated, were the most used type of response surface design (Supplemental Table 

1). For example, Liu et al. (2019) generated virtual species at three levels of prevalence 

(the proportion of sites occupied) and then fit ten different SDM algorithms to these 

virtual species using a varying number of training presences and pseudoabsences. They 

showed that the number of pseudoabsences that maximized model performance depended 

on the modeling technique, species prevalence, and the number of training presences 

(Supplemental Table 1). In general, Latin hypercube designs are rarely used in EES research 

(but for recent examples, see Mellin et al. 2016, Santini et al. 2021), indicating that existing 

packages for experimental design in both R (Carnell 2021) and Python (Lee 2015) could 

be leveraged for this purpose. A caveat with response surface designs is that changing a 

single parameter may affect multiple features of the data in a way that is confounding to 

the analysis (e.g., if migration rate is increased, both the mean and the variance of the FST 

distribution change).

4.2.3. Simulating on real data.—Simulating signals on real data has the advantage of 

capturing features of the data, such as nonindependence among samples, that are difficult 

to model. For example, signals of selection can be simulated on landscape genomic data 

by generating allele frequency shifts on real data as a function of fake environments (e.g., 

Berg & Coop 2014), by simulating data using an observed covariance structure among 

populations (e.g., Gautier 2015), or by drawing from posterior estimates of demographic 

parameters from empirical data (e.g., Harris et al. 2018) (Supplemental Table 1). Similarly, 

trait values can be simulated on empirically inferred phylogenies and used to investigate 

methods in phylogenic inference (Figure 3c) (Rabosky & Goldberg 2015) (Supplemental 

Table 1). While we recommend that this technique is employed whenever possible, also note 

that there can be subjectivity and bias in the way signals are generated.

4.3. Phase III: Evaluation

In the evaluation phase, each method is evaluated across different simulations and possibly 

compared to other methods. The metrics that are used in evaluation depend on the type of 

data used for ground truth, the type of metric output by the method, and the goal of the 

method evaluation.

4.3.1. Evaluation metrics: discrimination for binary classification.—Many 

methods output a statistic that represents the strength of evidence for a specific hypothesis 

(the signal, e.g., P value, Bayes factor, or similar probability). Hypothesis testing is often 

based on a binary classification (e.g., null hypothesis rejected or not; comparison of one 

hypothesis to another, as in Bayes factors; species present or absent, as in an SDM). In 

this case, we wish to evaluate the performance of the method in its ability to discriminate 

between true positives (which should have the most extreme signals) and true negatives 

(which should have the least extreme signals). Although true positive rates, false positive 

rates, and false discovery rates are commonly used to evaluate binary classifiers, these 

metrics depend on arbitrary thresholds. For this reason, the performance of methods is best 

compared using threshold-independent metrics, most notably the area under the precision-

recall curve (AUC-PR) and the area under the receiver operating characteristic curve (AUC-
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ROC) (Davis & Goadrich 2006). AUC-PR is based on a plot of precision (the proportion 

of positive hits that are true positives) on the y-axis versus true positive rate (sensitivity or 

recall) on the x-axis. AUC-ROC is based on a plot of true positive rate (recall) on the y-axis 

versus false positive rate on the x-axis.

We illustrate the differences between AUC-PR and AUC-ROC in Figure 4, which compares 

four hypothetical methods (the Perfect Method, Good Method A, Good Method B, and the 

Poor Method) applied to an imbalanced data set with 10 positive cases and 90 negative cases 

(e.g., 10 loci affected by selection and 90 neutral loci in a genomics data set, or 10 species 

presences and 90 species absences in an SDM). Note that here we use positive cases and 

negative cases to refer to the true state—not the test result. In both analogies, outcomes with 

the highest signals output by a method (e.g., top hits) are inferred to be positive cases. The 

Perfect Method correctly ranks all 10 positive cases as having the highest signals and has 

an AUC-PR and AUC-ROC of 1 (Figure 4). In contrast, the Poor Method randomly ranks 

positive cases among negative cases and has an AUC-PR of 0.1 and an AUC-ROC of 0.55 

(an AUC-ROC of 0.5 is expected by chance) (Figure 4).

Which metric to use depends on the characteristics of the data being tested and the relative 

importance of different types of errors on model evaluation. For imbalanced data, namely 

few positive cases and many negative cases (as in Figure 4), AUC-PR can better capture 

method performance than AUC-ROC. This is because AUC-ROC incorporates false positive 

rates (i.e., negative cases that are falsely inferred to be positive cases), which can remain 

comparatively low when negative cases far outnumber positive cases (Fawcett 2004, Saito 

& Rehmsmeier 2015, Sofaer et al. 2019). Although AUC-ROC remains widely used in 

SDM, simulation studies have demonstrated how AUC-ROC can be inflated when analyses 

incorporate a large number of pseudoabsences or background points distributed beyond 

the species range; this led to some methods outperforming others solely due to different 

numbers of background points (Jiménez-Valverde 2012, Sofaer et al. 2019). Sofaer et al. 

(2019) used simulations to show that AUC-PR can be a useful complement to AUC-ROC 

when evaluating model fit using unbalanced data, but suggested that no single evaluation 

metric can fully characterize method performance (Supplemental Table 1).

The advantage of the AUC-ROC score is that it more accurately reflects the costs of 

validation compared to AUC-PR. In the analogy of a genome scan in which each hit would 

be validated with gene editing, the locus with the highest signal (top hit) would be tested 

first, followed by the next highest signal, and so on. Ideally, one would want to discover as 

many true positives (e.g., loci that affect the trait) as possible with the minimum number of 

validation tests. In Figure 4, Good Method A returned five of the ten loci under selection in 

the top six hits, but the remaining five were interspersed with neutral loci. Good Method B 

returned eight of the ten loci under selection in the top 20 hits, but only one of them was in 

the top five hits. Good Method A has a higher AUC-PR than Good Method B, which reflects 

that more of the top hits are true positives for Good Method A compared to Good Method B 

(Figure 4a). However, Good Method B has a higher AUC-ROC than Good Method A, which 

reflects that a greater proportion of true positives would be discovered with a lower number 

of total validation tests for Good Method B compared to Good Method A (Figure 4b; for 

calculations, see Supplemental Appendix 1).
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Our literature review of methods evaluations revealed that the application of AUC metrics 

in EES was highly variable. In the evaluation of genome scans, method performance was 

based more often on arbitrary thresholds of true positive rates, false positive rates, and 

false discovery rates (Supplemental Table 1). In SDM evaluations, AUC-ROC curves have 

been widely applied (despite underlying issues for imbalanced data, as described above), 

but AUC-PR was rarely used. When relevant, requiring both AUC-PR and AUC-ROC for 

publication would increase the rigor of method evaluations.

4.3.2. Evaluation metrics: accuracy.—Accuracy is how close a prediction from a 

method is to the true value. If the goal of evaluation is to determine the accuracy of a 

prediction, the approach depends on the type of data that is used as ground truth and the 

type of prediction made by the method. If the ground-truth data are categorical and the 

method prediction is also categorical, then classification accuracy is typically calculated 

as the proportion of ground-truth classes that fall into each predicted class (Figure 5a). 

For example, machine learning has been used in genomic research to predict the type of 

positive selection that affects different regions of the genome. Schrider & Kern (2016) 

trained a machine learning algorithm to classify the genome into hard sweeps, soft sweeps, 

and neutral regions. However, they evaluated the algorithm with data simulated under an 

equilibrium demography, and when the algorithm was trained with data simulated under 

more realistic demographies (including bottlenecks and migration) the performance of the 

algorithm substantially degraded (Harris et al. 2018) (Supplemental Table 1).

If the ground-truth data are categorical and the method prediction is a probability, the 

accuracy of the method can be assessed in terms of whether the method correctly predicts 

the class probability (Pearce & Ferrier 2000). Methods that predict a continuous probability 

of discrete outcomes are commonly used in SDMs, which calculate the probability that a 

species is present in a particular habitat. In this case, metrics like the Brier score (Brier 

1950) and the recently proposed validation metric applied to probabilistic predictions 

(VMAPP) (Chivers et al. 2014) can be used for accuracy evaluation. The Brier score is 

equivalent to the mean squared error and ranges from 0 to 1, where 0 indicates complete 

agreement between observation and prediction, and 1 indicates complete disagreement 

(Figure 5b), whereas VMAPP is a goodness-of-fit metric that measures the magnitude and 

direction of bias and how bias changes across the prediction range. In contrast, metrics of 

discrimination like AUC-ROC and AUC-PR quantify the ability of the model to correctly 

distinguish between classes (i.e., for SDMs, the extent to which predicted probabilities for 

occupied sites are higher than those for unoccupied sites), regardless of the accuracy of the 

predicted class probability. Given the different insights that assessments of discrimination 

capacity and accuracy provide, model evaluation ideally should consider both of these 

components of predictive performance (Norberg et al. 2019, Pearce & Ferrier 2000). For 

example, Maguire et al. (2016) used both the AUC-ROC and Brier score to evaluate different 

strategies (single-species versus community-level modeling) for predicting shifts in the 

distributions of species in response to climate change.

If the ground-truth data are numerical and the method prediction is also numerical, the 

method can be assessed in terms of the accuracy and precision of the estimation. Evaluation 

metrics such as mean absolute error and root mean square error (RMSE) (Figure 5c) 
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increase as the prediction becomes more biased and imprecise but do not reflect the direction 

of bias (for examples and R code, see Supplemental Appendix 2). For example, Flagel et al. 

(2019) simulated DNA sequences to evaluate whether convolutional neural networks could 

be trained to estimate population genetic parameters from alignment images. They used 

RMSE to compare the algorithm’s estimate of historical population recombination rate to 

the true value (Flagel et al. 2019). Evaluation metrics such as mean error or percent error 

(mean error scaled by the true value) increase as the prediction becomes more biased and 

also reflect the direction of bias but are unaffected by dispersion (Supplemental Appendix 

2). For instance, in an evaluation of methods for building extremely large phylogenies, 

Beaulieu & O’Meara (2018) used percent error in branch-length estimates to show that 

branch-length estimation was robust in the face of missing data, except for very short 

branches.

Sometimes when both the ground-truth data and prediction are numerical, the method 

prediction is not in the same units as the ground-truth data. For example, methods that 

are used to predict the degree of maladaptation when genotypes are moved to a new 

environment could be based on genetic distance, environmental distance, or both (Láruson et 

al. 2022, Rellstab et al. 2021). In this case, the units of the ground-truth data is the change 

in fitness of the genotype when moved to a new environment, but the units of the method 

prediction depend on what model was used. Thus, RMSE would be inappropriate as an 

evaluation metric because it assumes the method prediction and ground-truth data are both 

in the same units. Instead, the correlation between each predicted degree of maladaptation 

and fitness (the ground truth from simulated data) can be used to compare the performance 

of methods (for an example, see Láruson et al. 2022). It is important to keep in mind that the 

use of correlation as an evaluation metric is limited because it measures the extent to which 

two variables are linearly related (e.g., a measure of precision) and does not capture other 

aspects of the evaluation such as bias or different rates of change.

A number of other summary statistics, such as sum of absolute log-ratios, log-modulus, and 

cross-entropy, can also be used to summarize model fit to the evaluation data (these metrics 

are reviewed in further detail in Weber et al. 2019).

4.3.3. Evaluation metrics: model comparison.—Many methods require users to 

choose among models as part of the analysis [e.g., in phylogenetic inference, a DNA model 

is often chosen (Lanfear et al. 2017)]. This is a crucial step, since inference using incorrect 

models can lead to systematic errors (Cunningham et al. 1998). Akaike information criterion 

(AIC), Bayesian information criterion (BIC), Bayes factors, and likelihood ratio tests are 

the most commonly applied metrics to choose among competing models. AIC and BIC 

have become increasingly common in EES partly because these metrics do not require 

models to be nested. When comparing two models with these metrics, general rules are 

typically applied where differences greater than 2.5 (AIC) or 2.0 (BIC) indicate at least some 

support for the model with the lower score (Anderson & Burnham 2004). Alternatively, 

Akaike model weights have been used to provide relative support for competing models. For 

instance, in an ancestral state estimate of ant colony traits, Akaike model weights were used 

to pick a best model for inference (Borowiec et al. 2021). Though less common, Akaike 

model weights can also be used with model averaging to produce parameter estimates that 
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do not rely on any single model (Anderson & Burnham 2004). This approach was recently 

illustrated for analyses of genetic architecture (Blackmon & Demuth 2016).

Model averaging:

combining multiple models to make forecasts or perform inference; often models are 

weighted based on explanatory power

4.3.4. Completing the evaluation process.—The evaluation process is complete 

when the domain of applicability and domain of inference for a method have been well 

defined. Critically, these domains can be well defined only if there are evaluation results for 

data sets both within and outside of the domains.

4.4. Phase IV: Validation

Validation is the process of assessing whether or not quantities of interest (validation 

criteria) are within an a priori specified validation tolerance for a specific application. The 

goal of validation is to determine how well the method performs for a specific application 

and involves two steps. In the first step, the method is parameterized by one set of data, and 

then in the second step, the method is tested against an independent set of empirical holdout 

data from the specific application (Figure 1). While method validation is not a focus of this 

review, we cover it briefly because the term is often used interchangeably with evaluation 

in the EES literature. Principles in method validation—and its differences from evaluation—

have been widely developed in the engineering and physical sciences (AIAA 1998, Natl. 

Res. Counc. 2012, Thacker et al. 2004) but rarely applied to EES. Method validation is 

especially crucial when models are to be used to inform decision making, as is often the case 

with SDMs. The validation process determines whether there is sufficient evidence that the 

model is accurate for its intended use—it cannot prove that a model is correct and accurate 

for all possible scenarios (Thacker et al. 2004).

Validation criteria:

quantities of interest that are used to assess the accuracy of a method based on its 

intended use

Validation tolerance:

the a priori required level of accuracy for validation criteria

Holdout data:

data not used in training an algorithm that provides a final estimate of method 

performance; also called testing data

The first step of the validation process is to define the intended use of the method, the 

holdout data that will be used in validation, the validation criteria that will be used to 
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determine performance, and the level of performance needed (or validation tolerance) for 

that intended use (Figure 1). This last step should include consultation with stakeholders and 

others with subject-matter expertise. By necessity, the validation process should be closely 

integrated with empirical research within the proposed intended use (Guillera-Arroita et 

al. 2015). Careful a priori consideration of validation tolerances and preregistration of 

validation plans and experiments (Nosek et al. 2018) provide extra rigor for a validation 

study.

4.4.1. Completing the validation process.—The method is considered suitable for 

its intended use when acceptable agreement between the holdout data and method results 

is achieved (Thacker et al. 2004). Care should be taken to conduct the validation on the 

holdout data only once to avoid circularity by fine-tuning the model to fit the holdout data. 

Ideally, multiple data sets and metrics are used in determining acceptable agreement, and 

multiobjective optimization (Miettinen 2012) may prove useful in this determination. Even 

complex models are often only a rough approximation to reality: The validation process 

determines if they are close enough to be useful (Box 1979). Although it may be possible 

to prove a method is invalid for a specific situation, the generic term valid model does not 

make sense (Natl. Res. Counc. 2012, Oreskes et al. 1994). There is, at most, a body of 

evidence that can be presented to suggest that the model produces results that are consistent 

with reality (Natl. Res. Counc. 2012).

Acceptable agreement:

a prespecified tolerance within which holdout data are determined to validate a method

4.4.2. The role of simulation tests in validation.—Simulations are probably 

most commonly used to invalidate specific methods for specific applications. However, 

phenomena in EES that operate across large spatial and/or temporal extents, such as species 

diversification, demographic inference, or forecasts of range shifts, cannot be directly 

validated (Oreskes et al. 1994) and therefore necessitate the use of simulations for quasi-

validation. For example, posterior predictive simulations for a DNA evolution model can 

play a key role in determining whether the model selected is adequate for the analyzed 

data (Gelman et al. 1996, Höhna et al. 2018). With this approach, model parameters are 

estimated from the empirical data and used to generate thousands of simulated data sets. 

A range of summary statistics are then chosen and calculated for both the empirical and 

simulated data sets. If a summary statistic for the empirical data is an outlier relative to the 

distribution of the statistic calculated for the simulated data, the model fails to capture some 

important aspect(s) of the actual biological process generating the data (e.g., acceptable 

agreement is not reached). By examining a range of summary statistics, this approach 

elucidates when models work, how models fail, and how to design more appropriate models 

for future analysis (Pennell et al. 2015, Rice & Mayrose 2021). Note, however, that using 

simulations in this way for method validation does not necessarily protect against cases 

of equifinality, and potential for equifinality should still be addressed as part of the larger 

validation process.
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5. BEST PRACTICES

In contrast to research on clinical trial design, there has been little research on how to 

minimize cognitive bias and conflicts of interest in the development of statistical methods 

(Boulesteix et al. 2018). Here, we review best practices and cautionary principles for method 

evaluation and validation.

5.1. Use Ground-Truth Benchmark Data Sets, Including Adversarial Examples That Can 
Refine the Domains of Applicability and Inference

In EES it is common for developers to create custom simulations to evaluate a new method. 

As a result, methods are not compared on a common ground. In machine learning and 

image recognition, advancements have been achieved using standard benchmark data sets. 

For example, the MNIST database of handwritten digits (LeCun et al. 1998) allowed 

for advancements in computational image recognition. Properly designed benchmarks that 

include adversarial data sets within and outside of a method’s domain of applicability and 

inference could drive similar advances in EES. While the development of benchmarks in 

EES is growing and now includes a standard library of population genetic models (Adrion 

et al. 2020) and variation benchmarks (Sarkar et al. 2020, Thompson et al. 1999), the 

standardized use of benchmarks for methods development and evaluation is still rare in EES.

Benchmark data sets:

simulated or empirical data sets for which the underlying truth is known and that are used 

as a standard for evaluating methods

5.2. Conduct the Comparison Neutrally with Double Blinding

Anecdotal evidence supports the idea that differences in user expertise can lead to a variety 

of outcomes despite the same method being applied to the same data set (Gilbert et al. 

2012, Lotterhos et al. 2016). A neutral comparison (sensu Boulesteix et al. 2017) is a 

comparison that is designed such that user expertise does not favor certain methods. Thus, 

evaluators should report the steps they took to apply an equivalent level of parameter tuning 

for each method, such that each method is compared under its best performance. A best 

practice, therefore, is for the user to simulate data sets blind to the methods and for the 

evaluator to tune the method blind to the ground truth in the simulated data (analogous to 

double-blind clinical trials). Among the 37 method evaluations in our literature review, none 

of them reported double blinding, illustrating that this should be encouraged by journals and 

reviewers.

5.3. Separate Holdout Data and Training Data, if Applicable

Some methods require data to train an algorithm. In this case, it is necessary to partition 

each simulated data set into a subset that serves as training data for parameterization 

(which may include cross-validation) and a subset that serves as holdout data for evaluation. 

Evaluators should avoid the circularity of using the same data for training and evaluation, 

which can inflate the performance statistics of the method (Grimm et al. 2015, Molnar 

2021). Take, for example, simulated data sets of virtual species that are used to test SDMs: 
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a sample of observations from each simulation should be used to train the SDM (training 

data), and a different subset of observations from the same simulation should be used to 

evaluate whether the algorithm correctly predicts the species distribution (holdout data) (e.g., 

Meynard & Quinn 2007, Norberg et al. 2019). How best to partition the data into training 

and holdout subsets [e.g., using spatial blocking versus random selection (Norberg et al. 

2019) or leave-one-population-out selection (Rellstab et al. 2021, Roberts et al. 2017)] is an 

active area of research for different methods. As a cautionary principle, cross-validation is 

not always the same as method validation because it is only a summary of model fit, which 

can still suffer from equifinality; furthermore, model accuracy is only a small component of 

the validation process (Lotterhos et al. 2018).

5.4. Consider Biological Relevance When Assessing Method Performance

Biological relevance implies a biological effect of interest that is considered important based 

on expert judgment (EFSA Scientific Committee 2011, Martínez-Abraín 2008, Whitlock & 

Schluter 2020). Evaluations can assess the biological relevance of method outputs in two 

ways, and well-designed evaluation studies can help elucidate cases when the method output 

can be used to make robust inference.

Biological relevance:

an effect considered by expert judgment to be important and meaningful

The first way evaluations can assess the biological relevance of method outputs is to test 

whether a causal pattern is inferred when none exists. Simulation studies have shown this is 

a significant problem for methods that are sensitive to unrelated information, sometimes due 

to correlation in the data. In a particularly funny example, Fourcade et al. (2018) showed that 

classical paintings (as in works of art) georeferenced to the extent of European geographic 

space could successfully be used as predictors in SDMs, sometimes outperforming real 

environmental variables, despite having no biological relevance. Similarly, Robosky & 

Goldberg (2015) showed that the numbers of letters in a species name can predict 

diversification rates. Where applicable, including these types of nonsensical data sets in 

an evaluation study can highlight the limitations of methods (or lack thereof) and/or the risk 

of assuming correlation is the same as causation.

A second way evaluations can assess the biological relevance of method predictions is to 

evaluate the relationship between method performance and effect size. The effect size refers 

to the magnitude of a response in the data. Ideally, a method has good performance across 

a range of effect sizes, including effect sizes of zero (e.g., a null hypothesis). For example, 

methods that detect correlated trait evolution for discrete characters can infer causality 

between traits when it does not exist (Maddison & FitzJohn 2015). In general, it is as 

important for methods to perform well when the effect size is so small that it has little 

biological interest as it is for methods to perform well when effect sizes are large. Evaluation 

studies that simulate data across a range of effect sizes, with different amounts of intrinsic 

noise, help users understand method performance across this continuum.
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In general, biological relevance should be considered along with performance metrics when 

interpreting the results of an evaluation. It is possible to calculate the theoretical maximum 

performance of an ideal method from simulated data, although to our knowledge this is not 

practiced. For example, if the best method in an evaluation study explains 10% percent of 

variation in the data when an ideal method could explain 50%, evaluators should assess 

whether this is enough variation explained for the method to be useful in its intended 

application. For some applications, explaining 10% of variance may be an improvement, 

while for others it may not be explaining enough of the biology to be useful.

5.5. Summarizing Variation in the Simulations

Evaluators should think carefully about how to present variation in method performance 

among data sets simulated with the same parameters that vary due to the amount of intrinsic 

error simulated. On one hand, for a simulation study of a method that shows a mismatch 

between the estimate and reality, it is relevant to show that enough simulations were done 

to ensure robust inference. The standard error of simulation results is an important measure 

of whether enough replicate simulations were run. On the other hand, standard error can 

be artificially decreased by running more replicates, which could make it seem that the 

variability in performance is much lower than it is. For this reason, method performance 

should be presented in a way that captures the variability in the simulations for each set of 

parameters (e.g., standard deviation), in addition to justification that enough replicates were 

done (e.g., standard error).

5.6. Additional Best Practices

Other best practices include comparing multiple methods on the same data sets, making the 

data set and code publicly available (Meynard et al. 2019), and assessing the assumptions of 

each method prior to evaluating them. Of the 37 evaluation studies we reviewed, 34 of them 

compared multiple methods, and 24 of them made the data and/or code publicly available 

(Supplemental Table 1). These studies, however, rarely stated whether the assumptions of 

each method were assessed prior to evaluation (Supplemental Table 1).

6. FUTURE DIRECTIONS AND CHALLENGES

6.1. Establishing Domains of Applicability and Inference for Decision-Making

The domains of applicability and inference are helpful for communicating the conditions for 

which methods can be trusted. Establishing these domains will continue to challenge EES 

researchers, because even accurately modeled physical systems lack a formal mathematical 

framework for defining such a domain (Natl. Res. Counc. 2012). Thus, the development of 

logical principles to establish these domains is an important area for future research.

Method evaluation and validation can assist decision makers in making informed choices 

about an intended application. While others have reviewed how models should be used 

as scientific support for decision-making (reviewed in Natl. Res. Counc. 2007, Starfield 

1997), less attention has been paid to how error rates and/or uncertainty from method 

evaluation should be incorporated into the decision-making process. Decision makers must 

weigh the potential benefits of applying a method to the potential risks of the method 
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returning an inaccurate result. An important area of future research is therefore how to 

design the evaluation and validation process such that the results can be incorporated 

into decision theory and multiobjective optimization. Decision theory offers a formal 

framework for determining the optimal choice in the face of these costs and benefits, given 

their relative probabilities, and includes frameworks for making decisions under ignorance 

(Peterson 2009, Pratt et al. 2008). Multiobjective optimization involves the development of 

mathematical optimization functions for determining the optimal decision in the presence of 

trade-offs between two or more conflicting objectives (Miettinen 2012).

6.2. Requiring Principled Method Evaluation for Publication

It is unrealistic to believe that, during method development, one could foresee every way a 

method could be (mis)applied. However, some authors have called for systematic evaluation 

of new methods using simulations before those methods are applied to real data (Austin 

et al. 2006). Developing robust methods involves practicing evaluation and validation as 

a cyclical process (Figure 1) until the domains of applicability and inference are fully 

understood. With increased integration between method development, evaluation, empirical 

research, and validation, we can reduce the hidden costs associated with methods being 

developed first and broken later.

Achieving this increased integration will continue to challenge EES until standardized 

criteria for method evaluation are widely used. The current lack of standardized criteria 

leads to high variability in the rigor with which methods are evaluated. What constitutes 

a comprehensive set of benchmarks for groups of methods and how to conduct principled 

evaluation on those benchmarks required for publication are important areas for future 

research. Comparisons of the performance of different methods on benchmark data sets 

could be made more efficient through a shared database system, but funding for developing 

such a system is scarce in EES. Developing a culture of principled method evaluation will 

continue to be a major challenge in EES until it is supported and required by funding 

agencies, reviewers, and journals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An overview of method evaluation and validation in the sciences. (a) In traditional inference, 

it is not always known whether the outcome of an analysis is representative of the true 

underlying biological process. (b) Method evaluation is the process of comparing methods 

on data sets for which the truth is known and that include patterns of realism observed in 

empirical data, as well as adversarial data sets (e.g., null or challenging data sets) that help to 

define the domains of applicability and inference for the methods. (c) Method validation is 

the process of determining whether a method is good enough to apply to a specific situation 

and involves defining the application and a set of a priori validation criteria (e.g., the 

required level of accuracy) for that application. When the evaluation and validation criteria 

are met, the results add to the body of evidence that the method gives robust inference or 

predictions about the true underlying biological process.

Lotterhos et al. Page 27

Annu Rev Ecol Evol Syst. Author manuscript; available in PMC 2023 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The citation rates for methods in different ecology, evolution, and systematics applications, 

in relation to publication of the evaluations of those methods (indicated by arrows). The 

methods indicated with a dotted line showed good or poor performance in the evaluation. 

(a) FST outlier methods (Bayescan, FDIST, hapFLK, LOSITAN, OutFLANK, PCAdapt) 

relative to when negative evaluations of FDIST/LOSITAN were published. FST is a measure 

of genetic differentiation. (b) Diversification tests (BAMM, BiSSE, CVPD, HiSSE, LASER, 

SCC) relative to a negative evaluation of BiSSE. (c) Species distribution models (BIOCLIM, 

DOMAIN, ENFA, GARP, GRASP, MaxEnt, MAXLIKE) relative to a positive evaluation of 

MaxEnt.
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Figure 3. 
Techniques that can be used to guide simulations. (a) Contrasting cases present different 

scenarios while controlling for important features of the data. In this example, the 

distribution of FST (genetic differentiation) is contrasted for different demographies, while 

the overall mean FST (vertical red line) is controlled for. The demography that produces each 

distribution of FST is visualized on the left, with populations represented by dots and paths 

of migration represented by lines. In the expansion from refuge (bottom), the population 

initially occupies the black location and spreads to the grey locations over time. (b) 

Response surface designs study the response variable across many levels of the explanatory 

variables. In this example, a method evaluation seeks to explore the performance of a species 

distribution model across the dispersal rate and niche breadth of a virtual species. The matrix 

represents the total parameter space, while the dots represent the combination of parameter 

values that were simulated. Simulation levels could follow a factorial design (top) or a Latin 

hypercube that requires fewer total levels to cover a similar response space (bottom). (c) 

Simulations can also be performed on real data. In this example, a Markov model of trait 

evolution is based on a matrix that describes the probability that one trait (in rows) mutates 

to another trait (in columns) per unit time. Here, the traits are diurnal or nocturnal behavior. 

This model is then simulated on an empirical phylogeny to produce a data set of simulated 

traits that can be used to test methods.
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Figure 4. 
Approaches for quantifying the performance of a method for binary outcomes (hypothesis 

test). Comparison of (a) AUC-PR and (b) AUC-ROC for different methods applied to 

the same data set. In this data set, there are 10 positive cases (e.g., loci under selection, 

species presences) and 90 negative cases (e.g., neutral loci, species absences), to which four 

methods are applied. Cases refer to the true state—not the test result. Note that recall (the 

x-axis in panel a) and sensitivity (the y-axis in panel b) are different names for the true 

positive rate. The true positive rate is the proportion of positive cases that the method infers 

are positive cases. The false positive rate is the proportion of negative cases that the method 

infers are positive cases. Abbreviations: AUC-PR, area under the precision-recall curve; 

AUC-ROC, area under the receiver operating characteristic curve.
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Figure 5. 
Approaches for calculating prediction accuracy. (a) If the ground-truth data are categorical 

and the method prediction is also categorical, classification accuracy is calculated for 

each true class as the fraction of ground-truth classes that fall into each predicted class. 

On the diagonal are true positive rates. In this example, a method seeks to classify data 

corresponding to a region of the genome into hard sweep, soft sweep, and neutral classes. 

(b) If the ground-truth data are categorical and the method prediction is a probability 

(dots), the Brier score is calculated as the MSE between the probability of the ground-truth 

class (in this example, 0 means species absent, and 1 means species present) and the 

probability predicted by the method. The MSE is visually represented as squaring the lines 

corresponding to each dot and then taking the mean. (c) If the ground-truth parameter is 

numerical and the method predicts an estimate of the parameter (in this example, branch 

length on a phylogenetic tree), then the RMSE is calculated between the ground truth and 

the prediction. The RMSE is visually represented as squaring the lines corresponding to 

each dot, taking the mean, and then taking the square root. Abbreviations: MSE, mean 

square error; RMSE, root mean square error.
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Table 1

Challenges, goals, and metrics in method evaluation

Challenge in applying method to 
data Goal of method evaluation Evaluation metrics

Does applying this method to 
the data give a true result in a 
hypothesis test?

Evaluate errors in hypothesis test
Determine which method(s) have the 
lowest error rates
Determine whether the error rates are 
acceptable for application

True positive rate
False positive rate
False discovery rate
Area Under the Precision-Recall Curve
Area Under the Receiver-Operator Curve

Is the prediction from this method 
accurate and precise?

Quantify bias and error of method 
prediction
Evaluate whether the prediction is 
accurate and precise

If ground truth is categorical and method prediction is 
categorical:
Classification accuracy
If ground truth is categorical and method prediction is a 
probability:
Brier score
Validation metric applied to probabilistic predictions 
(VMAPP)
If ground truth is continuous and method prediction is 
continuous:
Root mean square error
Accuracy/bias
Precision

Did the pattern in the data result 
from a different process from that 
assumed?

Evaluate equifinality
Develop an understanding of 
confounding factors, hidden variables, 
and other possible processes

Model comparison metrics:
Akaike information criteria
Bayes information criteria
Likelihood ratio test
Bayes factor
Posterior probability

Were correct decisions made when 
designing the experiment, filtering 
data, and choosing a method?

Evaluate nuanced decisions
Illustrate best practices in the scientific 
method

Any of the above metrics, depending on the context

Annu Rev Ecol Evol Syst. Author manuscript; available in PMC 2023 December 15.


	Abstract
	INTRODUCTION
	Evaluation Versus Validation
	Why Test Methods with Simulations?

	METHODS IN EVOLUTION, ECOLOGY, AND SYSTEMATICS: A CONSTANTLY SHIFTING LANDSCAPE
	Methods Developed First, Broken Later
	Pitfalls in Developing Methods

	GOALS IN TESTING METHODS
	Challenge #1: How Does One Know if Applying a Given Method to the Data Gave a True Result in a Hypothesis Test?
	Challenge #2: Is the Prediction from This Method Accurate and Precise?
	Challenge #3: Equifinality: Did the Pattern in the Data Result from a Process Other Than the Process Originally Assumed?
	Challenge #4: Were Correct Decisions Made When Designing the Experiment, Filtering Data, or Choosing a Method?

	PRINCIPLED METHOD EVALUATION AND VALIDATION FOR EVOLUTION, ECOLOGY, AND SYSTEMATICS
	Phase I: Plan Development
	Phase II: Simulation
	Contrasting cases.
	Response surface designs.
	Simulating on real data.

	Phase III: Evaluation
	Evaluation metrics: discrimination for binary classification.
	Evaluation metrics: accuracy.
	Evaluation metrics: model comparison.
	Completing the evaluation process.

	Phase IV: Validation
	Completing the validation process.
	The role of simulation tests in validation.


	BEST PRACTICES
	Use Ground-Truth Benchmark Data Sets, Including Adversarial Examples That Can Refine the Domains of Applicability and Inference
	Conduct the Comparison Neutrally with Double Blinding
	Separate Holdout Data and Training Data, if Applicable
	Consider Biological Relevance When Assessing Method Performance
	Summarizing Variation in the Simulations
	Additional Best Practices

	FUTURE DIRECTIONS AND CHALLENGES
	Establishing Domains of Applicability and Inference for Decision-Making
	Requiring Principled Method Evaluation for Publication

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

