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Significance

Early prediction of severity of 
cognitive deficits in children born 
from adverse pregnancies is both 
difficult and urgently needed for 
timely clinical intervention. 
Therefore, we need biological 
signatures that can accurately 
identify susceptible children early 
as well as robust tools and 
methods that can in turn 
discover such biological 
signatures. In this study, we used 
a machine learning model to 
show that differential splicing of 
certain key messenger RNAs in 
blood cells of young mice, born 
from adverse pregnancies, can 
accurately predict whether those 
mice would manifest motor 
learning disabilities. We propose 
that machine learning models, 
such as ours, and differential 
splicing of peripheral mRNAs, can 
serve as templates for discovery 
and therapeutics respectively, 
potentially across various 
adverse pregnancy paradigms.
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Severity of neurobehavioral deficits in children born from adverse pregnancies, such as 
maternal alcohol consumption and diabetes, does not always correlate with the adver-
sity’s duration and intensity. Therefore, biological signatures for accurate prediction of 
the severity of neurobehavioral deficits, and robust tools for reliable identification of 
such biomarkers, have an urgent clinical need. Here, we demonstrate that significant 
changes in the alternative splicing (AS) pattern of offspring lymphocyte RNA can func-
tion as accurate peripheral biomarkers for motor learning deficits in mouse models of 
prenatal alcohol exposure (PAE) and offspring of mother with diabetes (OMD). An 
aptly trained deep-learning model identified 29 AS events common to PAE and OMD 
as superior predictors of motor learning deficits than AS events specific to PAE or OMD. 
Shapley-value analysis, a game-theory algorithm, deciphered the trained deep-learning 
model’s learnt associations between its input, AS events, and output, motor learning 
performance. Shapley values of the deep-learning model’s input identified the relative 
contribution of the 29 common AS events to the motor learning deficit. Gene ontol-
ogy and predictive structure–function analyses, using Alphafold2 algorithm, supported 
existing evidence on the critical roles of these molecules in early brain development and 
function. The direction of most AS events was opposite in PAE and OMD, potentially 
from differential expression of RNA binding proteins in PAE and OMD. Altogether, 
this study posits that AS of lymphocyte RNA is a rich resource, and deep-learning is 
an effective tool, for discovery of peripheral biomarkers of neurobehavioral deficits in 
children of diverse adverse pregnancies.

RNA splicing | offspring of mother with diabetes | prenatal alcohol exposure |  
peripheral biomarker | machine learning

Intellectual and behavioral disabilities in children result from an interplay between 
mutations and exposure to adverse prenatal environments (1). Although severity and 
type of disability can correlate with type, timing, duration, and intensity of environ­
mental stressors, developmental trajectories are usually divergent among similarly 
exposed children with similar genetic make-up (2). Exposed children likely to develop 
neurobehavioral impairments are not always identified early, when appropriate clinical 
interventions are more effective (3). Therefore, identification of biomarkers that can 
accurately predict neurobehavioral impairments in children, regardless of their exposure 
history, is critical.

Alcohol consumption (4) and diabetes among pregnant women (5) are serious risk 
factors for the developing fetus. Children with fetal alcohol spectrum disorders (FASD), 
caused by prenatal alcohol exposure (PAE), exhibit a spectrum of neurobehavioral deficits 
including impaired motor and intellectual development (6). However, PAE, even at high 
dosages, does not always result in uniform neurobehavioral deficits (7). Although some 
fatty acid molecules and maternal microRNAs have been identified as biomarkers for 
FASD (8–10), biomarkers that can predict the risk of developing neurobehavioral impair­
ments characteristic of FASD have not been identified. Offspring of mother with diabetes 
(OMD), prenatally exposed to high blood glucose levels, also have an increased risk of 
neurobehavioral deficits including impaired motor development (11). OMD animal mod­
els exhibit similar impairments (12). However, biomarkers associated with neurobehavioral 
impairments in OMD are more limited than that in FASD.

Aberrant splicing is associated with increased risk for various cancers (13) and neu­
ropsychiatric disorders (14, 15). Alternative splicing (AS) also plays a pivotal role in 
development of nervous (16) and immune systems (17) and is sensitive to changes in the 
fetal environment (18, 19). Therefore, we hypothesized that AS events in peripheral blood 
mononuclear cells (PBMCs) can serve as biomarkers of neurobehavioral impairments in 
PAE and OMD.
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Next-generation RNA sequencing methods have generated vast 
data about transcriptional changes underlying various disorders 
(20). The urgent need is for development of tools that can identify 
pertinent data for treatment (i.e., therapeutics) and prediction of 
penetrance (i.e., biomarker) of these disorders (21). Deep-learning 
algorithms are uniquely suited for this task (22) and are increas­
ingly deployed in clinical decision-making (23). However, the 
criteria for these decisions are not observable without algorithmic 
interventions (24–26).

In this study, we performed RNA sequencing of B cells, T cells, 
and monocytes from PAE and OMD, conditions with significant 
but variable impairment in motor learning. We deployed a 
deep-learning algorithm, Long Short-Term Memory (LSTM), to 
identify the subset of AS events most relevant for prediction of 
motor learning impairment. With these biomarker AS events as 
input, we trained the deep-learning model to perform at maxi­
mum prediction accuracy, without being underfit or overfit. Using 
Shapley value analysis, a game-theory algorithm for deep-learning 
model interpretation (24, 27), putative relative contribution of 
these biomarkers toward accurate model prediction was deter­
mined. We then performed gene ontology (GO) analysis to iden­
tify the roles of these biomarkers in cognitive development and 
disorders, and structure–function analysis, via AlphaFold2 algo­
rithm, to characterize the putative effect of these AS events on 
protein structures. Finally, we investigated how differential RNA 
binding protein (RBP) expression in PAE and OMD might influ­
ence AS patterns of these biological signatures.

Results

Variable but Significant Motor-skill Learning Deficits in Young 
PAE and OMD Mice. OMD mice were generated using the High-
Dose Streptozotocin (STZ) Induction Protocol, which induces 
maternal diabetes via STZ-induced pancreatic beta cell death (28) 
(Fig. 1A). PAE mice that model FASD have been described (29) 
(Fig. 1B). Dynamics of blood ethanol concentration in alcohol-
exposed (AE) and AE-control dams at gestational day 16.5 and 
17.5 is presented in SI Appendix, Fig. S1. Fasting (Fig. 1D) and 
random (Fig. 1E) blood glucose levels of mother with diabetes 
(MD) and MD-control groups were monitored over two weeks 
post STZ injection, during which no change was observed in 
their body weight (Fig. 1C). Higher fasting (Fig. 1G) and random 
(Fig. 1H) blood glucose levels in MD group continued throughout 
pregnancy, with no difference in their body weight from MD-
control group (Fig. 1F). Both body weight and blood glucose level 
at 6 h post fasting in male, but not female OMD group, were lower 
at P29 compared to offspring from the MD-control group (OMD-
control) (SI Appendix, Table S1). Such sexual dimorphism is also 
observed in children from MD (30). STZ administration to dams 
had no effect on pancreatic insulin-positive cell area and number of 
islets in 11-wk-old OMD mice (SI Appendix, Fig. S2). Locomotor 
activity as assessed via open field test was similar between OMD 
and OMD-control mice, and between PAE and PAE-control mice, 
irrespective of gender (ref. 29 and SI Appendix, Fig. S3).

We then assessed motor-skill learning ability via accelerated 
rotarod test (Fig. 1I). PAE and OMD groups were significantly 
impaired in motor learning, in comparison to PAE-control and 
OMD-control groups respectively, as assessed via difference in their 
terminal speed between the first and final (sixth) trials (Fig. 1J). 
The learning index, average change in terminal speed of each mouse 
between two consecutive trials, was also significantly lower in PAE 
and OMD, relative to their respective controls (Fig. 1K). These 
two motor-skill learning ability parameters did not show any dif­
ferences by gender in each group (SI Appendix, Fig. S4). The extent 

of learning deficits among similarly exposed PAE offspring varied 
widely, as per previous reports (29), and resembled the variability 
of motor-skill learning deficit among children with FASD (31). 
Motor-skill learning deficits and their variability among OMD 
were milder than those in PAE (Fig. 1 J and K).

To examine any secondary effects due to fostering complications 
by mothers with adverse pregnancy, we performed cross-fostering 
of newborn offspring. There was no effect on fostering by alcohol- 
administered mothers (29) and MD mothers on motor learning 
of their respective offspring (SI Appendix, Fig. S5). In OMD con­
dition, the metabolic measures were similar between fostering and 
non-fostering mothers and between their respective offspring 
(SI Appendix, Fig. S5).

Minimal Overlaps in Differentially Expressed Genes between PAE 
and OMD. PBMCs were collected for RNA-sequencing one day after 
the accelerated rotarod test (Fig. 2A) and sorted via fluorescence-
activated cell sorting (FACS) into monocytes (CD19−/CD90.2+), B 
cells (CD19+/CD90.2−), and T cells (CD11b+/CD19−) (32) (Fig. 2 
B–E). The proportion of these cells was not significantly different 
among PAE, OMD, and their respective controls (SI Appendix, 
Fig. S6 A, C, and E). The proportion of B cells in OMD-control 
females showed a significant decrease compared to OMD-control 
males, but no other groups showed significant differences by gender 
(SI Appendix, Fig. S6 B, D, and F). RNA sequencing reads were 
aligned onto mm10 mouse genome by HISAT2 (33) and counted 
by HTSeq (34). Most reads passed Phred score-based quality filter 
(SI Appendix, Fig. S7 A and B). Gene density across expression 
level bins was similar among samples (SI  Appendix, Fig.  S4C). 
Similarity among samples was analyzed by multi-dimensional 
scaling (MDS) analysis where most samples clustered according 
to cell type (Fig. 2 F and G). Differentially expressed gene (DEG) 
analysis via EdgeR algorithm in Integrative Differential Expression 
Analysis for Multiple EXperiments (IDEAMEX) (35) exhibited 
minimal DEG overlap between PAE and OMD in any cell type 
(Fig.  2 H–J and SI  Appendix, Fig.  S7 D–I). Genes with fold 
change > 2 and false discovery rate (FDR) < 0.05 were considered 
significantly different. Different combination of read aligning (i.e., 
Spliced Transcripts Alignment to a Reference, STAR) and counting 
methods (featureCounts) did not materially alter the number of 
shared DEGs.

Common and Unique Differential AS Events in PAE and OMD. 
Significant differential AS events in PBMCs were identified via 
rMATS (replicate multivariate analysis of transcript splicing) (36). 
Fig. 3A depicts five AS event types assessed: skipped exon (SE), 
mutually exclusive exon (MXE), alternative 3′ (A3SS) and 5′ 
(A5SS) splice sites, and retained intron (RI). Of note, ~30,000 AS 
events were detected in each cell type, in PAE and OMD (Fig. 3 
B–G and SI  Appendix, Fig.  S8). AS events with delta percent 
spliced in (Δpsi) value > 0.05 and FDR < 0.05 were considered 
significantly different (Fig. 3 and SI Appendix, Fig. S8). Number 
of SE events was the highest, and RI the lowest, in all cases (Fig. 3 
B–G and SI Appendix, Fig. S8).

It was observed that 16, 13, and 1 AS events were common 
between PAE and OMD in B cells, T cells, and monocytes, respec­
tively (Fig. 3 H–J; arrows, Fig. 3 K–T). In contrast, 320, 253, and 
106 AS events were unique to PAE, and 161, 249, and 82 AS 
events were unique to OMD in B cells, T cells, and monocytes, 
respectively (Fig. 3 H–J). Minimal to no genes were common to 
both significant DEGs and significant AS events in any cell type 
in either PAE or OMD (SI Appendix, Fig. S9). Results were 
cross-checked with another AS detection algorithm, Leafcutter 
(37). Due to the limited number of significant AS events and only 
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one AS event being common to both PAE and OMD, combined 
with the under-representation of monocyte contributions to cog­
nitive development and function in neuro-immune interaction 
literature compared to B cells and T cells, AS events in monocytes 
were excluded from further analyses.

An SE event in Ets1 was shared between common AS events 
in B cells and T cells in PAE and OMD. Therefore, there were 29 
common AS events, but 28 common and unique AS events. In 
subsequent analyses, this SE event in Ets1 was treated as two 
independent AS events and was experimentally confirmed 
(SI Appendix, Fig. S10 B and C), along with another common SE 

AS event in TVP23b (SI Appendix, Fig. S10A), via quantitative 
real-time PCR. To identify any trends between psi values of AS 
events and motor learning ability in PAE and OMD, we arranged 
z-score normalized psi values of 29 common AS events from all 
samples in ascending order of their learning index. Mice were 
classified as slow or fast learners depending on whether their learn­
ing index were above or below the population median of 2.8, 
respectively. Normalized psi values clustered according to motor 
learning ability (SI Appendix, Fig. S11) suggesting that psi values 
of AS events could be useful input in accurate classification of 
motor-learner type.
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Fig. 1. PAE and OMD mice exhibit significant deficits in motor-skill learning. (A) STZ or CB was injected into P42 mice 14 d before gestational onset to obtain MD 
and MD-control mice, respectively. Arrows indicate timepoints of metabolic and physical assessments. (B) Note that 25% ethanol (in PBS) or PBS was injected 
into gestating P56 mice at E16.5 and 17.5 to obtain alcohol-exposed (AE) and AE-control mothers. (C–H) No significant difference in body weight between MD 
and MD-controls [C, Treatment: F(1, 5) = 0.3166, P = 0.5980, Days: F(4, 20) = 0.5091, P = 0.7297, Interaction: F(4, 20) = 2.817, P = 0.0527]. Compared to MD-
controls, random blood glucose levels were significantly elevated in MD mice at 12 and 14 d post STZ injection in fasting [D, Treatment × Days interaction: F(4, 
20) = 3.784, P = 0.0190], but not in the non-fasting condition [E, Treatment: F(1, 5) = 4.146, P = 0.0973, Day: F(4, 20) = 3.128, P = 0.0376, Interaction: F(4, 20) = 
1.923, P = 0.1459]. Body weight increased similarly in MD and MD-controls during pregnancy [F, Treatment: F(1, 5) = 0.05422, P = 0.8251, Days: F(4, 20) = 75.95, 
P < 0.0001, Interaction: F(4, 20) = 0.5466, P = 0.7036]. Compared to MD-control, random blood glucose levels in pregnant MD mice were significantly elevated 
during E5.5–17.5 in the non-fasting condition [H, Treatment × Days interaction: F(4, 20) = 3.551, P = 0.0241]. Random blood glucose levels in pregnant MD mice 
were higher, but not significantly so, in the fasting condition [G, Treatment: F(1, 5) = 4.85, P = 0.0789; Days: F(4, 20) = 0.8769, P = 0.4952; and Treatment × Days 
interaction: F(4, 20) = 0.6711, P = 0.6197]. (I) Accelerated rotarod test schematic. (J) Initial motor coordination (terminal speed at trial 1) was unaffected in PAE 
and OMD (PAE vs. PAE-control, P = 0.1838; OMD vs. OMD-control, P = 0.2960; Kruskal–Wallis test). Changes in terminal speed of PAE and OMD mice between 
first and last (sixth) trials were significantly smaller than those of controls (PAE vs. PAE-control, P = 0.0044; OMD vs. OMD-control, P = 0.0035; two-tailed Student’s 
t-test). (K) Learning-index scores of PAE and OMD mice were significantly lower compared to their respective controls (PAE vs. PAE-control, P = 0.0045; OMD 
vs. OMD-control, P = 0.035; two-tailed Student’s t-test). Statistical tests: Two-way repeated measures ANOVA (C–H) followed by the post hoc simple main effect 
test (D and H). Sample sizes (# mice): (C–H) MD-control = 3, MD = 4; (J and K) PAE-control = 37, PAE = 41, OMD-control = 30, OMD = 26. (C–H and J) Line graphs 
represent mean ± SEM. * = significantly different with P-values of *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Common AS Events Are Better than Unique AS Events at 
Adequately Training a Deep-learning Model to Accurately Predict 
Motor-learner Type. To identify significant AS events most predictive 
of motor-learner type, we deployed a deep-learning model (38), 
Long Short-Term Memory (LSTM) (39) (Fig. 4A, Methods). Raw psi 
values of either common (Fig. 3 K–T, annotations) or unique (Fig. 3 
H and I) AS events from B cells and T cells were used as input. For 
output, mice were classified as either fast or slow learners.

Input data were randomly split into a training dataset, contain­
ing 80% of data, and a test dataset, containing 20% of data. The 
LSTM model learns during training from errors in its prediction 
and uses it to predict fast or slow learners, for unseen test dataset 
during testing. Deep-learning algorithms are therefore optimiza­
tion algorithms that iteratively seek to minimize errors in its pre­
diction. This error is represented by loss of optimization (i.e., loss) 
function. Binary cross-entropy is the loss function for the LSTM 
model, and its output, binary cross-entropic loss, is a proxy for 
the LSTM model’s learnability.

Nature of distribution of loss function values over epochs indi­
cates overgeneralization (overfitting) or under generalization 
(underfitting) of mapping model input to output. While overfit 
models learn useful features and irrelevant noise in input dataset 
(and overgeneralize), underfit models are incapable of adequately 
learning useful features in input dataset (and undergeneralize), 
both suboptimal for model performance and utility. The loss func­
tion value should incrementally decrease and approach zero with 
each successive epoch for optimal underfitting-free learning. 
Model learning loss on the training dataset (i.e., training loss, 
black line in Fig. 4 B–J) should be lower than model learning loss 
on the test dataset (i.e., test loss, red line in Fig. 4 B–J) at each 
epoch for optimal overfitting-free learning.

We compared LSTM model learnability, as assessed via distri­
bution of loss function values over 1,000 epochs (Fig. 4 B–J), with 
input datasets containing psi values of AS events either common 
to PAE and OMD (Fig. 4 B, C, and H) or unique to PAE (Fig. 4 
C, F, and I) or OMD (Fig. 4 D, G, and J). The LSTM model 
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Fig. 2. Number and proportion of common DEGs in PAE and OMD mice are minimal. (A) Blood was drawn from P35–40 mice after their accelerated rotarod 
test, and PBMCs—B cells, T cells, and monocytes—were FACS-sorted for RNA-sequencing. (B–E) PBMCs, labeled with surface antigen markers, were sequentially 
gated based on cell size [forward scatter (FSC) vs. side scatter] (B) and singlets (FSC vs. trigger pulse width) (C) followed by their sorting into B cells (D, CD19+/
CD90.2−), monocytes (D, CD19−/CD90.2+) and T cells (E, CD11b+/CD19−). (F and G) MDS analysis of normalized RNA-seq count data from all samples show clustering 
of samples by cell type, in PAE (F) and OMD (G). (H–J) Venn diagrams show the number and proportion of unique and common significant DEGs in PAE and 
OMD, in comparison to their respective controls, in B cells (H), T cells (I), and monocytes (J). At least a twofold change in gene expression, per EdgeR analysis, 
was considered significant.



PNAS  2023  Vol. 120  No. 50  e2304074120� https://doi.org/10.1073/pnas.2304074120   5 of 11

Fig. 3. Number, proportion, identity, and characteristics of common AS events in PAE and OMD. (A) Five AS event types (SE, MXE, A3SS, A5SS, and RI) assessed. 
(B–G) Circos plots show chromosomal distribution of significant AS events in B cells (B and E), T cells (C and F) and monocytes (D and G), in PAE (B–D) and OMD 
(E–G). Outermost circle blocks represent 21 mouse chromosomes. Length of these blocks and density of their monochrome fill are proportional to relative 
chromosomal length and relative density of significant AS events in that chromosome respectively. Each inner concentric circle represents an AS type. Black 
and red dots represent significant AS events with +Δpsi and −Δpsi respectively. (H–J) Venn diagrams show number and proportion of unique and common 
significant AS events in PAE and OMD, in comparison to their respective controls, in B cells (H), T cells (I), and monocytes (J). (K–N) Volcano plots show distribution 
of significant AS events (green), among non-significant AS events (gray), of A3SS (K and M) and SE (L and N) AS types in T cells in PAE (K and L) and OMD (M and 
N). Arrows indicate distribution of 13 significant AS events common to PAE and OMD in T cells. (O–T) Volcano plots show distribution of significant AS events 
(red), among non-significant AS events (gray), of A3SS (O and R), A5SS (P and S), and SE (Q and T) AS types in B cells in PAE (O–Q) and OMD (R–T). Arrows indicate 
distribution of 16 significant AS events common to PAE and OMD in B cells. AS events with a Δpsi > 5% and FDR < 5% were considered significant.



6 of 11   https://doi.org/10.1073/pnas.2304074120� pnas.org

Fig. 4. Psi values of AS events common to PAE and OMD are better than those unique to PAE and OMD at adequately training a deep-learning model to 
accurately predict motor learner type. (A) LSTM model architecture consisting of an LSTM layer with three LSTM neurons and an output layer with one dense 
neuron. Each LSTM neuron comprises four gates: an input gate for information input, a forget gate for forgetting irrelevant learned associations, a cell-state 
(memory) gate for remembering relevant learned associations, and an output gate for output of learned information. Vectors show flow of information and their 
various permutations during learning. For training and testing the LSTM model, psi values of 29 common AS events were used as input, and learnability of PAE 
and OMD mice, classified as either slow or fast learners (learning-index score below or above the population median of 2.8, respectively), was used as output. 
Of note, 80% and 20% of input was used for training and testing respectively. (B–J) Comparison of learnability of the LSTM model, as assessed via distribution 
of binary cross-entropic loss function values over epochs. Psi values from different subsets of data with equivalent sample sizes, i.e., from the common 29 AS 
biomarkers (B, E, and H), or all unique significant events in B cells and T cells in PAE (C) or OMD (D), or only the top 29 most significant unique AS events in B cells 
(F and I) or T cells (G and J) in PAE (F and G) and OMD (I and J), were used as input. For equivalent comparison of model performance across B–J, sample number 
in biomarker group (B, E, and H) was randomly reduced from 56 (B, all samples) to 32 (E) to 24 (H). In all comparisons, AS events in common biomarker group (B, 
E, and H) resulted in better LSTM model learnability than either all unique significant events (C and D) or the top 29 most unique significant AS events in either 
PAE (F and G) or OMD (I and J). This worse LSTM model learnability for each comparison is annotated with blue text (C, D, F, G, I, and J) as either underfitting or 
overfitting relative to LSTM model performance with biomarker group (B, E, and H).



PNAS  2023  Vol. 120  No. 50  e2304074120� https://doi.org/10.1073/pnas.2304074120   7 of 11

learned optimally, with no overfitting or underfitting, with input 
data from 29 common AS events from all 56 samples in PAE and 
OMD (Fig. 4B). However, the LSTM model was underfit with 
input data from 573 unique AS events from 32 samples in PAE 
(Fig. 4C) and input data from 410 unique AS events from 24 
samples in OMD (Fig. 4D). The LSTM model learning with input 
data from 29 common AS events was also relatively optimal when 
sample size was randomly reduced to 32 (Fig. 4C) and 24 (Fig. 4H) 
to facilitate equivalent comparisons of LSTM model learnability 
with input data from unique AS events of PAE (Fig. 4 F and G) 
and OMD (Fig. 4 I and J). However, LSTM model learning was 
suboptimal with input data derived from 29 most significant B 
cell (underfit, Fig. 4F) and 29 most significant T cell (overfit, 
Fig. 4G) AS events from 32 samples in PAE (Fig. 4 F and G). 
Similarly, LSTM model learning was suboptimal when input data 
was derived from 29 most significant B cell (underfit, Fig. 4I) and 
29 most significant T cell (underfit, Fig. 4J) AS events from 24 
samples in OMD (Fig. 4 I and J).

To summarize, the LSTM model trained and tested on input data 
from 29 common AS events were superior in learning, relatively less 
overfit and underfit, than the same LSTM model trained and tested 
on comparable input data from non-common (i.e., unique) AS 
events from B cells, T cells, or both, from either PAE or OMD.

Accurate Classification of Fast and Slow Learners Via the Deep-
learning Model with Common AS Events as Input. We evaluated 
the accuracy of the LSTM model in predicting fast from slow 
learners with psi values from 29 common biomarker AS events as 
input. The LSTM model was trained and tested over 1,000 epochs, 
and its % prediction accuracy on the test dataset, its performance 
proxy, was plotted for each epoch (SI Appendix, Fig. S12A) along 
with corresponding loss values, its learnability proxy (SI Appendix, 
Fig. S12B). LSTM model performance began with ~40% prediction 
accuracy, for training and test datasets, and rose to 100%, in 
training dataset at ~80 epochs, and in test dataset at ~225 epochs 
(SI Appendix, Fig. S12A). Corresponding loss values for training and 
test datasets incrementally decreased from 0.8 at epoch 1 to ~0 at 
epoch 1,000 (SI Appendix, Fig. S12B), suggesting that the LSTM 
model learned optimally and is not underfit. Percentage prediction 
accuracy of test dataset was never better than that of training dataset 
(SI Appendix, Fig. S7A), and loss values of test dataset were higher 
than those of training dataset (SI Appendix, Fig. S12B), throughout 
1,000 epochs, indicating the absence of overfitting.

We then performed fivefold cross validation of the LSTM model 
to determine whether all input features were equally important for 
prediction accuracy. Input dataset was randomly split into five 
equal parts: four of which (80%) were used for training, and fifth 
was used for testing model performance (SI Appendix, Fig. S12C) 
and learnability (SI Appendix, Fig. S12D) over 200 epochs. The 
process was repeated until each of the five parts was used for testing 
exactly once. Trajectory of performance and learning within each 
test varied widely (SI Appendix, Fig. S12C), suggesting differential 
contribution of AS events toward model performance. Split III 
performed best, and split V worst, in testing of model prediction 
accuracy (SI Appendix, Fig. S12C), indicating that their respective 
training AS events, splits I + II + IV + V, and splits I − IV, contained 
the best and worst AS events for model training. Importantly, the 
LSTM model learned optimally, with no overfitting or underfit­
ting, in all five splits of the fivefold cross-validation analysis 
(SI Appendix, Fig. S12D). However, because assignment of AS 
events to different splits during cross-validation analysis is random, 
and due to general opacity of deep-learning models (40), it is not 
possible to determine exactly which AS events were included in 
the different splits. Therefore, it was not possible to determine 

which AS events were relatively more important for model train­
ing/performance solely via cross-validation analysis.

Relative Contribution of Common AS Events to LSTM Model 
Performance in Classifying Learner Types. Deep-learning models 
are “black boxes” where learned associations between input and 
output are not accessible to observation (41). Algorithms have 
been developed to decipher this opacity of deep-learning models 
(24, 42, 43). Shapley-value analysis is the most widely used among 
them (24–26) and is deployed here to determine the relative 
contribution of 29 AS events to the LSTM model’s performance 
in accurately classifying motor-learner type.

Derived from cooperative game theory, Shapley-value algorithm 
assigns payouts to players depending on their contribution to total 
payout from a game (27). Here, each input feature is a “player” 
in a game where accuracy of model prediction is the payout. 
Shapley values then indicate how to fairly distribute this payout 
among input features. Therefore, input features (i.e., AS events) 
with higher Shapley values are relatively more important to pre­
dictive accuracy of the LSTM model. Using SHAP (SHapley 
Additive exPlanations) algorithm (44) during training of the 
LSTM model, we computed a unique Shapley value for 29 com­
mon AS events derived from 56 mice samples in input. Common 
AS events were then ranked based on sum of their Shapley values 
from all input samples (top to bottom, Fig. 5A).

We then tested whether different input features cluster in ways 
that could suggest hidden relationships (45). We performed Pearson 
correlation analysis of Shapley values of all 29 common AS events 
(Fig. 5B). Input features grouped into four distinct clusters: clusters 
I and III comprised of B cell AS events, and clusters II and IV 
comprised of T cell AS events. While different clusters of the same 
cell type exhibited a negative correlation with each other (clusters: 
I vs. III, II vs. IV; Fig. 5B), clusters of one cell type showed no or 
weak correlation with both clusters of other cell types (clusters: I vs. 
II and IV, II vs. I and III, III vs. II and IV, IV vs. I and III; Fig. 5B).

Relevance of Shapley-value Clusters to Neuronal Function and 
Childhood Motor Disorders. We then identified significantly 
enriched GO terms (P < 0.01) related to biological processes, 
molecular processes, cellular component, human phenotype, 
molecular pathways, and rare childhood disorders with cognomotor 
dysfunction (SI Appendix, Figs. S13 and S14), for clusters I–IV 
genes.

Cluster I B cell genes—Gnas, Chchd7, Mtpap, Rasa1, Ets1, 
Stk38, Bin1, and Kdm7a (Fig. 5B)—were associated with neuronal 
GO terms (amyloid precursor protein metabolism, glial differen­
tiation, dopamine receptor signaling, binding to glutamate and 
adrenergic receptors, and to Tao proteins) (SI Appendix, Fig. S13 
A and E), neuronal cellular compartments [axon initial segment 
and node of Ranvier (SI Appendix, Fig. S13I)] and dysarthria 
(SI Appendix, Fig. S13J), a motor speech disorder associated with 
FASD (46).

Cluster II T cell genes—Zfp639, Ms4a6b, Setdb2, Umps, Celf2, 
Usp15, and Wac (Fig. 5B)—were associated with GO terms for 
enzymatic modification of nucleotides and proteins (catabolism of 
proteasomal proteins, epigenetic histone modifications, and pyrim­
idine metabolism) (SI Appendix, Fig. S13B), binding to RNA pol­
ymerase II transcription apparatus ( SI Appendix, Fig. S13F), and 
abnormality of human T cell physiology (SI Appendix, Fig. S13J).

Cluster III B cell genes—Tnfaip3, Ttc3, Dapp1, Pld4, Ddx50, 
Rars2, Wdr43, and Brox (Fig. 5B)—were associated with GO 
terms for peripheral immune cell functions (Toll-like receptor 
signaling, B cell and lymphocyte activation, B cell homeostasis, 
and interleukin production) (SI Appendix, Fig. S13C) and motor 
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disabilities in young children, impaired head control and suckling 
(SI Appendix, Fig. S13J) (47).

Cluster IV T cell genes—2310001H17Rik, Mapk9, Ets1, Ptcd3, 
Tvp23b, Tcrg-c4 (Fig. 5B)—were associated with GO terms for vas­
cular development (SI Appendix, Fig. S13D), leukocyte cell adhesion 
(SI Appendix, Fig. S13D), and microRNA transcription (SI Appendix, 
Fig. S13D), processes affected in FASD and OMD (48–51).

Human pathway analysis showed associations with inflammation- 
related pathways including B cell receptor, IL-17, and TNF-alpha 
signaling (SI Appendix, Fig. S13K). Rare disease ontology showed 
association of clusters I–IV genes with rare childhood genetic devel­
opmental disorders with cognomotor impairment (SI Appendix, 

Fig. S14). Thus, GO analyses demonstrated the relevance of bio­
marker AS genes to various cellular and molecular processes crucial 
for motor development, suggesting that these AS events can also 
occur simultaneously in neural cells and thereby affect childhood 
motor development. Another possibility is that these AS events in 
PBMCs may also directly regulate early motor development (52).

Influence of Key AS Events on the Structure and Function of Spliced 
Isoforms. We then determined whether biomarker AS events would 
impact long and short AS protein isoform structures and therefore 
their stability and function. Non-coding RNA 2310001H17Rik 
was excluded, and the amino acid (AA) sequences of long and 

Fig. 5. Shapley value analysis suggests differential contribution of individual AS event biomarkers to LSTM model performance. (A) Shapley values were derived 
for 29 common biomarker AS events—for each mouse in PAE, PAE-control, OMD, and OMD-control—to assess relative contribution of each biomarker AS event 
to the LSTM model’s ability in accurately predicting learner type. Tornado plot displays distribution of all Shapley values. Red and green circles represent Shapley 
values in slow and fast learners respectively. Biomarker AS events are arranged in descending order of their Shapley value sum from all samples. (B) Pearson 
correlation of Shapley values of AS events from all samples identified four distinct clusters: clusters I and III for B cell AS events and clusters II and IV for T cell 
AS events. Shapley values for AS events in each cluster were positively correlated with that of other AS events in the same cluster (reddish cells). There was 
a strong negative correlation between Shapley values for AS events of the same cell type but belonging to different clusters (cluster I and III, cluster II and IV) 
(blueish cells). Shapley values for AS event clusters of different cell types showed no strong correlation (whitish cells).
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short AS isoforms of the remaining 27 unique biomarker AS 
events were derived.

AS of Ms4a6b, Zfp639, and Mapk9 retain introns and are likely 
non-coding, and AS of Chchd7 and Gnas occurs in their untrans­
lated regions, suggesting that these AS events have no influence 
on the transcribed mRNA.

Eleven AS events—in Kdm7a, Usp15, Ttc3, Pld4, Rars2, Dapp1, 
Stk38, Umps, Tnfaip3, Tcrg-c4, Brox—result in substantial 
C-terminal truncation (i.e., >30% AA loss) of short isoform. One 
AS Setdb2 transcript is non-coding. We predicted structures of long 
and short isoforms resulting from four AS events—Kdm7a, Usp15, 
Dapp1, and Brox—using AlphaFold2 (53, 54). Superimpositions 
of long and short isoforms using FATCAT (Flexible structure 
AlignmenT by Chaining Aligned fragment pairs allowing Twists) 
(55) showed drastic differences in structures of short and long iso­
forms (SI Appendix, Fig. S15) suggesting that big mRNA trunca­
tion should result in either degradation of truncated short transcript, 
or production of substantially truncated isoform (56). Therefore, 
these AS events should result in selective loss of short isoform, 
thereby affecting relative availability of long isoform.

Among remaining AS events—Mtpap, Ets1, Tvp23b, Celf2, 
Wdr43, Ptcd3, Wac, Ddx50, Bin1, and Rasa1—while Mtpap and 
Ptcd3 AS events result in small C-terminal truncations, the rest 
result in interior exon skipping. We predicted structures of long 
and short isoforms from five AS events using AlphaFold2 (53, 
54)—SE AS events in Mtpap, Ets1, Tvp23b, Celf2, and Rasa1 
(SI Appendix, Figs. S5L and S17 and Movie S1)—to highlight 
how AS can influence structure, properties, and functions of their 
spliced isoforms by modifying protein domains directly [i.e., sub­
strate binding site in Celf2 and enzymatic site in Rasa1 
(SI Appendix, Fig. S16 G–J and Movie S1)] and indirectly [i.e., 
protein–protein binding site in Ets1 and membrane localization 
domain in Tvp23b (SI Appendix, Fig. S16 C–F and Movie S1)] 
essential for protein function. As expected, predicted structures 
of long isoforms were globally similar to predicted structures of 
their respective short isoforms, except around their spliced-in 
regions, as evident from their superimposition using FATCAT 
(red, SI Appendix, Fig. S18 and Movie S1). Spliced regions are 
important for various physiochemical properties, suggesting that 
AS here should result in viable translation of short and long iso­
forms with different physiochemical properties.

Potential Involvement of RBPs in Opposing Pattern of AS in PAE 
and OMD. A majority of significant AS events, in PAE and OMD, 
for all cell types, were negative (red dots, Fig. 3 B–D) and positive 
(black dots, Fig. 3 E–G) Δpsi events, respectively. This opposing 
directional splicing pattern was preserved in 20 biomarker AS 
events (Fig. 3 K–T).

RBPs play a combinatorial role in AS, where differential binding 
of RBPs to transcript influences its AS outcome (57, 58). We 
hypothesized that opposing directional splicing patterns in PAE 
and OMD could result from differential effects of alcohol and 
high glucose on RBP expression. We investigated how any such 
differential RBP expression between PAE and OMD could inter­
act with differential density of cognate RBP binding sites in bio­
markers, to influence their opposing directional splicing.

We determined binding site densities of 71 RBPs along upreg­
ulated and downregulated exons of all significant SE AS events 
(Fig. 3 B–G and SI Appendix, Fig. S8) using RBPMap (59). We 
then determined average ratio of binding site density along upreg­
ulated vs. downregulated exons for each RBP (SI Appendix, Fig. S19A) 
thereby facilitating direct comparison across RBPs irrespective of 
frequency of occurrence of individual RBP binding sites along AS 

events. Next, we determined fold change of RBP expression in 
each cell type in PAE and OMD (SI Appendix, Fig. S19B). Upon 
plotting binding site density ratio and fold change for RBPs across 
all cell types and experimental conditions as scatter plots, we 
observed that distribution of RBPs changes drastically between PAE 
and OMD within the same cell type (SI Appendix, Fig. S20 A–F).

We then investigated whether differential RBP expression plays 
a role in opposing splicing direction in the biomarkers. We observed 
that binding site density of RBPs, Igf2bp3, Srsf2, and Cpeb2, 
among the top differentially expressed RBPs between PAE and 
OMD conditions across all cell types (SI Appendix, Fig. S19B), var­
ies across regions key for splicing in these biomarkers (SI Appendix, 
Fig. S20H). All three RBPs also exhibited a differential expression 
pattern between PAE and OMD in B cells and T cells (SI Appendix, 
Fig. S20G).

These data suggest that interaction of differential expression of 
individual RBPs in PAE and OMD, with differential occurrence 
of binding sites for those RBPs, could explain opposing AS direc­
tion in PAE and OMD.

Discussion

Deep-learning models have enabled rapid advances in medicine, 
from early detection of cancers (60) to rapid drug screening and 
discovery (61). However, despite their prowess, inner workings of 
deep-learning models are opaque to observation (41, 62). 
Considering their increased adoption in decision-making in health­
care, transition of deep-learning models from a “black box” to an 
“interpretable” paradigm is imperative, and thus, several different 
algorithms have been suggested as solutions (24–26, 43, 63).

Using a deep-learning model, LSTM (39), we analyzed PBMC 
RNA-sequencing data and discovered 29 AS events in key genes 
as accurate predictors of motor learning deficit in PAE and OMD. 
An analogous machine-learning analysis of PBMC RNA-sequencing 
data identified an increase in CD8+ T-effector memory cells as a 
peripheral biomarker for Alzheimer’s disease (64). We then used 
Shapley-value analysis to interpret the aptly trained LSTM model 
and characterize the relative contribution of 29 biomarkers to pre­
diction of motor learning deficit.

AS is a critical driver of early brain development (16, 17). 
Besides, the possibility that AS events in PBMCs similarly affect 
the same genes in developing brain; these peripheral AS events could 
also influence early brain development directly. Neuroimmune 
interactions play an important role in cognitive function and 
development (65). T cells in CNS meninges regulate synaptic plas­
ticity and short-term memory via IL-17 production (52), whose 
signaling pathway was enriched in GO analysis of Cluster III genes 
(Fig. 5). The AS events identified in this study are therefore likely 
key contributors to cognitive development and function, disrup­
tion of which may underlie intellectual disabilities in children 
affected by PAE, MD, and other prenatal stressors.

Children exposed to other prenatal stressors—maternal infla­
mmation (66), smoking (67), and drug abuse (68)—show an 
increased risk for similar neurobehavioral impairments (69, 70). 
Environmental stressors activate stress signaling pathways involv­
ing molecular chaperones and inflammatory cytokines (71), and 
experimentally mimicking their fetal expression results in similar 
neurobehavioral impairments (72, 73). Therefore, common mech­
anisms are anticipated as etiologies for these diverse pathologies. 
Here, common AS events, by being at least twice as frequent in 
total significant AS event dataset, are more likely to be AS events 
of key salience for motor learning deficit, than unique AS events. 
The deep-learning model independently concluded the same.
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Combination of differential RBP expression and occurrence of 
their binding sites might be involved in opposing splicing direction 
of AS events in PAE and OMD (SI Appendix, Fig. S20). However, 
we do not know how this can consistently result in motor-skill 
learning disability. Biomarkers fell into two categories: one where 
longer AS isoform is likely more stable than their shorter isoform 
and the other where both isoforms are likely equally stable but with 
different physiochemical properties. A possible explanation could 
be that AS dysregulation in the first category can result in an imbal­
ance in subcomponents of macromolecular complexes and signaling 
pathways, lowering their functional activity and stability (74). 
Another possibility entails homodimerization-dependent protein 
activity, observed in five biomarkers: Mtpap (75), Usp15 (76), Ets1 
(77), Umps (78), and Tnfaip3 (79). Dysregulation of AS resulting 
in formation of isoforms unamenable to homodimerization can 
have a dominant negative effect on homodimer formation. Yet 
another possibility is that both isoforms of biomarkers in the second 
category fill a functional niche in early brain development, and 
dysregulation of AS in either direction perturbs this balance.

Ideally, our LSTM model would have been tested on a valida­
tion set (besides the test set), for optimal assessment of model 
generalizability on unseen data. We mitigated the absence of the 
validation set with fivefold cross-validation analysis, which 
showed that the LSTM model is capable of generalizing well and 
is robust (SI Appendix, Fig. S12 C and D). Nevertheless, the 
LSTM model should be further assessed with a validation set, as 
well as on independent datasets, for optimal evaluation of model 
generalizability.

These biomarker AS events are conserved in mice and humans. 
However, PBMC types tested here are limited, and there are 
species-specific differences in PBMC differentiation and function 
(80). Another potential, albeit unlikely, reservation is that PBMC 
properties may have been affected by accelerated rotarod test 
preceding blood collection. AS biomarkers identified here with 
the short-read NovaSeq 6000 platform should be further validated 
using a long-read RNA-seq platform (e.g., HIFI sequencing from 
Pacific Biosciences) (81). Long-read platforms, by producing 
longer sequencing reads, can more accurately differentiate between 
true AS events and pseudogenes. Such validation, besides enhanc­
ing the reliability of our findings, may also uncover other novel 
AS biomarkers. Also, implied changes in protein diversity resulting 
from biomarker AS events should be validated via mass spectrom­
etry in future studies. Ultimately, these biomarkers need to be 
validated in a clinical setting for their accuracy and reliability as 
prognosticators of motor and other learning deficits in children 
prenatally exposed to alcohol, high blood glucose, or other prenatal 
stressors.

Materials and Methods

More details on the materials and methods used are provided in SI Appendix.

PAE and OMD Mice Models. CD-1 mice (Jackson Laboratory) were maintained 
in a regular 12-h light–dark cycle and constant room temperature (RT) of 22 ± 
1 °C. Mice with an overnight vaginal plug were marked as E0.5. For generating 
PAE mice, pregnant 8-wk-old CD-1 mice were intraperitoneally (IP) injected with 
25% ethanol solution (in PBS), at 4 g/kg of body weight, on their 16.5 and 17.5 d 
of gestation. PAE-control mice were injected with PBS (29, 69, 72).

For generating OMD mice, 6-wk-old CD-1 mice were IP injected with STZ 
solution [in citric buffer (CB)], at 150 mg/kg body weight (https://www.diacomp.
org/shared/document.aspx?id=74&docType=Protocol). MD-control mice were 
injected with CB. Blood glucose levels were periodically monitored, during fasting 
and at random intervals, with the Accu-CHEK Guide (Roche) glucometer. Female 
mice that tested for blood glucose levels above 150 mg/dL after 6 h of fasting and 
above 250 mg/dL during random sampling, in at least two time points within 14 d  
of STZ injection, were chosen for breeding.

For cross-fostering experiments, OMD and OMD-control mice were swapped 
within 48 h after birth and were reared by CF-MD-control and CF-MD mothers, 
respectively.

DEG Analysis. DEG analysis was performed via EdgeR (v3.24.3) algorithm (82) 
using IDEAMEX (35).

LSTM Deep-learning Model. The LSTM model was written and executed with 
Keras (83), an open-source python neural-network library running on top of 
TensorFlow(84) (v1.x; Google). Python code (85) was executed in Colaboratory 
(86) (Google). Numpy python library (87) was used for proper formatting of raw 
input data, psi values of AS events, into LSTM model input.

SHAP Analysis. SHAP, a Shapley-value algorithm for interpreting deep-learning 
model predictions (24–26), was used to assign a Shapley value to each input 
feature, proportional to its contribution toward accurate prediction of slow and 
fast learners by LSTM deep-learning model (44).

Study Approval. All animal experimental protocols were approved by Institutional 
Animal Care and Use Committee, Children’s National Hospital.

Data, Materials, and Software Availability. Python code is available upon 
request. RNA sequencing data are available as GSE202254 (88) at GEO.
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