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Effort-based decisions, in which people weigh potential future rewards against effort
costs required to achieve those rewards involve both cognitive and physical effort,
though the mechanistic relationship between them is not yet understood. Here, we
use an individual differences approach to isolate and measure the computational
processes underlying effort-based decisions and test the association between cognitive
and physical domains. Patch foraging is an ecologically valid reward rate maximization
problem with well-developed theoretical tools. We developed the Effort Foraging Task,
which embedded cognitive or physical effort into patch foraging, to quantify the cost
of both cognitive and physical effort indirectly, by their effects on foraging choices.
Participants chose between harvesting a depleting patch, or traveling to a new patch
that was costly in time and effort. Participants’ exit thresholds (reflecting the reward
they expected to receive by harvesting when they chose to travel to a new patch)
were sensitive to cognitive and physical effort demands, allowing us to quantify the
perceived effort cost in monetary terms. The indirect sequential choice style revealed
effort-seeking behavior in a minority of participants (preferring high over low effort)
that has apparently been missed by many previous approaches. Individual differences in
cognitive and physical effort costs were positively correlated, suggesting that these are
perceived and processed in common. We used canonical correlation analysis to probe
the relationship of task measures to self-reported affect and motivation, and found
correlations of cognitive effort with anxiety, cognitive function, behavioral activation,
and self-efficacy, but no similar correlations with physical effort.
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People make effort-based decisions every day, weighing the potential rewards associated
with an action against the effort it requires. These decisions can involve cognitive effort,
physical effort, or both. Economic utility theory has been productively applied in effort-
based decision-making research: People seek to maximize reward while minimizing effort,
which can be accomplished by computing an “expected value” of effort (1–5). In these
theories, effort is described as costly, reducing the value of rewards. Evidence from
cognitive psychology and neuroscience shows that people consistently factor effort into
their decisions but that individuals approach tradeoffs between rewards and cognitive
(6, 7) and physical (8, 9) effort differently. Effort-related behaviors range from effort
seeking (e.g., running a marathon, writing a book) to effort avoiding (e.g., sedentary
behavior, academic procrastination). There is much to learn about the trait and state
factors that lead to effort seeking versus avoiding. Advancing knowledge of effort-based
decision making is important because of evidence demonstrating proxies of cognitive and
physical effort costs are related to psychiatric symptoms, including negative symptoms of
schizophrenia (10–12). Physical (13–16) and cognitive (16–20) effort avoidance has been
found to be increased in clinical depression. Depression is heterogeneous across symptom
domains (presence of apathy, anhedonia, anxiety, cognitive function symptoms, and oth-
ers). Relatively little is known about the shared versus distinct contributions of cognitive
and physical effort costs to specific affect and motivation symptoms. Understanding
this structure would be valuable for identifying “subtypes” of depression, transdiagnostic
approaches, and precision psychiatry. Psychiatric symptom relationships to physical and
cognitive effort decision making have mostly been studied separately (though see refs. 16
and 18). Here, we address this gap by measuring cognitive and physical effort avoidance
and self-reported motivation and affect within an individual in a large online sample.

The reinforcement learning literature has been concerned with the extent to which
there is a common representation of “value” that integrates different kinds of rewards

Significance

Individuals differ considerably in
their motivation and ability to
tackle physical or cognitive
challenges (e.g., professional
athletes, scholars), and these
differences are implicated in
psychiatric symptoms. Although
the subjective experience of
effort is ubiquitous, the processes
underlying effort-based decision
making are not fully understood,
including the relationship
between individual differences in
willingness to exert cognitive and
physical effort. We developed a
task that measures effort-based
decisions indirectly using patch
foraging. We found that cognitive
and physical effort avoidance (i.e.,
costs) were positively correlated,
suggesting these are processed
in common terms. However,
cognitive and physical effort
measures appeared to have
distinct relationships to
self-report measures of
motivation and affect, suggesting
these may be useful in
dissociating factors underlying
psychiatric symptoms.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
bustamante@wustl.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2221510120/-/DCSupplemental.

Published December 8, 2023.

PNAS 2023 Vol. 120 No. 50 e2221510120 https://doi.org/10.1073/pnas.2221510120 1 of 12

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2221510120&domain=pdf&date_stamp=2023-12-07
https://orcid.org/0000-0002-2539-0602
https://orcid.org/0000-0001-6764-3316
https://orcid.org/0000-0002-8081-1887
https://orcid.org/0000-0002-0222-0774
https://orcid.org/0000-0003-2316-0763
https://orcid.org/0000-0001-5029-1430
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bustamante@wustl.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2221510120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2221510120/-/DCSupplemental


(e.g., food, money, refs. 21–23). To what extent is there also
a common representation of “cost” that integrates different
domains of effort and other costs associated with an activity
(i.e., cognitive and physical effort, and time costs, refs. 16 and
24)? Relatedly, how are effort costs common or different across
the wide range of tasks that can be considered “physical” or
“cognitive”? Do cognitive and physical effort constitute separate
domains or is there a different organizational principle?

Human and animal research suggests that cognitive and
physical effort-based decisions are controlled by shared neural
populations (24–28). Individual differences provide a window
into the relationship between different domains of cost. Do
individuals who avoid cognitive effort more also avoid physical
effort more? Research is limited about the relationship between
individual differences in cognitive and physical effort costs.
Lopez-Gamundi and Wardle (49) found a positive relationship
(r = 0.43) between the percentage of “hard task choices” in the
cognitive (task-switching task) and physical (rapid key-pressing
task) versions of the Effort Expenditure for Rewards Task (this
finding was replicated in ref. 29, r = 0.35).

We offer an approach to these questions by making use
of a variant of a decision task from the foraging literature,
which offers a distinct approach to studying how organisms
integrate rewards and costs. The study of foraging using serial
decision problems originated in ethology and is noteworthy
for strong theoretical foundations and ecological validity (30).
More recently, it has been increasingly adopted in psychology,
neuroscience, and neuroeconomics (31–33), but compared to
other aspects of reinforcement learning, has not widely been
used in studies of individual differences. In classic ecological
contexts, foraging tasks study how organisms optimize some
fitness objective (e.g., maximizing reward rate), while balancing
rewards (e.g., food) and costs (especially time). Foraging-style
tasks have proven to be valuable in understanding decision
making in formally rigorous terms, and relating it to underlying
neural mechanisms, across a variety of species, including rodents
(34, 35), nonhuman primates (36, 37) and humans (38–41).
However, most human foraging tasks have manipulated rewards
and time costs, but not effort costs. Here, we expand the study
of human patch foraging to include effort.

The Effort Foraging Task. In the present study, we developed
an “Effort Foraging Task” designed to leverage the strengths
of the patch foraging paradigm (i.e., ecologically valid serial
decisions, well-developed formal frameworks, and common
neural and cognitive substrates across a range of settings, refs.
30–32, 35, 38, 42 and 43). The task had two variants—cognitive
and physical—which we used to fit a computational model to
individual participants’ behavior to estimate the costs associated
with each form of effort. Within this model, we evaluated
the correlation between the estimated individual differences in
cognitive and physical effort costs.

The Effort Foraging Task adapts a version of the computerized
patch-foraging task developed by Constantino and Daw (44),
adding travel costs in the form of cognitively and physically
effortful tasks. In a standard patch foraging task, the forager
visits a “patch” which can be harvested to yield rewards (here, a
simulated orchard with apple trees). Within a given patch, the
marginal return (apples) associated with each successive harvest
decreases over time. At any point, the forager can travel to a
new patch, which has replenished rewards, but it takes time
to travel there. Deciding when to leave a depleting patch in
a foraging environment involves tradeoffs between harvesting

rewards available from the current patch, and the time spent
traveling to a different (but richer) one. For this reason, the level
at which the forager decides to exit the current patch (i.e., their
“exit threshold” or the number of apples they have last received
before quitting) reflects the reward they are willing to forgo by
leaving that patch and spending the time to travel to another. In
these respects, the exit threshold reveals the point of equivalence
in the tradeoff between the cost of harvesting with diminishing
rewards and the time cost of traveling to a new patch.

These considerations are formalized in the Marginal Value
Theorem (45), which asserts that a simple threshold policy
maximizes reward rate. The forager simply needs to maintain
an estimate of the average reward rate in the environment and
exit a patch when the instantaneous reward rate falls below the
long-run average.

� =
∑

r −
∑

c
T

. [1]

According to Eq. 1, reward rate is maximized when the exit
threshold (�, the reward level at which the forager exits) is equal
to the long-run average reward rate, which includes the sum
of all rewards (

∑
r) minus sum of (nontime) costs incurred in

the environment (
∑

c, e.g., energy spent extracting rewards or
traveling to the next patch), divided by the total number of
harvest periods (the time cost normalized by the harvest time,
T = total time/harvest time).

Constantino and Daw (44) found that human participants
playing a virtual foraging game used a threshold exit strategy
consistent with the Marginal Value Theorem, which explained
behavior better than other reinforcement learning models (e.g.,
temporal difference learning). Furthermore, they found that exit
thresholds (the reward expected to receive by harvesting when
participants chose to travel to a new patch) shifted reliably and in
predicted ways when the environment changed (e.g., when travel
time and/or reward depletion was experimentally manipulated).
For example, when the travel time between patches was increased,
participants’ exit thresholds decreased, reflecting the increased
opportunity cost of travel time and an overall decrease in average
reward rate.

For the Effort Foraging Task, rather than manipulating travel
time, we manipulated travel costs by varying the effort—cognitive
or physical—required to travel between patches and compared
exit thresholds in high versus low effort conditions. In line with
MVT, which predicts an increase in travel costs to result in a
lower exit threshold, we predicted that contexts with higher effort
costs would, in general, decrease participants’ estimates of average
reward rate, leading the exit threshold to be lower; that is, a greater
willingness to accept diminishing rewards to avoid effortful
travel. Conversely, some participants might instead exhibit effort-
seeking, i.e., treat the low effort task as more costly, exiting at
a lower threshold in low compared to high effort conditions
(as seen in ref. 46). Accordingly, we used the difference in exit
threshold between high and low effort conditions to infer the
perceived costs of travel.

More specifically, we used participants’ decision thresholds
to create a computational model based on the Marginal Value
Theorem to quantify the added cost of high compared to low
effort conditions in this task. Using this model, we found that
most participants avoided the high effort tasks, treating them as
costly, while some participants sought high-effort tasks, treating
them as valued. We directly fit the correlation between individual
differences in cognitive and physical effort costs in the same
currency (money) and found a moderate positive correlation.
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In developing the task, we conducted four experiments
(complete details in SI Appendix, Text 5). Experiment 1
(N = 678) is the focus of our results as it has the largest
sample size and is the most efficient version to administer (16
min of main task time per effort type). Experiments 2–4 were
conducted largely to validate results and rule out confounds.
Specifically, Experiment 2 (N = 116) serves to demonstrate the
generalizability of the method to multiple cognitive effort tasks
exercising multiple cognitive processes (interference control, in
Experiment 1, working memory in Experiment 2); Experiment 3
(N = 43) verifies that standard patch-foraging manipulations
are effective in the novel effort context (thresholds sensitive
to patch richness); and Experiment 4 (N = 71) addresses
the possibility that effort avoidance might be confounded by
differences in subjective travel duration perception across effort
levels.

Effort level was manipulated block-wise (Fig. 1, Experiment
1, 4-min blocks). In Experiment 1, the cognitive effort variant
required performing trials of the Multi-Source Interference Task
(MSIT, Fig. 2, ref. 47). The high effort condition required
completing interference trials (demanding more cognitive effort),
and the low effort condition required completing congruent
trials (demanding relatively less cognitive effort). The physical
variant of the task required participants to rapidly press a key
to reach a new patch (Fig. 2, Right, based on previous research
demonstrating that rapid key-pressing is physically effortful and
costly, ref. 8). The high effort condition required participants to
press the key the maximum number of times they could in the
time allotted (individually determined in a preceding calibration
phase), and the low effort condition required half that number
of key-presses. Travel time (i.e., time to complete the MSIT or
key-pressing tasks) was fixed and the same across both variants
of the task and the high and low effort conditions of each. We
predicted effort-avoiding participants would have a lower patch
leaving threshold (in units of apples) in the high effort conditions
compared to the low effort conditions, since travel (effort) costs
were greater in the former. The measure of effort cost for an
individual was the differential travel cost of the more effortful
condition (incongruent MSIT, or Larger Number of Presses)
compared to the less effortful condition (congruent MSIT, or
Smaller Number of Presses).
Theorized advantages compared to previous tasks. The problem
of demand characteristics, which cue participants to the purpose
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Fig. 1. Foraging trial diagram. On each trial, participants chose to harvest
the tree they were at (down arrow key) or travel to a new tree (right arrow key),
during the travel they completed an effortful task, after which they arrived at
a new patch with a replenished supply of apples.
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Fig. 2. Effort travel tasks Experiment 1. Left: Cognitive Effort, Multi-source
Interference Task. Participants identified which number was the oddball in
a list of three numbers. The background color differed for the high effort
(interference trials, orange) and low effort (congruent trials, blue) conditions.
They responded with the “1,” “2,” and “3” keys. Interference trials have a
competing distractor response for which the oddball target is flanked by the
distractor and in the spatial position of the distractor. The correct response
for each example screen is displayed on the left of that example screen. Right
panel: Physical Effort, Rapid Key-pressing Task. Participants rapidly pressed
the “a” key while holding down the “w,” “e,” “f,” “h,” and “o” keys. Pressing the
“a” key moved the avatar rightward and filled up the gray horizontal bar with
green. When participants reached the goal number of presses, “Complete!”
appeared in the horizontal bar and participants waited for the remainder of
the travel time. The background color differed for the high effort (smaller
presses, purple) and low effort (larger presses, green) conditions.

of the study and change how participants behave (48), can
be problematic for assessing participants’ motivation. For this
reason, there has been a shift from relying strictly on self-reports
toward using laboratory tasks. Most effort decision making tasks
directly ask participants to choose between low effort/low reward
and high effort/high reward options (7, 8, 49–51). Assessing
preferences in this way is still subject to demand characteristics,
which may reduce construct and convergent validity (52–55).
In addition, decisions that explicitly trade off numeric quantities
(56, 57) are susceptible to idiosyncratic arithmetic heuristics (58).
We developed the Effort Foraging Task to measure preferences
indirectly, based on the effect of effort requirements on foraging
behavior. We theorized that by measuring effort preferences
indirectly, we could get closer to preferences that directly drive
behavior, and thus increase task validity.

Direct tasks, such as the Cognitive Effort Discounting
Paradigm (7) or the Effort Expenditure for Rewards Task (8) may
engage real-world economic considerations (e.g., that one should
be paid more to work more), which may obscure or interfere with
effort seeking behaviors that may otherwise occur in naturalistic
settings. This is consistent with the observation that effort seeking
is not reported in direct tasks (i.e., reverse effort discounting,
preferring to do a more demanding task for less money over a
less demanding task for more money refs. 7 and 8. Interestingly,
in the results reported below, we consistently found a subset of
participants who appeared to be effort-seeking in this task, in line
with the idea that secondary demand characteristics obscure or
interfere with effort seeking behavior in explicit tasks. Another
potential problem is that some existing tasks have involved
hypothetical choices, or choices separated in time from a later
realization of cognitive effort (7, 49). In the Effort Foraging Task,
participants experience the effort directly and immediately, after
each choice to travel.

Another concern common to previous studies is the pre-
sentation of two options simultaneously, as this may distort
choices or complicate their interpretation (6, 7, 49). Research
in intertemporal choice has shown that rodents and primates
(including humans) are less impulsive decision makers when they
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are making serial rather than simultaneous choices. It has been
hypothesized that this is because serial decision making is more
ecologically valid (evaluating each single option in isolation and
choosing to accept or reject it and search for another, refs. 35, 42,
and 43). The Effort Foraging Task is serial, as participants decide
to either accept the current harvest value or reject it and travel to
a new patch (see also refs. 56 and 57). Formal analysis of these
foraging decisions using the Marginal Value Theorem provides a
theoretically motivated and quantitatively rigorous approach to
measuring effort costs.

Results
The primary dependent variable in our analyses was exit
thresholds (the expected reward for harvesting when participants
chose to travel), which reflect the point when the cost of leaving
just offsets the benefits of reaching a replenished patch (which
is increasing as the current patch yields progressively less). In
line with the Marginal Value Theorem (1), we assumed that
participants set their exit thresholds to maximize the rate of
rewards minus costs per time step. As all of the reward rate
variables are observed, this allows us to solve for the subjective
cost (c) that best rationalizes the observed exit behavior. We
implemented a computational model based on the Marginal
Value Theorem and fit it to participants’ exit thresholds to
quantify the relative increase in travel cost between the high
and low effort conditions for each effort type (Analysis Methods,
Hierarchical Bayesian Marginal Value Theorem model).

Summary of Results. We found that differences in foraging
decisions (viz., exit thresholds) are a useful indirect measure of
motivation to exert both cognitive and physical effort. Consistent
with our prediction, average exit threshold was lower in the higher
travel effort than the lower travel effort conditions (Fig. 3).
Participants (Experiment 1, N = 537) opted to stay longer
in a patch, accepting diminishing rewards, in the high travel
effort conditions to avoid the increased cost of travel. Results
from Experiments 2–4 confirmed that participants’ behavior
remains similar across manipulations of cognitive effort type
[Experiment 2 (N-Back)], environment richness [Experiment 3
(Richness)], and with explicit travel time instructions (Experi-
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Fig. 3. Change in exit thresholds by effort condition. Experiment 1 (MSIT). (A)
y-axis: Group-level mean change in exit threshold for cognitive and physical
effort. x-axis: effort type. As predicted, on average participants exhibited
lower exit thresholds in the high relative to low effort conditions. Error
bars indicate SEM. (B) Individual variation in change in exit threshold. Top
row: Histogram of participants mean change in exit threshold for cognitive
high effort relative to cognitive low effort. Bottom row: Mean change in
exit threshold for physical high effort relative to physical low effort. Most
participants were effort-avoiding (negative change in threshold), whereas
some participants showed indifference to effort condition (near zero) or were
effort-seeking (positive change in threshold).

ment 4). Fits of the Marginal Value Theorem model to trial-
by-trial behavior [Experiment 1 (MSIT)] further confirmed the
presence of high effort costs and revealed an interesting mixture
of effort-avoiding and effort-seeking participants. We found that
cognitive and physical effort costs were moderately positively
correlated, but that only cognitive effort cost was strongly
correlated with self-report measures related to motivation and
affect.

We used a data-driven approach—canonical correlation
analysis—to look for shared versus distinct relationships between
cognitive and physical effort task behavior and self-report surveys
of motivation and affect. Results support external validity of
the cognitive effort measures and extend the picture of the
interrelationships of effort decision-making variables to include
anxiety, cognitive function, behavioral activation, and self-
efficacy.

Change in Exit Threshold by Effort Condition. As a model-
agnostic metric of high effort cost, we used the change in
exit threshold from low to high effort conditions. For each
participant, we computed the average exit threshold per condition
(see overall threshold results in SI Appendix, Figs. S1 and S2),
and the difference between them (high effort–low effort mean
threshold). We expected this value to be negative, reflecting effort
avoidance. If threshold increased for a participant, this suggested
effort seeking. Across participants, we found a mix of effort
avoidance, effort seeking, and indifference to effort (values close
to zero) (Fig. 3, Right). We computed the group average change
in threshold (Fig. 3) and used linear mixed-effects regression
to test whether change in exit thresholds significantly differed
from zero. As predicted, on average, participants exited trees
later in the high relative to low effort conditions (mixed-effects
regression: interference–congruent MSIT, �cognitive = −0.236
apples, df = 460.071, F = 50.062, P < 0.001, Larger - Smaller
Number of Presses �physical = −0.379 apples, df = 474.041,
F = 87.326, P<0.001). We estimated the split-half reliability
of the change in exit threshold measure, which was r = 0.85
for cognitive effort, and 0.82 for physical effort (details in
SI Appendix, Text 2). As a model-agnostic estimate of the
relationship between cognitive and physical effort cost, we
measured the correlation of the change in exit threshold across
cognitive vs. physical effort conditions and found a significant
positive correlation (r = 0.203, t = 4.78, df = 535, P<0.001).
Next, we used the foraging behavior to formally quantify the
additional cost of the high effort tasks using a model based on
the Marginal Value Theorem.

Hierarchical Bayesian Marginal Value Theorem Model to
Estimate Effort Costs for an Individual. We fit a hierarchical
Bayesian logistic model based on the Marginal Value Theorem
(45), which predicted harvest versus exit decisions by comparing
expected reward on the next harvest against the average reward
rate (Analysis Methods, Hierarchical Bayesian Marginal Value
Theorem model). We defined the reward rate in terms of
known reward rate values of the foraging environment per effort
condition per participant (apples earned, time cost incurred,
number of patches visited), as well as the unknown reward rate
value (the cost of travel). The cost of travel in high effort blocks
was expressed as the marginal increase in cost of travel from
low to high effort. Defining this cost as a difference measure
controls for any additional biases individual participants may
have (such as differences in the subjective value of the reward)
which are common to both conditions. The dependent individual
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differences measures in this task were the inferred cognitive and
physical effort cost parameters. The other model parameters were
the travel costs in the cognitive and physical low effort conditions,
and the inverse temperature applied to the softmax function
(higher values indicate less noisy effects of rewards and thresholds
on choices).

Consistent with the model-agnostic change in threshold
metric, the group-level posterior parameter fit indicated that both
high-effort tasks were costly on average (SI Appendix, Table S1).
There was a range of individual differences (Fig. 4), cost was
positive for most participants, some participants were indifferent
to the effort manipulation (cost near zero), and some participants
had a negative cost (cognitive, N = 78, 14.5% of sample, physi-
cal, N = 67, 12.5% of sample), suggesting that effort was valued.

Relationship between Cognitive and Physical Effort Costs.
We estimated the correlation across participants between the
cognitive and physical high effort costs (again, each estimated
as reflecting the additional cost of high effort relative to
the low baseline) using the participant-level covariance matrix
when fitting the MVT model. We found a moderate positive
relationship (mean correlation = 0.566, 95% HDI = 0.355–
0.766, Fig. 4). This suggests a potential common representation
for costs of different types used in effort-based decision making.
We confirmed this correlation was not driven by the subset of
participants who showed negative effort costs by refitting the
model omitting participants with negative cognitive or physical
effort cost (SI Appendix, Fig. S3).

Travel Task Performance Relationship to Effort Costs. For
cognitive effort, we tested whether cognitive task performance
contributed to the cognitive effort cost measured by foraging
choices (see individual differences in MSIT performance in SI
Appendix, Fig. S4 and relationship between cognitive and physical
effort costs and travel task performance in SI Appendix, Fig. S5).
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Fig. 4. Correlation between individual differences in cognitive and physical
effort costs. Experiment 1 (MSIT), (A) Individual differences in the high effort
travel costs (expressed as the additional cost of the high relative to the low
effort condition). Paralleling the pattern of exit thresholds, most participants
experienced the high effort conditions as effortful (positive cost), whereas
some participants were insensitive to the effort manipulation (cost near
zero) and others were effort-seeking (negative cost). (B) x-axis: Individual
differences in cognitive effort costs, y-axis: Individual differences in physical
effort costs. Error bars indicate 80% HDI. (C) Posterior distribution of corre-
lation between high effort cost for cognitive and physical effort. Cognitive
and physical effort costs are positively correlated (correlation = 0.566, 95%
HDI = 0.355–0.766).

We regressed the difference in (log transformed) MSIT error
rate and (log transformed) reaction time onto cognitive effort
costs. We found that the difference in error rate significantly
predicted cognitive effort cost (estimate = 15.313, SE = 3.684,
t = 4.156, P<0.001), indicating that participants with higher
costs performed worse on the MSIT. However, the reaction
time interference effect did not predict cognitive effort cost
(estimate = 4.861, SE = 3.802, t = 1.278, P = 0.202). In this
regression, the intercept was not significantly different from zero,
suggesting that the effort costs measured are performance-related
(estimate = 4.861, SE = 3.802, t = 1.278, P = 0.202, compared
to an intercept-only model estimate = 7.548, SE = 0.323,
t = 23.38, P < 0.001). We see the same qualitative result
using robust regression. This finding suggests participants may
adaptively calibrate their effort costs according to their error rates,
and/or that effort costs and error rates are both affected by more
general task engagement or motivation (Discussion).

Next, we investigated the analogous relationships for physical
effort. We regressed two measures of performance, the percentage
of uncompleted presses in the smaller and larger presses con-
dition, and the required number of presses determined in the
calibration phase, onto physical effort costs. We found no rela-
tionship with physical effort costs and the percentage of uncom-
pleted presses in the smaller (estimate = −0.387, SE = 0.234,
t = −1.656, P = 0.098) nor the larger (estimate = 0.112,
SE = 0.140, t = 0.802, P = 0.423) presses condition, nor to
the required presses (estimate = 0.018, SE = 0.088, t = 0.198,
P = 0.843). The physical effort cost effect remained controlling
for all these variables (intercept estimate = 13.20, SE = 2.08,
t = 6.33, P < 0.001). One potentially important difference is
that the physical effort requirement was individually calibrated
such that completion rates were near ceiling (SI Appendix, Fig.
S4). Last, we correlated the error rates across the high-effort
cognitive and physical effort tasks and found a weak positive
correlation (r = 0.15, t = 3.52, df = 535, P < 0.001).

Relationship to Self-reported Motivation and Affect. We con-
ducted an exploratory canonical correlation analysis (CCA), to
test the external validity of our measure, and to investigate the
shared versus distinct symptom associations of cognitive and
physical effort sensitivity (with data from N = 430 Experiment
1 participants who completed the survey and passed attention
checks; see SI Appendix, Fig. S6, details in Analysis Methods,
Canonical correlation analysis). The high dimensionality of both
the survey and task measures poses a multiple comparisons
issue for correlation or regression analyses. In previous work,
we and others have used dimensionality reduction techniques
such as factor analysis to summarize key dimensions of survey
data prior to regressing them on individual task measures (59).
Here, we build on that approach by using CCA, a dimensionality
reduction technique that simultaneously performs dimension
reduction on two domains of data, to identify summaries of
each domain that maximally relate to one another (here, the
relationship between surveys and task behavior measures, ref. 60).
The dependent variables (N = 11) were all the self-report
summary scores (SI Appendix, Table S2). The predictor variables
(N = 5) were all the task behavior measures of interest:
(log transformed) error rate on congruent and incongruent
trials, cognitive and physical effort costs, and overall threshold.
Including multiple task behavior measures allowed us to explore
the structure of multivariate relationships between (potentially
partially correlated) task measures such as effort costs and
task performance, and on the other hand, several proxies of
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real-world behavior. This approach has the benefit of increasing
sensitivity (by making use of all the measures simultaneously),
while reducing the risks of multiple comparisons (by treating all
of these factors in a single omnibus analysis).

CCA revealed five dimensions, one of which was significant
(summarized in Table 1, for completeness all coefficients for
the first two dimensions displayed in SI Appendix, Fig. S7,
Wilks’ Lamda (61), using F-approximation, dimension 1: cor-
relation = 0.283, stat = 0.819, F-approx = 1.538, df1 = 55,
df2 = 1919.899, P < 0.0072, dimension 2: correlation = 0.257,
stat = 0.891, F-approx = 1.222, df1 = 40, df2 = 1575.487,
P < 0.162, dimension 3: 0.161, dimension 4: 0.130, dimension
5: 0.063, P > 0.83 for dimensions 3 to 5). To interpret
which task behavior and/or self-report measures contributed
most strongly to the significant dimension, we highlighted those
that had a coefficient greater than 0.5 along each dimension
(Table 1). On the task measure side, the first dimension was
most closely associated with increased MSIT Error Rates but
decreased Cognitive Effort Cost (despite that these were weakly
positively associated). On the survey side, this dimension was
most closely associated with decreased (self-reported) Cognitive
Function, increased Behavioral Activation, decreased Anxiety,
and decreased Self-efficacy. Overall, Dimension 1 may capture
a pattern of individual differences ranging from cautious/error-
averse attentiveness to error-prone inattentiveness to the tasks
(similar to ref. 62). This is reflected (on the self-report side) in a
spectrum from high anxiety to high behavioral activation, which
is related on the task side with increasing error rates.

Intriguingly, this dimension is also associated with decreased
cognitive effort costs but not physical effort costs [if anything,
the physical effort coefficient has an opposite loading (0.251), SI
Appendix, Fig. S7]. This suggests Dimension 1 does not explain
the positive correlation between cognitive and physical effort. The
finding that cognitive (but not physical) effort loaded strongly on
this factor may also suggest a dissociation between cognitive and
physical effort cost relationships to affective and motivational
symptoms. Overall threshold did not load onto Dimension 1
either, despite previously hypothesized associations of measured
self-reports with individual differences in subjective reward rate
(SI Appendix, Text 1). Examining the direction of the correlations
with cognitive effort cost, the negative correlation with behavioral
activation is consistent with real-world motivation. However, it is
unclear why cognitive effort cost would have a positive correlation
to cognitive function and self-efficacy.

Validation Experiments. In addition to the main experiment [Ex-
periment 1 (MSIT)], we tested three other versions (Experiments
2–4) to validate key findings (see SI Appendix, Text 5).

Table 1. Canonical correlation analysis result sum-
mary Experiment 1 (MSIT)
Task behavior (coefficient) Self-reports (coefficient)

↑Congruent Error Rate (0.66) ↓Cognitive Function (−0.75)
↑Interference Error Rate (0.58) ↑Behavioral Activation (0.74)
↓Cognitive Effort Cost (−0.52) ↓Anxiety (−0.62)

↓Self-efficacy (−0.51)

For each dimension coefficients larger than 0.5 are displayed in column 1 (for task
behavior variables) and in column 2 (for self-reports). Arrows indicate positive or negative
coefficients. Dimension 1 (canonical correlation coefficient = 0.283, P < 0.007) reflected
increased MSIT Error Rates and decreased Cognitive Effort Cost. The associated self-report
coefficients in Dimension 1 were decreased Cognitive Function, increased Behavioral
Activation, decreased Anxiety, and decreased Self-efficacy.

Generalizability of cognitive effort manipulation. In Experiment 2
(N-Back), we tested a different form of effort as the travel
manipulation (N = 81 included; see exclusions, quantitative
cutoffs, and number of outlier participants in SI Appendix, Table
S3). Specifically, we compared foraging behavior when the travel
task was the 3-Back versus 1-Back level of the N-Back task (63).
As predicted, on average across participants exited trees later
in the high (3-Back) relative to low (1-Back) cognitive effort
conditions; linear mixed-effects regression estimate for N-Back
(3-Back to 1-Back): = −0.504 apples, df = 75.981, F = 30.339,
P < 0.001, physical (smaller–larger) = −0.448, df = 75.170,
F = 27.151, P < 0.001. The MVT model fit also indicated
a positive high effort cost (SI Appendix, Table S4). Although
much smaller in sample size, Experiment 2 did not replicate
the correlation observed in Experiment 1 between cognitive
and physical effort cost as estimated by the MVT model (SI
Appendix, Fig. S8). The highest density interval (HDI) was very
wide (−0.38 to 0.45) suggesting Experiment 2 (N = 81) may
have been underpowered to detect a correlation similar in size
to that seen in Experiment 1. Another possibility is that the size
of any correlation may have been reduced by a selection bias in
Experiment 2 (i.e., admission to university, ref. 64, SI Appendix,
Text 5.A.4).
Collateral predictions of the Marginal Value Theorem. In Exper-
iment 3 (Richness), we tested adherence to classic predictions
of the Marginal Value Theorem, not tested in Experiment 1,
by manipulating patch richness. Leaner environments (yielding
lower overall mean reward rate) should be associated with lower
exit thresholds relative to richer environments. To test for this
effect, we compared two levels of reward richness, by adjusting
the mean of a normal distribution used to draw the initial yield
of a patch. As predicted, we found that participants lowered their
exit thresholds in the lean compared to rich conditions (Richness
contrast; sum sq. 0.788, mean sq. 0.788, DenDF = 27.95,
F = 10.49, P < 0.0031).
Explicit instruction travel time is fixed. Research shows that time
perception is subjective and that a more demanding task can make
subjective time estimates more variable and less accurate (65).
If subjective travel time estimates were generally longer in the
high effort condition, that could contribute to effort avoidance
(though higher cognitive load can also shorten subjective time
estimates, refs. 66 and 67). In Experiments 1–3, we did not
instruct participants that the travel time was fixed regardless of
the effort condition, leaving open the possibility that participants’
subjective time estimates differed between travel task conditions,
and contributed to the observed effect. In Experiment 4, we
evaluated this possibility by including explicit instructions that
the travel time was fixed across all conditions. The results
replicated the findings of effort avoidance in Experiment 1.
As predicted, on average, participants still exited trees later in
the high relative to low effort conditions for both cognitive
and physical effort (linear mixed-effects regression estimate for
MSIT (Interference–Congruent):= −0.318 apples, df = 49.50,
F = 12.66, P < 0.001, physical (smaller–larger) = −0.391,
df = 47.72, F = 5.66, P < 0.021, see SI Appendix, Fig. S9).

Discussion
We developed the Effort Foraging Task to quantify the costs
of cognitive and physical effort at the level of the individual.
Participants played a computer game in which they could forage
for virtual apples in a patch with diminishing returns or abandon
that patch for a new (initially) richer patch at the expense of
time and effort. Participants completed blocks of the task in
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which the travel cost was either cognitive or physical effort,
each at one of two difficulty levels (high and low effort). We
measured their exit threshold as the number of apples the
participant could have expected to get on their next harvest
on trials in which they decided to travel instead. We found
that on average participants lowered their exit threshold (staying
longer, accepting diminishing returns) in the high relative to low
effort conditions, consistent with the high effort task having a
monetary cost.

Further analyses in Experiment 1 demonstrated that these
cognitive effort costs are correlated with differences in error rates
between the low and high cognitive effort tasks, suggesting that
the costs may at least partially reflect error avoidance, and/or
that effort costs and error rates are both affected by more general
task engagement. Expected Value of Control model simulations
(68) demonstrated the problem of identifiability of effort costs
versus other factors that contribute to cognitive effort allocation:
skill and reward sensitivity. That is, if someone avoids effort
(i.e., restricts allocation of cognitive effort to a demanding task),
this could reflect a higher cost of effort, but it could also
reflect poorer ability and/or weaker incentives. These individual
differences would impact choices in the foraging task and impact
or otherwise index performance on the cognitive effort travel
task. To address these potential confounds, we employed a
multidimensional, canonical correlation analysis, offer a richer
view on the interrelationship between multiple variables.

Cognitive and Physical Effort Relationship. Our design measures
cognitive and physical effort costs on a common scale, revealing a
significant and substantial correlation between them (though we
did not replicate this finding in the smaller sample of undergrad-
uates in Experiment 2, possibly due to sample size or differences
in population). This suggests that a common mechanism may
compute costs across multiple domains, consistent with research
showing that; i) overlapping in brain areas is involved in cognitive
and physical effort decisions using human neuroimaging (24, 28),
ii) intermixing choices about cognitive and physical effort affects
choices for both effort types (57), iii) cognitive fatigue impacts
physical effort exertion and vice versa (69, 70).

Indeed, one set of mechanisms that may be shared between
the domains in our study, and contribute to their relationship,
is the cognitive and neural mechanisms for foraging decisions
themselves. Spatial foraging is hypothesized to be an evolutionary
antecedent of abstract cognitive search processes such as memory
search (71). As such, shared processes for foraging (both external
and mental) have been proposed to be a core component of
cognition (31, 32, 38, 39, 72–74). Hills et al. (38) demonstrated,
for instance, a causal connection between spatial and mental
foraging; they manipulated the distribution of resources in a
spatial foraging task and observed that this affected behavior on a
subsequent mental foraging task (involving a word search puzzle).
This interplay between the cognitive and physical domains offers
an intriguing explanation for the observed relationship between
individual differences in cognitive and physical effort costs and an
interesting set of hypotheses about interaction across the domains
to pursue in future work with the Effort Foraging Task.

Foraging provides an ideal framework to understand inter-
actions between action costs (e.g., cognitive and physical effort
costs, time costs, and factors such as risk and uncertainty, refs. 75
and 76) as they are all at play in naturalistic foraging behaviors.
For example, exerting greater physical effort (e.g., vigor, ref. 77)
can reduce time costs, and exerting greater cognitive effort (i.e.,
planning an efficient action) can reduce both physical effort and

time costs. The present study moves in this direction by adding
a cognitive or physical effort task requirement to travel in a
virtual patch foraging environment with human participants.
To directly test one aspect of interplay between cognitive and
physical effort decisions, the task could be adapted to intermix
cognitive and physical blocks. To ascertain the effect exposure
to one domain on decision making has on the other, a study
could compare effort type order effects (cognitive before physical
versus physical before cognitive), as dissociated from the effect
of overall experiment time and fatigue (double length cognitive,
and double length physical).

Generalizability. The Effort Foraging Task as well as existing
alternatives are constrained to a limited set of pragmatic labora-
tory tasks which may not be representative of the putative broader
domains of cognitive and physical effort. Experiment 2 offers
some evidence for the generality of our approach across distinct
operationalizations of cognitive effort, since it produced broadly
similar results (e.g., predominantly effort avoidance, some effort-
seeking) using a different putatively cognitively effortful task
(MSIT vs. N-Back) than Experiment 1. However, the extent to
which this holds across the much wider range of tasks that can be
considered physical or cognitive (78), and whether such different
tasks track each other in terms such as individual differences or
external correlations in effort avoidance, remains an important
question for future research. It should be noted, however, that
Experiment 2 did not replicate the cognitive and physical effort
cost correlation, which may be due to sample size or differences in
population. Within-participant comparisons using a broad range
of cognitive and physical travel tasks could speak to the domain
generality of cognitive versus physical effort costs. Intriguingly,
research using the Cognitive Effort Discounting Paradigm found
correlations between effort avoidance for two distinct cognitive
control domains (working memory and speech comprehension
during background noise) suggesting a task general component
of cognitive effort costs (79).

Future studies should test the hypothesized advantages of the
Effort Foraging Task over existing tasks in terms of predictive
validity. These results also leave open how broad or narrow the
observed external validity is beyond the collection of self-reports
measured. Future studies should also clarify whether the high
internal reliability using a split half approach reflects trait or state
influences. Longitudinal applications of this task could be used
to characterize trait-like versus state-dependent contributions to
behavior. State variables such as time of day, arousal level, hunger,
affect, the presence of psychiatric symptoms, and others may
all contribute to effort-based decision making. Understanding
state-dependent influences could prove valuable in identifying
tractable tools to promote effort exertion in daily life. Relatedly,
test–retest reliability should be measured in a replication study;
here, we found the split-half reliability to be above 0.8 for both
effort costs.

Effort Seeking. In all the experiments reported here, we consis-
tently observed a subset of participants who exhibited negative
effort costs (i.e., a preference for the high effort option over
the low effort option) for both the cognitive and physical effort
conditions, suggestive of effort seeking. We hypothesized this
emerged because our indirect sequential choice style, as this
is not commonly seen in direct tasks (but see ref. 46). Both
cognitive and physical effort seeking occur frequently in real
world behaviors and have been linked in the psychological
literature to “need for cognition” and “learned industriousness”
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among other constructs. Evidence shows instances in which effort
requirements add value to a reward (as opposed to discounting
rewards, reviewed in ref. 80). Although this comprised a minority
of participants in our experiments (14.5% cognitive, 12.5%
physical in Experiment 1), it nevertheless suggests the need for
extensions to existing utility models (e.g., the Expected Value of
Control framework). Cognitive effort seeking, prima facie, indi-
cates positive value assigned to exerting cognitive effort, which
may reflect—directly or indirectly—longer-term value attached
to information-seeking and learning that yield better future
performance (81–84). In the same vein, physical effort seeking
may reflect value attached to future performance improvements,
for example, via physical learning (e.g., skill acquisition, strength
building), and information seeking in physical space. In both
cases, effort seeking may also have to do with boredom, which
may hold a disutility that encourages application of effort (e.g.,
ref. 85). This can be adaptive because effort expenditure can
help to obtain rewards, in which case doing nothing carries an
opportunity cost. Individual differences in the value assigned to
novel information/learning (e.g., information bonus, ref. 86)
may also have contributed to the behavior of participants with
negative effort costs, for whom the information/learning value
would be higher in the high effort conditions, leading to a
preference for the high effort conditions. Each of these factors
likely comprise their own dimensions of individual variation
(e.g., boredom aversion, information bonuses) that were not
measured in our experiments. An additional variable which might
contribute to effort avoidance versus effort seeking is distortions
in subjective time perception (65–67). Specifically, if subjective
times in the low effort conditions were exaggerated for some
participants (e.g., if for them, greater engagement leads to a
perception that less time has passed), this could lead them to
perceive a net increase in the travel cost relative to the high effort
conditions, promoting effort seeking. However, in Experiment
4, we confirmed that the main effect of effort avoidance was
conserved even when participants were explicitly instructed that
the travel time was fixed. Future research is needed to further
investigate the factors that drive effort seeking in this task
and others.

Testing Effort Cost Theories. Further work using the Effort
Foraging Task may be useful in testing alternative accounts of
the basis of effort costs (i.e., opportunity cost, processing, and
metabolic accounts, refs. 87–89). For example, to test oppor-
tunity cost accounts, an experiment could manipulate whether
a low effort alternative task is available (e.g., browsing social
media instead of completing the Effort Foraging Task for money).
Opportunity cost accounts would predict that the cognitive effort
cost measured by foraging behavior would be higher during
periods in which an alternative was on offer (87). To test cost of
processing accounts, the travel task could involve multitasking.
By these accounts, participants should treat multitask sets that
recruit more shared representations as more costly than sets that
recruit more separated representations (88).

Relationship to Self-reported Motivation and Affect. CCA
revealed interrelationships between Effort Foraging Task vari-
ables and self-report proxies of real-world motivation and
psychiatric symptoms such as cognitive function, anxiety, behav-
ioral activation, and self-efficacy. CCA results offer preliminary
evidence for a distinction between cognitive and physical effort
costs and affective and motivational symptoms. This suggests
cognitive- versus physical-effort decision measures may prove

useful in capturing subtypes of depression, which should be
explored in major depression using clinician rated (vs. self-
reported) symptoms.

One significant dimension was identified that loaded on mul-
tiple cognitive task variables and self-report measures (Tab. 1).
This dimension plausibly captures something like cautious or
compliant attentiveness to the tasks: Specifically, on the task
side, it reflects increased error rates, which, on the self-report
side, are correlated with movement along a spectrum from
anxiety to behavioral activation. However, this dimension also
dissociates cognitive effort sensitivity (which is decreasing in
this dimension) from error rates (which is increasing in this
dimension) and more tentatively physical effort sensitivity (which
does not load highly on this dimension, and if anything is
increasing). These dissociations also argue against the possibility
that variation in this type of task engagement (62) drives the
univariate correlation between cognitive and physical effort costs.
Altogether, Dimension 1 suggests a more complex profile than
simply nonspecific attentional engagement. These rather nuanced
results may be enabled by our relatively careful exclusion of
grossly inattentive participants (both through attention check
items in the survey and task behavior-based exclusions), who
can otherwise drive uninformative correlations and obscure more
informative relationships (90).

Sensibly, we found that individuals who reported better
cognitive function in the past week (and/or reported fewer
cognitive difficulties on the survey), and higher self-efficacy,
exhibited better performance in the cognitive effort travel tasks
in Dimension 1. However, the positive association between
such cognitive function, self-efficacy, and cognitive effort cost
in Dimension 1 is contrary to our predictions. It may be that
the subjective evaluation of cognitive function and self-efficacy
are more related to error proneness than to cognitive effort cost.
Alternatively, it may be that participants who are experiencing
worse cognitive function and lower self-efficacy are less sensitive
to the cognitive effort task demand differences. Last, while we did
not have any a priori hypotheses about anxiety’s relationship to
effort costs, it figures strongly in predicting both effort costs and
error rates in Dimension 1, meriting further investigation into
how effort costs might relate to symptoms of anxiety. The CCA
is an exploratory analysis and factor structure identified should
be replicated in a confirmatory sample in future work. Informed
by these results, future work could go beyond self-report and use
ecological momentary assessment measures (52, 91, 92).

Effort-based decision making has considerable importance in
daily life. Critical questions remain about how to disentangle
aspects of motivation for effort, how these aspects are represented
in the brain, and the role they play in real-world behaviors. The
cognitive computational study of motivation has the potential to
help people reach their goals by identifying the mechanisms of
motivation and ways to enhance motivation toward what matters
most to an individual.

Materials and Methods

The Effort Foraging Task adapts a version of the patch foraging paradigm by
embedding cognitive and physical effort costs in between patches (here, a
simulated orchard with apple trees). The logic of the task is described in the
Introduction section “The Effort Foraging Task” and complete details on the task
and analysis are described below. On each trial an image of a tree appeared on
the screen, representing an immediately available source of reward. Participants
could choose to harvest that patch (tree) or travel to a new, replenished patch
(Fig. 1). When a tree was harvested, it “shook” and apples were displayed under
it (apples were displayed in a single, left justified, row). Reward depleted within
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a patch such that the more times a tree was harvested the fewer apples it
produced. When participants choose to exit the patch, they had to “travel” which
consisted of completing a cognitively or physically effortful task. Participants had
a fixed amount of time to collect apples (money). Therefore, they must balance
the diminishing returns associated with staying at a patch with the travel costs
required to reach a new, replenished patch.

Block-wise Manipulation. Patches were presented block-wise. We manipu-
lated two factors that defined a block: effort type (cognitive and physical) and
effort level (low and high). Each block type was tested twice, making 8 blocks
total. The total duration of the block was fixed (4 min). Participants had a self-
paced break between blocks. Participants were instructed that the time in a
block was fixed at 4 min and that they had to decide how to spend their time
between harvesting and traveling. The cognitive and physical variants of the
task were completed separately (i.e., all cognitive effort blocks were completed
in sequence, as were all physical effort blocks). Participants did not know when
playing the first effort variant that there would be a second variant upcoming
in the experiment. The order of cognitive and physical effort variants of the task
was counterbalanced across participants. Within blocks of an effort type, each
effort level was tested once during the first half and once during the second
half. Given that constraint, the effort level was fully counterbalanced, resulting
in eight possible block orders. Which of the block orders was used was randomly
selected for each participant. Participants were explicitly instructed about which
travel task they had to perform in a particular block and that they could use the
background color to know the travel task. Additional task details can be found
in SI Appendix, Text 10 and complete instructions can be found in SI Appendix,
Text 11.

Task Environment. The only difference between blocks was the effort travel
task, all other variables of the foraging environment were fixed (SI Appendix,
Table S5). The time it took to harvest the tree (2 s) or travel to a new tree (8.33 s)
was fixed, regardless of reaction times. The apple yield of the first visit to a
patch was drawn from a normal distribution (N (15 apples, 1), maximum = 20
apples). Each following yield was the product of the previous yield and the
depletion rate. On each harvest trial the depletion rate was randomly sampled
from a beta distribution (� = 14.909, � = 2.033) and was on average 0.88
(though the yield would not deplete below 0.5 apples).

Travel Tasks. Participants’ bonus earnings were not influenced by their travel
taskperformance. Inthemaintask,wedidnotsetaperformancecriterionbecause
that would have complicated the interpretation of the foraging behavior (which
would then require estimating not just effort costs but, for example, subjective
efficacy estimates per participant). However, training established the expectation
that participants try to be accurate by tasking participants with completing a set
of miniblocks with high accuracy.
Multi-Source Interference Task. We used the Multi-Source Interference Task
as the cognitive effort task. This task includes multiple types of interference
effects—Stroop, Flanker, and Simon effects—and is simple to administer with a
standard keyboard without the need to learn novel key mappings (47). In this
task, participants identify the oddball out of three numbers by pressing either
the 1, 2, or 3 keys, the trial could either be congruent (i.e., 1 0 0, press 1), or have
interference (i.e., 3 3 1, press 1). Interference trials have a competing distractor
response (here, 3), for which the oddball target is flanked by the distractor and in
the spatial position of the distractor (here, 1 is in the third position). Participants
completed 6 trials per travel for a total of 7.5 s of task time. If participants made
two errors in a row, they saw an attention check (black dot). Participants were
instructed to avoid seeing the black dot.
Rapid Key-pressing Task. Participants performed rapid key-pressing as part of
foraging task during travel between trees (7.5 s, Fig. 2; see training methods
in SI Appendix, Text 9). In the task, participants rapidly pressed the keyboard
with their nondominant pinky finger. All participants were right-handed and
used their left pinky finger to press (the “a” key). Each press filled a horizontal
bar that indicated progress toward the goal number of presses. There were two
conditions referred to as the “Larger number of presses” and “Smaller number of
presses.” Travel time was fixed, so if participants reached the goal presses before
the travel duration they waited and saw the message Completed! on screen. If

they failed to complete the goal number of presses, a black dot appeared on
the screen. Participants were instructed to avoid seeing the black dot. To ensure
within reason that participants used their nondominant pinky finger throughout
the task, they were required to press “hold keys” to occupy other fingers.

Overview of Experiment. Experiment 1 was conducted over a 90-min session.
Participants gave electronic informed consent to participate in the study. All
tasks and surveys were presented using the jsPsych library for JavaScript (93)
and served with using NivTurk software (94) using the Flask software package
for Python. Participants began the experiment with self-report surveys, followed
by the foraging training, the main foraging task, and lastly a debrief survey
including demographics. Based on recent theoretical work (95), we created
a battery of surveys to capture trait need for cognition, and effortful control,
and state motivation and affect (i.e., current symptoms of apathy, anhedonia,
depression, anxiety, see SI Appendix, Table S2).

Participants. A total of 678 Prolific participants (18–56 y, mean = 24.5 y ±
6.7, 307 female, 365 male, and 6 prefer not to answer; race and Hispanic or
Latino ethnicity reported in SI Appendix, Table S6) volunteered for the study. The
study was approved by the Princeton University Institutional Review Board and
participants were recruited from the Prolific platform for the large online sample.
Participants were compensated with $8.33 for one hour a performance bonus
up to $4 (Prolific bonus mean = $3.52, SD = 0.78, range = $0.35–4). The total
number of apples harvested in the Effort Foraging Task were converted into real
money at the end of the experiment, with each apple being worth fractions of
a cent (0.009 cents per apple). The conversion factor was set using pilot data,
such that the best-performing participant (earned the most apples) would make
the maximum bonus. To accommodate both the physical effort task (completed
with the nondominant pinky finger) and the foraging task within standard
keyboard layout, all participants were right-handed. Participants completed
foraging decisions with their right hand and effort travel tasks with their left
hand.

Analysis Methods.
Hierarchical Bayesian Marginal Value Theorem model. Constantino and Daw
(44) investigated trial-by-trial learning in the patch foraging task by predicting
stay-or-exit choices using a softmax (noisy) version of a Marginal Value Theorem
(45) threshold rule for each stay-or-exit choice. As threshold, the model used
a dynamic reward rate estimate given by a running average over obtained
rewards and experienced delays. They showed that this model outperformed
other candidate learning rules, notably temporal difference learning.

For the present study, because we are investigating individual differences
in effort costs at the condition level, we simplified that model to a factorial
one in which the MVT threshold is instead taken as fixed per-condition,
determined by the overall rewards and delays in each condition and a per-
condition effort-cost parameter. Thus, the model omits trial-by-trial learning
of the threshold, and instead formally absorbs any such variation into the
softmax choice stochasticity. We believe this simplification is warranted because
the condition-wise effort costs of interest aggregate over per-trial threshold
variability and because we encouraged asymptotic behavior through extensive
pretraining and using a stable foraging environment throughout. Also, we
have found that learning effects are more easily estimated in a different class
of foraging tasks, prey-selection tasks (57, 96–98), because trial-to-trial prey
encounters are independent, whereas the decaying reward dynamics in patch
foraging tasks correlate offers across trials.

In these respects, this model is intended as descriptive rather than as a
process model. Indeed, our approach of solving for the effort costs that rationalize
asymptotic behavior is also compatible with alternative assumptions about the
way the decision variables are computed (e.g., prospectively, as an intertemporal
choice between anticipated future rewards minus costs from harvesting vs.
traveling).

First, we computed known reward rate values of the foraging environment
per effort condition per participant: total rewards harvested (

∑
r), number of

harvest periods (T = block duration/harvest time), and total times travelled
(see foraging environment parameters in SI Appendix, Table S5). Then, we
solved for the unknown component of average reward rate; the cost of travel
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(c). We estimated the cost of the high effort task (chigh seffort) for an individual
by predicting harvest versus exit decisions using a hierarchical Bayesian logistic
model (Eqs. 2–5). For each foraging trial, the model compares the expected
reward on the next harvest [Re, defined as the average of the previous harvest
and the product of the previous harvest with the mean depletion rate (0.88)]
against the overall average reward rate for a block type (�), using a softmax
function (with inverse temperature parameter, �) to make a choice (harvest or
exit). The cost of travel in high effort blocks (chigh effort) was expressed as the
marginal increase in cost of travel (clow effort + chigh effort) from low to high
effort. Defining this cost as a difference measure controls for any additional
biases individual participants may have which are common to both conditions
(i.e., consistently high exit thresholds for some participants and low thresholds
for others). We used (chigh effort) as the dependent measure of the effort cost for
an individual.

For each effort level (low and high) and effort type (cognitive and physical),
we predicted choices to stay or exit a patch:

P(staylow effort) =
1

1 + exp (�(Re − �low effort))
, [2]

where,

�low effort =

∑
r −

∑
clow effort

Tlow effort
, [3]

and,

P(stayhigh effort) =
1

1 + exp
(
�(Re − �high effort)

) , [4]

where,

�high effort =

∑
r −

∑
clow effort + chigh effort

Thigh effort
. [5]

There were five parameters in the model, the inverse temperature (�,
which controls the noise of the softmax choice function, with lower values
indicating more noisy effects of rewards and thresholds on choices), the cognitive
low (ccog low effort) and high effort costs (ccog high effort), and the physical low
(cphys low effort and high effort costs (cphys high effort). The model included a
full covariance matrix of the parameters (5-by-5 matrix) which consists of
a correlation matrix and a scale (SD) matrix. Parameters were drawn from a
multivariate Gaussian distribution. We used the covariance matrix to estimate
the correlation between individual differences in high cognitive and physical
effort costs.

Thepriordistributionswereclow effort ∼ N (0, 40),chigh effort ∼ N (0, 30),
� ∼ N (0, 0.5). The prior on the correlation matrix was unbiased as to the
presence or absence of a correlation (LKJ Correlation Distribution prior = 1, ref.
99). Individual participant parameters and their group-level distributions were
estimated using Markov Chain Monte Carlo sampling, implemented in Stan
with the CmdStanR package (4,000 samples, 2,000 warm-up samples, across 4
chains, Stan Development Team, ref. 100). We also simulated the MVT model
to estimate the best exit threshold with respect to reward and time given the
foraging environment parameters (SI Appendix, Table S7 and Text 6).
Canonical correlation analysis. To leverage the strength of our data in
having many detailed individual differences measures of theoretically related
constructs, we used Canonical Correlation analysis to perform a many to many
correlation (we used the cc function from the CCA package in the R language,
ref. 101). The task measures included were cognitive effort cost, interference

and congruent trial error rate [transformed as log(2-correct)], physical effort cost,
and overall exit threshold (estimated in log apples over all low effort blocks
by participant using linear mixed-effects regression, discussed in SI Appendix,
Text 1). The self-report measures were a combination of trait and symptom
state measures of motivation for cognitive and physical effort (SI Appendix,
Text 4 and Table S2). The trait self-reports were the need for cognition (102),
behavioral inhibition and behavioral activation (103), and effortful control
(Adult-Temperament Questionnaire, ref. 104). The symptom self-reports were
cognitive function (PROMIS, ref. 105), apathy (Apathy Motivation Index,
ref. 106), anhedonia (Snaith Hamilton Pleasure Scale, ref. 107), physical fatigue
(PROMIS Fatigue, ref. 105), general self-efficacy (PROMIS, ref. 105), anxiety
(Generalized Anxiety Disorder-7, ref. 108), and depression (Patient Health
Questionnaire-9, ref. 109). For any measures with subscales, self-report scores
were the combined overall averages.
Exclusion criteria. Participants completed the study on their own outside of
the laboratory. To ensure data quality, we used task behavior to constrain our
sample to participants who completed the experiment in earnest (SI Appendix,
Text 7 and Table S8 shows the Experiment 1 exclusion criteria, the quantitative
cutoffs, and the number of outlier participants). The exclusion criteria were not
completing the experiment, missing the response deadline on many harvesting
trials, poor cognitive or physical travel task performance, too few exit trials in a
condition, and very large changes in exit threshold from low to high cognitive
and physical effort conditions. Participants with very large shifts in thresholds
produced strong outliers in our Marginal Value Theorem model, many of whom
had very few exit trials in one condition.

Data, Materials, and Software Availability. The Effort Foraging Task code,
the analysis code, and data are openly available at the Open Science Framework
repository https://osf.io/a4r2e/ (110).
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