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Abstract

Chromatin dynamics are central to the regulation of gene expression and genome stability. In order 

to improve understanding of the factors regulating chromatin dynamics, the genes encoding these 

factors are deleted and the differential gene expression profiles are determined using approaches 

such as RNA-sequencing. Here, we analyzed a gene expression dataset aimed at uncovering 

the function of the relatively uncharacterized chromatin regulator, Set4, in the model system 

Saccharomyces cerevisiae (budding yeast). The main theme of this paper focuses on identifying 

the highly differentially-expressed genes in cells deleted for Set4 (referred to as Set4Δ mutant 

dataset) compared to the wild type yeast cells. The Set4Δ mutant data produce a spiky distribution 

on the log fold changes of their expressions, and it is reasonably assumed that genes which are 

not highly differentially-expressed come from a mixture of two normal distributions. We propose 

an adaptive local false discovery rate (FDR) procedure, which estimates the null distribution 

of the log fold changes empirically. We numerically show that, unlike existing approaches, our 

proposed method controls FDR at the aimed level (0.05) and also has competitive power in finding 

differentially expressed genes. Finally, we apply our procedure to analyzing the Set4Δ mutant 

dataset.
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1 Introduction

In gene expression studies, the abundance of product (different RNA species) from 

individual genes is measured in response to a particular perturbance of cells, such as 

the incorporation of a mutation into a master regulator of gene expression or treatment 

with a chemical or cellular stress stimulant. Often, this perturbance results in a very 

specific pattern of gene expression changes, in which a relatively small subset of the 

genes tested exhibit high differential expression. It is of interest to identify genes that 

experience highly differentiated expression as a direct consequence of the genetic or 

chemical change. The endeavor of identifying these genes from among many thousand 

candidates presents a multiple testing problem where some common statistic is used as a 

measure of differentiation. In addition, the sheer number of hypotheses that need to be tested 

makes false discovery rate (FDR) a reasonable error rate to consider. The BH procedure 

based on p-values in Benjamini and Hochberg (1995) is a typical approach in multiple 

testing problems that controls false discovery rate (FDR).

A local FDR method by Efron (2004) uses the empirical Bayes approach in order to estimate 

relevant parameters in the null distribution of test statistics. In Efron, the null distribution is 

assumed to be normal with unknown parameters. Both the BH procedure and the local FDR 

procedure may fail in controlling a given error rate if any of the assumptions on the null 

distribution is violated.

In the motivating study, our investigation focused on the gene expression consequences of 

removing the chromatin regulator Set4 from Saccharomyces cerevisiae yeast cells (Tran et 

al., 2018). The Set4 protein contains a common signature of chromatin-associated proteins 

and previous work has shown it plays an important role in regulating gene expression in 

response to stress (Serratore et al., 2018). Notably, Set4 is a conserved protein (Zhang 

et al., 2017), with human counterparts that contribute to both cancer progression and 

neurodevelopmental disorders (Deliu et al., 2018) and this type of study in yeast frequently 

improves our understanding of how these chromatin regulators control gene expression in 

the pathological conditions (Tran and Green, 2019). The study involves the examination of 

about 8,600 coding and non-coding genes in order to identify highly differentiated candidate 

genes using the logfold change statistic. This statistic measures the extent by which each 

gene changes from their wild type when Set4 is absent from cells. Highly positive or 

negative logfold values are indicative of the strongly differentiatially-expressed genes that 

provide important biological insight.

Some studies that have also dealt with logfold change in the same context of gene 

differentiation assume the distribution of this statistic to be approximately Normal 

(Kammers et al., 2015), making standard tests such as the student’s t-test applicable 

(McCarthy and Smyth, 2009). For multiple testing, this implies that Efron’s local FDR 

procedure is likewise applicable. However, at least in the particular situation of the Set4Δ 

mutant data set, assuming normality of the logfold change does not seem to be reasonable. 

Cells often have very specific responses to genetic or chemical disruptions, and the majority 

of the genes in the genome will not show differential expression following the perturbance 

compared to standard conditions. This means that many of the genes are expected to have 

Ramos et al. Page 2

Biom J. Author manuscript; available in PMC 2023 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



logfold change values that are very close to zero. However, there is also often a subset of 

genes that show small changes, most likely due to indirect consequences of genetically or 

chemically perturbing the cell. Either group is not of interest to the biologist and so belong 

to the null distribution. Thus, the resulting null distribution of the test statistic is heavily 

concentrated around zero, making the distribution have a very high peak, and is a mixture 

of two distributions. It is assumed that each component retains the general assumption of 

normality for logfold change data, and so this mixture is considered to be a mixture of two 

normal distributions. Since Efron’s local FDR procedure is based on a single distribution 

for the null distribution, it is not directly applicable to the motivating dataset where there 

are two different sources of insignificant genes. Efron’s approach may lead the local FDR 

procedure to fail in controlling a given error rate. Given the biological context leading 

experimenters to believe in two sources of undifferentiated genes, the null distribution is 

modelled as a mixture of two normal distributions. Nonetheless, for this estimation of the 

null distribution, an interval type zero assumption initially used in the work of Efron (2004) 

can still be applied. In particular, the work of Park et al.(2011) expanded this assumption for 

use in estimating a mixture of two normal distributions. Specifically, they used an adaptive 

procedure to model the null distribution as a mixture of two normal distributions based on 

the assumption that for some interval around the center of the data, all data in the interval 

came purely from the null distribution. The choice of this interval is critical since a selected 

interval affects the estimation of the null distribution. The method in Park et al.(2011) is 

based on selecting an interval in which the data are used for estimating the null distribution. 

The choice of the optimal interval is based on widening interval and the calculation of 

some criterion corresponding to the data in the interval. This approach may be sensitive and 

unstable for the case of high-peaked data since a very small increase of interval causes a 

dramatic change of data in the interval leading to unstable estimation of the null distribution. 

From our simulations shown later, we see that the method in Park et al.(2011) performs very 

conservatively.

When we use the idea of widening interval from the center of the whole data, any desirable 

criterion for selecting an optimal interval should be sensitive at detecting a change from 

purely null to mixture of null and alternative distributions.

Using the idea of widening interval, Gauran et al.(2018) proposed a criterion based on 

change-point detection to identify the point where behavior of the criterion indicates 

contamination of data from the alternative distribution. One main idea of this paper is 

that we modify the criterion of change-point detection considering the very spiky peaked 

phenomenon to have more stable estimation procedures. Furthermore, we also improve the 

method in Park et al.(2011) to avoid serious conservative decisions.

The remainder of the article is organized as follows. In Section 2, a brief background on 

the existing methods and their limitations are provided. Section 3 describes a framework for 

the newly proposed methods including three algorithms. Section 4 highlights the simulation 

studies for a variety of cases while Section 5 shows the real application of the methods to the 

Set4Δ mutant data set.
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2 Development of local FDR Method

2.1 Original Method

In this section, we briefly review the FDR procedure and provide our model and its 

estimation procedure. When multiple hypotheses are tested simultaneously, control over type 

I error becomes an important issue (Benjamini and Hochberg, 2011). Different type I error 

controlling procedures have been developed to address this issue (Storey and Tibshirani, 

2003). For example, family-wise error rate (FWER) seeks to control the probability of 

encountering at least one false discovery at a given nominal rate (Aickin and Gensler, 

1996). Procedures that control this error rate, such as the Bonferroni Procedure or Holm’s 

procedure are typically conservative (Shaffer, 1995).

On the other hand, false discovery rate (FDR) is the expected proportion of falsely rejected 

null hypotheses. Multiple testing procedures controlling FDR are likely to reject more 

hypotheses than those controlling FWER. Benjamini and Hochberg (1995) developed the 

procedure controlling FDR for independent p-values while the procedure in Benjamini and 

Yekutieli (2011) is valid under arbitrary dependence. Efron (2004) constructed the local 

FDR procedure which are based on the posterior probability of the observed data from the 

view point of empirical Bayes. When there are z1, …, zn, it is of interest to test the following 

hypotheses simultaneously: for 1 ≤ i ≤ n,

H0i:zi f0 vs . H1i:zi f1 . (1)

Each zi is modeled as

f(z) = p0f0(z) + 1 − p0 f1(z) (2)

Where f0(z) = 1
σ0

ϕ z − μ0 /σ0  for ϕ(z) = 1
2pie− z2

2  and p0 = P(H0i) for all 1 ≤ i ≤ n. Based on 

Efron (Efron, 2004), the local false discovery rate for a given statistic z is defined as

fdr(z) = p0f0(z)
f(z) (3)

which requires the estimates of (f0, f, p0). f(z) can be estimated using Poisson-regression or 

splines. f0(z) is estimated using the “zero-assumption,” which states that elements found 

around the central peak of the distribution come exclusively from the null distribution. With 

this assumption and the assumption that the null distribution is normal, quadratic splines can 

be used in order to accomplish the estimation. Finally, the estimates of f(z) and f0(z) can 

be used to estimate p0. With these estimates, the local FDR at any value of the statistic can 

be computed and may be interpreted as the average number of false discoveries that would 

occur if hypotheses associated with this statistic are rejected.

2.2 Misspecification of the Null Distribution

Misspecification of the null distribution poses a serious problem in any simultaneous 

inference approach (Efron, 2004). Despite of this, limited research was found on examining 
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the general validity of the local FDR assumption that the null distribution of test statistics 

is normal. Schwartzman (2008) addressed the misspecification problem for the null 

distribution by extending Efron’s procedure to fit the null to exponential families in general. 

However, this extension is also insufficient if the null does not belong to the exponential 

family. Robin et al. (2007) and Jeong et al. (2018) used semiparametric methods to model 

the mixture distribution for purposes of application in the local FDR procedure but retained 

the null distribution as normal. Other studies were also found that modified Efron’s local 

FDR procedure according to the demands of particular research contexts such as functional 

MRI data (Lee et al., 2016) or soil content data (Chauveau et al.,2014). Efron’s local 

FDR procedure uses a more flexible null distribution; a family of normal distributions 

with empirically estimated parameters instead of a theoretical null distribution such as a 

standard normal distribution. However, such an extension of the null distribution may not be 

enough in many practical situations where the null distribution is more complicated based 

on the experimental context. In particular, we consider an additional extension based on 

scientific reason that the null distribution is a mixture of two normal distributions which 

is suitable for the Set4Δ mutant data. Park et al.(2011) used a mixture of two normal 

distributions for the null distribution to explain a heavy tailed null distribution with a couple 

of estimation procedures for relevant parameters. They highlighted that a mixture of two 

normal distribution has some advantage in fitting a heavy-tailed null distribution than a 

normal distribution. On the other hand, the data from Set4Δ mutant data are mostly centered 

around zero due to the high-peaked phenomenon which may cause some difficulties in 

the estimation of all relevant parameters in local FDR procedures. It will be demonstrated 

that the existing method is unstable in fitting the spiky data with mixture of very small 

variance and wider one and produce fairly conservative decisions under such data. We will 

address some difficulties and then propose three methodologies to overcome the difficulties 

or improve some existing procedure in the following sections.

3 Proposed model and estimation Procedure

In Efron’s local FDR procedure, a single normal distribution is used for f0 in (2) (Efron, 

2004), however f0 may have a more complicated form such as a mixture of two distributions 

for some scientific reason as in the case of Set4Δ mutant data described in the introduction. 

Instead of a single normal distribution for f0, we consider a mixture of two normal 

distributions as follows:

f0(z) = ηϕ1(z) + (1 − η)ϕ2(z) (4)

where ϕ1 and ϕ2 are each the densities of normal distributions with corresponding parameters 

μ1, σ1
2  and μ2, σ2

2 . The type of high-peaked data is explained by a normal distribution with a 

small variance, say σ1 < < σ2, so that ϕ1 corresponding to σ1 represents a ”spiky” distribution 

with almost a zero-inflation phenomenon observed at the center of data. Regarding f1 in (2), 

it is not necessary to assume anything on f1 if we estimate f directly, however we put a 

condition called the zero assumption as follows:

f(z) = p0f0(z) for z ∈ [ − c, c] (5)
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which is also used in other studies (Efron, 2004; Park et al., 2011; Gauran et al., 2018). 

From the zero assumption in (5), we can avoid the issue of identifiability in the mixture 

model of f0 and f1 since the support of f1 is ( − ∞, − c) ∪ (c, ∞). More importantly, it is not 

of interest to distinguish between the different types of undifferentiated genes from ϕ1 and ϕ2

found in [ − c, c]. Instead, we need only to estimate f0 for calculating fdr(z) in (3). Regarding 

c, c in (5) is unknown in practice, however Efron (2004) used an ad-hoc choice of c which 

may affect the estimation of parameters in the null distribution. Thus, in the calculation 

of local FDR, a good estimate of unknown c is needed to have desirable properties of 

multiple testing procedure since both underestimating or overestimating c is problematic. 

Underestimating c can cause instability of parameter estimates while overestimating c can 

lead to a considerable loss of power. In the following sections, we identify and address some 

difficulties in estimating c for the spiky distributed data set in local FDR procedure and 

provide (i) estimation of (f0, f, p0) for a given c and (ii) estimation of c itself.

3.1 Estimation of (f0, f, p0) for a fixed c
When c in (5) is known, estimation procedure is based on truncated data, 

zi ∈ ℐ = zi: zi ≤ c . The parameters in f0 are estimated using the EM algorithm based on 

the conditional distribution of f0(z) given |z | ≤ c. More specifically, we use the conditional 

density of z given |z | ≤ c and estimate all parameters μ1, σ1, μ2, σ2, η  in f0, c(z) = f0(z)
∫−c

c f0(z)dz

as in Dempster et al. (1977) where f0(z) is defined in (2). Regarding the estimation of f, 

any nonparametric density estimation procedure such as poisson regression may be used. 

Specifically, a method using splines that is included in the local FDR procedure of Efron 

(2004) was used. This is implemented by the locfdr function of the locfdr R-package, https://

cran.r-project.org/web/packages/locfdr/locfdr.pdf. Finally for estimating p0, we utilize the 

estimators of f and f0 and use an estimator of p0 by integrating both sides in (5) leading to 

the following restricted estimator of p0,

p0 = min 1, F(c) − F( − c)
F 0(c) − F 0( − c)

, (6)

where F  and F 0 are the cumulative distribution functions from estimated f  and f 0, 

respectively.

3.2 Choice of c
The remaining step is to estimate the zero-assumption interval [ − c, c] or simply c. In this 

regard, Efron (2004) used the prefixed interval which makes a strong assumption that may 

not be applicable in all situations. In the high-peaked data set, there are several problems 

in selection of c. Park et al. (2011) proposed a couple of methods to choose c based on 

comparison of the estimate of p0 and the relative frequencies in [ − c, c] for different c values. 

One of those methods is based on the idea of goodness-of-fit (GoF) test selecting the 

best interval with the largest p-value from GoF tests for different intervals. In high-peaked 

data, a large portion of the data are concentrated around the spiky part which dominates 
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other observations including the differentiated expressions. Our simulation studies later will 

demonstrate that this procedure is fairly conservative so there is a room for improvement.

On the other hand, Gauran et al. (2018) proposed a loglikelihood-based criteria using the 

idea of change point detection in multiple testing problem for discrete data. For different cis
with ci − 1< ci for i = 1, 2, ..., I and c0 = 0, [ − ci, ci] can either contain points only from f0 or 

from the mixture of f0 and f1.

For the data z ∈ [ − c, c], the correct likelihood is obtained from f0(z) which is larger than 

f(z) due to the zero assumption, f(z) = p0f0(z) < f0(z) and 0 < p0 < 1. Conversely, the 

correct likelihood of the data from the outside of [ − c, c] is f(z) which tends to be larger 

than f0(z). From this idea, the sign of logf0(z)
f(z)  can be an indication of whether z belongs to 

either inside or outside of [ − c, c]. The cumulative sum of log ratio corresponding to the data 

in [ − c, c] tends to increase and then starts to decrease when the data from outside of [ − c, c]
start to be included.

Based on this criterion and the predetermined grid points of ci for i = 1, ..., I, Gauran et al. 

(2018) used the EM algorithm to have estimates p0, ct, f 0, ci, f  for each ci and then considered 

the following criterion

c* = argmaxci: i = 1, …, IL ci (7)

for L(c) = ∑zj: zj ≤ c logf 0, cf zj

f zj
.

Note that f0 and p0 are estimated for different intervals [ − ci, ci], so in fact, f 0 and p0 depend 

on a given interval, say f 0 = f 0, ci and p0 = p0, ci corresponding to [ − ci, ci] while f  is estimated 

with the whole data one time. We suppress ci in f 0, ci and p0, ci for notational simplicity. For the 

criterion in (7) to be working well, it is necessary that f 0 = f 0, ci for different ci < c should be 

similar so that L ci  is monotone increasing in ci < c. Figure 1 illustrates unstable estimates 

of p0 and f0 for different intervals from simulated data.

The broken curve in Figure 1 represents the estimate of f while the solid curves represent 

estimates of f 0 corresponding to different intervals [ − ci, ci]. There are clear differences 

among f 0s especially around the peak, however, f 0, ci tends to be close to each other as z
moves further away from the center. In high-peaked data, there are condensed data around 

the center which may lead to large differences in the criterion based on L ci  in (7) although 

there are slight differences among f 0s for different cis. Thus, we consider some adjustment 

which can avoid such unstable behaviors of L ci  in (7) for the case of high-peaked data.

In practice, differentiated genes from f1 are clearly distinguished from those from ϕ1 with 

σ1( < σ2) and are mixed with data from ϕ2. From this point, the value c in (5) is located 

outside of ϕ1 with σ1( < σ2) which are the part of the data where the high peak is located. 

To reflect this idea, gene expression zi with |zi | > 2σ1 or |zi | > 3σ1 is assumed to be generated 

Ramos et al. Page 7

Biom J. Author manuscript; available in PMC 2023 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from either ϕ2 or f1. In terms of avoiding instability of L ci  due to unstable estimate of f 0

for different cis, it seems to be reasonable to exclude the condensed high-peaked section of 

the data in L ci  which is the main idea of overcoming the difficulty in selecting c. Based on 

this idea, we propose two algorithms called Fixed a and Flex a with a smoothed curve of 

L ci . Additionally, we also propose another method called Hybrid where we use an initial 

estimate of [ − c, c] using some known method such as goodness-of-fit(GoF) in Park et al. 

(Park et. al.,2011) and attempt to improve upon it by using the criterion in (7). The first 

proposed algorithm is based on only removing the data around spiky part. Given that the 

component is normal, it is considered that [ − a, a] contains about 95 percent of elements 

coming from this component, where a = 2σ1 σ1 < σ2 . Thus, these elements do not relevantly 

contribute to the criterion. Based on this, a modified criterion was constructed as

c* = argmaxci: i = 1, …, I L ci − L(a) (8)

where a is constant for all ci. Based on the previous sections, we propose the following 

algorithm for Fixed a as follows:

Algorithm 1 (Fixed a): Step 1: Obtain an initial estimate for σ1
2 < σ2

2 , the variance of the 

spikier component of the null distribution using EM algorithm on some sufficiently large c
such that [ − c, c] contains 80 percent of the data.

Step 2: Let a = 2σ1 where σ1 is from Step 1.

Step 3: Let c1 = a and take c1 < c2 < · · · < cI so that [ − ci, ci] contains a fixed number of data 

more than [ − ci − 1, ci − 1].

Step 4: Do EM estimation of parameters in θ = ( μ1 , σ1, μ2 , σ2, η) for the data subset in 

[ − ci, ci] and compute L ci − L(a).

Step 5: Choose c * = argmaxci: i = 1, …, I L ci − L(a)  and the corresponding estimator of θ.

In Fixed a, the main idea is that L ci  should have a monotone increasing pattern in 

ci ∈ [0, 2σ1] from 
f0(z)
f(z) > 1 for |z | < 2σ1 however, we actually estimate all the parameters in 

f0 for different cis. L ci  for different ci values are computed based on different f 0s of which 

estimation errors may cause instability of L ci . From the instability of f 0, the monotonicity 

of L ci = ∑zj: zj < ci
f 0 zj

f zj
 is not guaranteed for ci < c. Fixed a is designed for eliminating the 

instability by removing the part of high-peaked portion of the data around the center of the 

whole data. The choice of a in Step 2 in Fixed a is ad-hoc, so there may be a room for 

improvement. We consider a more flexible procedure which uses more values of a rather 

than a fixed value of a. Furthermore, there is another problematic phenomenon in L ci  such 

that multiple small bumps in the plot of L ci  leading to several local maximums. Ideally, 

we should have one maximum of L c , however this does not happen due to estimation 

errors in f 0 and f . To remedy this, we consider a smoothed curve of L c  by ignoring 
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small variations of L c  and detect a single global maximum from the smoothed curve. 

For these two purposes such as (i) more flexible a to remove spiky part and (ii) detect a 

single global maximum by removing small variations, a is treated as a tuning parameter 

and smoothed curve of L c  is fitted for each a. Considering these two aspects, we propose 

another Algorithm, Flex a as follows:

Algorithm 2 (Flex a): For a given K, we take a1 < ... < aK.

Step 1: For a given ak, compute L ci − L ak  for all ci > ak, i = 1, ...I using Fixed a.

Step 2: Fit ci, L ci − L ak  for ci > ak using quartic (4th order) polynomial regression.

Step 3: Identify the number of local maximums of the fitted polynomial regression in Step 2.

Step 4: If both of the following conditions are true, stop and accept the result in Step 1. 

Otherwise, repeat Step 1 using ak+1.

• Condition 1: There is exactly one maximum from the fitted regression curve 

located in the range of the ci

• Condition 2: At least one value of the first derivative of the quartic polynomial at 

the first few smallest cutoff values is positive.

The Flex a approach seeks to choose an a that ignores enough of the data around the 

peak of the distribution to make L c  stable. By fitting a quartic polynomial, the fitted 

curve becomes a proxy for the behavior of the criterion across different values of c. The 

quartic polynomial is selected since it is flexible enough to accommodate both desirable and 

undesirable behaviors of the curve. If Condition 1 is false, then it means that the criterion 

goes up again within the range of ci after reaching a first maximum point, which is contrary 

to the intended behavior of L c  with respect to c. If Condition 2 is false, then it means 

that L c  does not start in an increasing state, which is again contrary to its intended 

behavior. Thus, if either condition is false, then it means that the plot is not behaving as 

it should if enough of the bias from L c  has been removed by a. Thus, in this case, the 

algorithm proceeds to repeating the process with an increased a. In essence, Flex a is based 

on removing some part of the condensed high-peaked part adaptively.

A demonstration of how the algorithm adjusts a until achieving the intended behavior of 

L c  is shown in the Figure 2.

The Figure 2 shows the plot for a specific simulated data set (seed=2) at different values 

of a selected, where ak is selected as some factor of σ1 for σ1 < σ2 such as {1, 1.25, 1.5, 

1.75, 2, 2.5}. As shown from Figure 2, at a = 2σ1 σ1 < σ2 , the plot shows two visible local 

maximums within the range of data which are not desirable. By increasing ak, the plot with 

a = 2σ1 shows the fitted line shows one maximum which we actually expect in the sense that 

we have one maximum. In the example of Figure 2, when we observe the phenomenon from 

2σ1 from the given grid points of ak, Flex a chooses a = 2σ1 in this example.
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As mentioned, Fixed a and Flex a should estimate f0 for different cis which may cause 

some unexpected pattern of L c  from different estimation errors. To avoid this, we propose 

another algorithm, called Algorithm 3 (Hybrid), which does not request multiple estimation 

of f0 for different ci values.

Algorithm 3 (Hybrid)—Step 1: Use a conservative interval [ − cI, cI] and estimate 

( μ1 , σ1, μ2 , σ2, η, p0) using the data in [ − cI, cI]

Step 2: Create equally-spaced grid points 0 < c1 < · · · < cI for cutoff values in [ − cI, cI]
chosen in Step 1.

Step 3: Compute the criterion L ci  for 1 ≤ i ≤ I using Algorithm 1 with a = 0.

Step 4: Select the cutoff value with maximum criterion value as the best cutoff, i.e., 

c* = argmax1 ≤ i ≤ IL ci

The rationale behind Hybrid is that since ( μ1 , σ1, μ2 , σ2) in f0 and (η, p0) are estimated only 

once based on [ − cI, cI] chosen in Step 1 using the GoF approach (Park et. al.,2011), so the 

variation of L c  from differently estimated parameters for different cis can be eliminated 

while Fixed a and Flex a include such variations. Thus, in Hybrid, a can be safely set to be 

zero and the expected behavior of criterion values versus cutoff values will be observed. The 

initial choice of [ − cI, cI] in Step 1 should be conservative in the sense that the interval can 

include the true interval [ − c, c] for the Zero assumption in (5) so that [ − c, c] can be included 

in [ − cI, cI]. However, we do not want to take an arbitrarily large interval, so we use GoF 

which tends to select a wider interval than the true interval in the Zero assumption. Hybrid 
attempts to improve upon the conservative result of the GoF approach by re-detecting the 

change point using Fixed a.

4 Simulation studies

In this section, we present simulation studies to compare the performance of the three 

proposed algorithms (Fixed a, Flex a, and Hybrid). We also provide results using the 

GoF approach in Park et al. (2011) and Efron’s local FDR procedure (Efron, 2004) for 

comparison. Each of these methods is evaluated across different sets of null and alternative 

distribution configurations. Across all settings, the means for the null distributions are set to 

be zero to reflect the biological assumption on the non-interesting genes. If the ratio of σ1

and σ2 is large, it is expected to have a very high peak around the center of the data. In each 

setting, we generate 8,000 data and p0 = 0.9 of them are generated from f0 while the rest are 

generated from f1, i.e. 7,200 and 800 are generated from f0 and f1, respectively. η in f0 is set 

to be 0.6.

As alternative distributions, we consider several different settings: (i) a truncated t-

distribution with 20 degrees of freedom and truncation excluding the region [−0.5,0.5], (ii) 
a pair of shifted truncated t-distributions shifted by ±1.5 and likewise truncated to exclude 

the region [−0.5,0.5], and (iii) a mixture of gamma(shape=2, rate=1) and -gamma(shape=2, 
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rate=1). We evaluate the performance of each method using false discovery rate (FDR) and 

true positive rate (TPR). Since we simulate each setting 1,000 times, we define the empirical 

FDR and TPR as follows:

FDR = 1
1, 000 ∑

i = 1

1, 000 V i

Ri
I(Ri > 0), TPR = 1

1, 000 ∑
i = 1

1, 000 Si

800 (9)

where 800 in TPR is the number of the true alternative from f1, and V i, Ri and Si are the 

numbers of falsely rejected hypotheses, the number of rejected hypotheses and the number 

of true positives from ith simulated data set, respectively.

The succeeding simulation results are divided into two subsections. In the first subsection, 

the focus is on examining the performance of the different methods under the alternative 

distribution described in (i). As such, both σ1 and σ2 were varied. In the second subsection, 

the focus is on examining the performance and parameter estimation of the methods under 

different alternative distributions described in (ii) and (iii) specifically in the context of data 

similar to the Set4Δ mutant dataset. Thus for this subsection, σ1 is kept constant at 0.02 while 

σ2 is varied. Figure 3 presents the setup of null and alternative distributions for the different 

settings.

4.1 Primary Simulation Outcomes

The first set of simulations vary both the larger and the smaller variance of the null 

distributions in order to get a general idea of the comparative performance of the different 

methods. These settings use (i) truncated t-distribution as the alternative distribution and 

they are visualized in Figure 3(A). Table 1 shows the FDR and TPR defined in (9) from 

1,000 replications under each setting. We use a nominal level of FDR=0.05 throughout the 

simulations. As expected, Efron’s local FDR procedure based on a single normal distribution 

is not able to control FDR in most of settings where σ1 and σ2 are significantly different. 

This is because Efron’s local FDR recognizes ϕ1 σ1 < σ2  as a null distribution and tends to 

reject many data from ϕ2 falsely which leads to the failure of controlling a given level of 

FDR. The Efron’s FDR approach is expected to control a given FDR for the case of similar 

values of σ1 and σ2 under which a single normal distribution behaves similar to the mixture 

of ϕ1 and ϕ2. The Fixed a approach is not able to control a given level of FDR for some 

of the settings since a pre-fixed a such as a = 2σ1 is not expected to cover universal cases. 

On the other hand, Flex a achieves the closest empirical FDR to the nominal level 0.05 

among all procedures. As expected, the Goodness-of-fit (GoF) approach produces the most 

conservative FDRs. The Hybrid approach is a modification of the GoF approach that seeks 

to correct its over-conservative nature by using the changepoint criterion to select a less 

conservative c. As shown in Table 1, it is able to do this in each setting, producing a higher 

FDR each time that is still below the nominal α level.

In terms of empirical TPR, Table 1 shows that Efron’s local FDR achieves the highest TPRs 

across all settings. However, it fails in controlling the given FDR in almost every case, only 

being able to do so when the variances of the two null distribution components are close 

enough together such that the null distribution better resembles a single normal. Thus, it is 
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not meaningful to consider the Efron’s local FDR for comparison of TPR. Since the Fixed 
a method is also unable to control FDR for some cases, it is also excluded in the TPR 

comparison. Among the remaining methods, Flex a yields the highest TPRs in general and 

is almost always better than the Hybrid in terms of TPR across all settings. The Hybrid 
produced a better TPR than the Flex a only in the setting where the σ1

2 = 0.005 and σ2
2 = 0.10. 

This observation is further explored in another set of simulations. Also as expected, the GoF 

approach has the lowest TPRs and the Hybrid approach tends to improve the TPR of GoF 

approach. This improvement is observed to be limited when the variance components of the 

null are farther apart but becomes larger as those components are set to be closer to each 

other.

4.2 Comparison between alternative distributions and parameter estimation

In this section, we present more simulation studies to demonstrate the behavior of the 

different approaches under different alternative distributions. The smaller variance is set at 

σ1
2 = 0.02 while σ2

2 is varied. In the previous section, we used the f1 which is the truncated 

t distribution with the support ( − ∞, c) ∪ (c, + ∞). In this section, we consider a shifted 

t distribution with truncation. More specifically, when f1 is the conditional density of 

z = ± 1.5(t) given |z | > 0.5. The Zero assumption is still satisfied with this f1. This setup 

is represented by Figure 3(C)

In addition to this, we are also interested in how the Zero assumption in (5) affects 

results when the assumption is actually not satisfied by the setup. For this, f1 is modeled 

based on gamma distribution and random sign (±1) leading to zi = (2xi − 1)yi where X 

∼ Bernoulli(0.5), Y ∼ gamma(2,1) and xi and yi are independent. We call this as a ± 

gamma(2,1). There is no truncation here for f1, so c in the Zero assumption is simply 0 

which means there does not exist an interval [ − c, c] defined in (5). This setup is represented 

in Figure 3(B).

Results for the shifted truncated t-distribution alternative are shown in Table 2. Consistent 

with Table 1, the empirical FDRs are shown to be controlled for the Flex a, Hybrid, and 

GoF approaches across null distribution settings as σ2
2 is decreased from 0.12 to 0.05 while 

the Efron’s local FDR fails in controlling a given FDR. We also have the results of TPRs 

similar to Table 1 in the sense that Flex a obtains the highest TPRs for three cases and 

the Efron’s local FDR approach has the best TPRs with somewhat inflated empirical FDR 

when σ1 and σ2 are similar (e.g., σ1
2 = 0.02 and σ2

2 = 0.05). The Hybrid improves the GoF 

approach, but it is still very limited improvement. In terms of parameter estimation, Table 

2 shows that σ1
2 is estimated well across the three methods (Flex a, Hybrid, GoF). On the 

other hand, σ2
2 was found to be overestimated by GoF and underestimated by the Flex a 

approach. The Hybrid comes closest to estimating the null distribution parameters, however, 

in terms of estimating c, Flex a comes much closer than the Hybrid which overestimates 

of c. Considering the superiority of the Flex a approach over the Hybrid approach, the 

estimation of c is more important than estimation of σ1
2, σ2

2 . Since the Hybrid approach 

inherits the estimate of c from the GoF approach, the Hybrid approach should be much 
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more conservative compared to the Flex a approach unless there is a much better initial 

estimate of c.

Table 3 shows parallel results for the ± gamma(2,1) as f1. Although there does not exist an 

interval [ − c, c] in (5), the results are still consistent with those in Table 2, with the main 

difference being a loss in TPR across all methods. Compared to the truncated f1 used in 

Table 1 and 2, ± gamma(2,1) is more overlapped with f0 which leads to the loss of powers 

of testing procedures. From Table 3, even when there exist slightly contaminated data from 

f1 around the center of the whole data. the proposed approaches with the Zero assumption in 

(5) is robust to such contamination from f1.

4.3 Robustness under model missspecification

We have discussed the cases that the null distribution consists of two normals and one of 

them represents the spiky distribution. In practice, there may be some situation that such 

a spiky distribution also consists of more than one normal distribution. In this section, 

we consider the cases that the null distribution is a mixture of more than two normal 

distributions. As shown in the simulations in the previous section, Efron’s local fdr based on 

a single normal for the null distribution performs well when the null distribution is a mixture 

of two normals with similar variances. From this, when the null distribution is a mixture of 

more than two normals and some of them have similar variances, the mixture of two normal 

distributions is expected to be robust to the number of components in the mixture model. 

To deomstrate this, we conduct some simulations where the null distribution is a mixture of 

four normals instead of two such as.f0 = 0.3 N 0, σ1
2 + N 0, σ2

2 + 0.2 N 0, σ3
2 + N 0, σ4

2 . We 

considere two cases: the first one is (σ1, σ2, σ3, σ4) = (0.005, 0.05, 0.10, 0.15) which is the case 

that two components represent spiky distributions and the other two components represent 

non-spiky distributions. The second case is (σ1, σ2, σ3, σ4) = (0.11, 0.13, 0.1, 0.3) which is the 

case that all of them have similar variances. The alternative distribution used is the same 

as that in Table 2. Table 4 shows that the results across different methods. As in previous 

simulations, Flex a, Hybrid, and GoF are all able to retain control over FDR under this 

missspecification of the null distribution, and that Flex a remains superior to the other two in 

terms of TPR. Efron’s local FDR procedure continues to suffer from misspecification and is 

unable to control FDR in each case.

5 Real Data : Analysis of Set4Δ Mutant Dataset

The study is interested in the identification of genes within the genome of the budding 

yeast Saccharomyces cerevisiae that are differentially expressed when key gene expression 

machinery is mutated. Specifically, this work focused on a yeast protein, known as Set4, 

which was recently identified as a chromatin regulator and there are many open questions 

about its functions (Tran et al.,2018). Previous work demonstrated that the gene expression 

regulator Set4 is important for protecting cells during oxidative stress induced by hydrogen 

peroxide treatment and activates stress response genes to help cells survive during stress. 

However, the full complement of genes controlled by Set4 is not yet determined. In 

order to identify the genes dependent on Set4 during stress, the gene expression profile 

of the whole genome in cells where Set4 is absent (knock-out condition, Set4Δ) and 
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cells where it is present (wildtype condition) are determined. In addition, cells are treated 

with hydrogen peroxide to induce oxidative stress. Approximately 8000 RNA species are 

evaluated using this method, each represented by a weighted count value under knock-out 

and wildtype conditions. From among the 8000 RNA species (about 6000 coding genes and 

2000 non-coding genes), the objective is the identification of ”interesting” genes based on 

values of the statistic log2
KO
W T , where W T  is a mean weighted count measure of mutations 

under wild type condition and KO is a mean weighted count measure of mutations under 

knock-out condition. The counts are weighted based on the length of each gene and the 

total number of reads and so is a continuous value rather than a discrete one. A gene is 

considered ”interesting” if the weighted count measure is very different between the KO 

and WT settings, and so correspondingly, if log2
KO
W T ≫ 0. For each gene, the experiment is 

replicated thrice and the resulting weighted counts are averaged. Afterward, the log2
KO
W T  is 

computed, thus yielding a single statistic for each gene. A basic histogram of the logfold 

change statistics is shown in Figure 4.

Figure 4 shows that the distribution of the test statistics has a very high peak but still 

have prominent tails. This is consistent with cellular biology as cells often have very 

specific responses to genetic or chemical disruptions. Thus, the majority of the genes in 

the genome will not show differential expression following the perturbance compared to 

standard conditions. However, there is also often a subset of genes that show small changes, 

most likely due to indirect consequences of genetically or chemically perturbing the cell. 

Neither of these groups of cells are of interest and so both belong to the null distribution. 

Only the genes that are highly differentially expressed are considered to be directly affected 

by the genetic or chemical change, and are of the most interest to the biologist investigating 

the specific outcome of a given cellular perturbance. Thus, it is reasonable to assume that 

the null distribution is a mixture of two components. For the Set4Δ mutant dataset, there 

are 8630 simultaneous tests conducted. For estimating f via splines, the most extreme 30 

values of the logfold change statistic needed to be removed for estimation to work. An FDR 

level of α = 0.05 was used for all procedures. Flex a, Hybrid, and the GoF approach were 

used. Table 4 shows a summary of the results. Results of applying Efron’s local FDR are 

also presented. As expected, using just the local FDR approach leads to a very liberal set of 

interesting cases (rejections). However, the assumption of a single normal null distribution 

is contrary to biological grounding, and having over 1300 rejections is not realistic. As 

expected, the goodness-of-fit approach is the most conservative. The Hyrbid approach is less 

conservative than goodness-of-fit but not by much since it uses goodness-offit as a baseline. 

The Flex a approach gives the most liberal results while still controlling FDR. Figure 5 

shows how each test, Flex a, Hybrid, and GoF, identifies interesting genes. It is shown 

that the number of significant genes selected by different methods have similar patterns to 

those from simulation studies. In particular, the sets of the selected genes are nested in the 

sense that all of the genes identified by GoF and Hybrid are also identified by Flex a etc. 

Considering the simulation studies, GoF and Hybrid approches are considered to be fairly 

conservative and Efron’s local fdr fails in controlling a given level of FDR. On the other 
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hand, the result from Flex a in Set4Δ mutant data is believed to be the most reasonable 

among all the methods in terms of controlling a FDR and obtaining significant genes.

6 Conclusion

Different change-point detection based procedures that were constructed were able to 

control FDR in the setting where the null distribution is a highly peaked mixture of two 

normal distributions, where one component has a very small variance. Simulation studies 

showed how in this situation, the standard local FDR procedure fails at controlling type 

1 error. Furthermore, accommodating for the issue by modeling the null distribution as a 

mixture of two normal distributions using a goodness-of-fit approach was shown to produce 

overly conservative outcomes. Novel methods developed to address these problems applied 

changepoint detection to determine the largest interval in the dataset that still comes purely 

from the null distribution. Estimating the ormal null mixture from this interval was found to 

retain control over FDR while producing more competitive power than the goodness-of-fit 

approach.

Of the two viable changepoint detection procedures constructed, the Flex a approach, 

which used a tuning parameter in order to remove an unstable portion of the dataset, was 

found to be superior in terms of TPR in almost every simulation setting used compared 

to the Hybrid approach which used the result from goodness-of-fit as a baseline and then 

applied changepoint detection. When the two components of the null distribution were close 

enough to make the distribution appear similar to a single normal, the standard local FDR 

method was still able to control FDR and produced the best TPR. This shows that the new 

approaches are best used in contexts where the null distribution can be soundly assumed as 

deviating considerably from a single normal distribution.

Finally, application of the different methods on the Set4Δ mutant dataset showed that 

the methods which accounted for the null distribution being a mixture of two normal 

distributions rather than a single normal produced more reasonable results. Among these, 

the Flex a method was able to identify the most number of interesting candidates for the 

investigator to conduct further experimentation on.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Bias of Estimator in Equation 5. The broken curve represents the estimate of f while the 

solid curves represent some EM estimates of f0 at different fixed [ − c, c]’s. Close-up view is 

shown on the figure to the right.
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Figure 2. 
Plot behavior at different a. Increasing incrementally from σ1 by 0.25σ1, the plot is shown 

to be well-behaved by a = 2σ1. Algorithm 2 selects this a and proceeds to using the best c
determined from it.
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Figure 3. 
Setup for simulation using different values of σ1

2 and σ2
2. and different alternative 

distributions. Solid lines represent null distributions. The range of null distributions used 

according to peakedness is represented. Dashed lines are alternative distributions. Only 10% 

of the simulated data come from the alternative.
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Figure 4. 
Histogram of Logfold Change Statistic values from the motivating study.
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Figure 5. 
Interesting genes identified by each test. Efron’s local FDR identifies the most but control 

over FDR is doubtful. Flex a identifies every gene identified by any of the remaining 

methods and is expected to control FDR based on simulations.
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Table 1

FDR and TPR estimates for each method across various null distributions 0.6N 0, σ1
2 + 0.4N 0, σ2

2 . Alternative 

distribution is t distribution truncated at ±0.5. The number in (.) represents standard deviation.

Null 
distribution

σ1
2 0.02 0.02 0.02 0.08 0.06 0.01 0.005

σ2
2 0.1 0.08 0.05 0.1 0.1 0.1 0.1

FDR

Fixed a 0.0187 (0.0168) 0.0042 (0.0021) 0.0004 (0.0003) 0.0000 (0.0000) 0.0000 (0.0000) 0.0839 (0.0392) 0.2541 (0.1125)

Flex a 0.0427 (0.0243) 0.0285 (0.0166) 0.0086 (0.0050) 0.0017 (0.0023) 0.0059 (0.0039) 0.0453 (0.0605) 0.0130 (0.0543)

Hybrid 0.0036 (0.0107) 0.0039 (0.0077) 0.0076 (0.0072) 0.0030 (0.0044) 0.0057 (0.0067) 0.0052 (0.0194) 0.0051 (0.0330)

GoF 0.0007 (0.0021) 0.0009 (0.0020) 0.0000 (0.0004) 0.0006 (0.0019) 0.0008 (0.0025) 0.0008 (0.0019) 0.0013 (0.0021)

Efron’s 
locfdr

0.2784 (0.0242) 0.1943 (0.0243) 0.0673 (0.0154) 0.0043 (0.0035) 0.0095 (0.0053) 0.5032 (0.0218) 0.6673 (0.0107)

TPR

Fixed a 0.6028 (0.0723) 0.6033 (0.0917) 0.6717 (0.0751) 0.2039 (0.0582) 0.2452 (0.0341) 0.7298 (0.1362) 0.8329 (0.1629)

Flex a 0.7165 (0.0949) 0.7693 (0.0591) 0.8403 (0.0304) 0.4945 (0.0315) 0.5819 (0.0259) 0.6522 (0.1634) 0.4547 (0.1575)

Hybrid 0.4588 (0.1056) 0.5749 (0.1082) 0.7602 (0.1665) 0.4752 (0.1153) 0.5182 (0.1283) 0.4829 (0.1046) 0.5242 (0.0679)

GoF 0.3998 (0.0787) 0.4830 (0.1082) 0.1312 (0.1845) 0.2576 (0.2146) 0.2838 (0.2117) 0.4288 (0.0633) 0.4832 (0.0491)

Efron’s 
locfdr

0.9732 (0.0143) 0.9693 (0.0149) 0.9719 (0.0149) 0.5192 (0.0258) 0.5754 (0.0265) 1.0000 (0.0000) 1.0000 (0.0000)
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Table 2

Comparison of results using different methods across various null distributions 0.6N(0, 0.02) + 0.4N(0, σ2
2) 

with alternative distribution set as t ± 1.5 truncated at ±0.5. The number in (.) represents standard deviation

Null σ1
2 0.02 0.02 0.02 0.02

Distribution σ2
2 0.12 0.1 0.08 0.05

FDR

Flex a 0.0584 (0.0592) 0.0525 (0.0376) 0.0288 (0.0146) 0.0046 (0.0030)

Hybrid 0.0050 (0.0135) 0.0052 (0.0105) 0.0040 (0.0048) 0.0032 (0.0031)

GoF 0.0015 (0.0025) 0.0014 (0.0024) 0.0016 (0.0022) 0.0009 (0.0014)

Efron’s locfdr 0.3532 (0.0246) 0.2788 (0.0265) 0.1903 (0.0262) 0.0615 (0.0154)

TPR

Flex a 0.8188 (0.0942) 0.8672 (0.0689) 0.8974 (0.0318) 0.9159 (0.0140)

Hybrid 0.6945 (0.0624) 0.7534 (0.0571) 0.8188 (0.0358) 0.8889 (0.0539)

GoF 0.6669 (0.0479) 0.7194 (0.0442) 0.7830 (0.0433) 0.7488 (0.2127)

Efron’s locfdr 0.9870 (0.0076) 0.9842 (0.0082) 0.9818 (0.0087) 0.9820 (0.0087)

σ1
2

Flex a 0.0251 (0.0111) 0.0229 (0.0051) 0.0235 (0.0023) 0.0236 (0.0045)

Hybrid 0.0211 (0.0056) 0.0216 (0.0075) 0.0203 (0.0062) 0.0212 (0.0031)

GoF 0.0207 (0.0014) 0.0204 (0.0013) 0.0196 (0.0014) 0.0210 (0.0034)

σ2
2

Flex a 0.0832 (0.0365) 0.0631 (0.0232) 0.0497 (0.0094) 0.0399 (0.0023)

Hybrid 0.1369 (0.0298) 0.1068 (0.0254) 0.0760 (0.0137) 0.0515 (0.0255)

GoF 0.1514 (0.0244) 0.1239 (0.0213) 0.0930 (0.0200) 0.1666 (0.1872)

η Flex a 0.5427 (0.0390) 0.5375 (0.0204) 0.5332 (0.0117) 0.5195 (0.0314)

Hybrid 0.6075 (0.0420) 0.5878 (0.0525) 0.5520 (0.0350) 0.5551 (0.0741)

c Flex a 0.5768 (0.1643) 0.4898 (0.1257) 0.4470 (0.0658) 0.5291 (0.1158)

Hybrid 0.7676 (0.1277) 0.7244 (0.1163) 0.6360 (0.1061) 0.5787 (0.1839)
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Table 3

Comparison of results using different methods across various null distributions 0.6N(0, 0.02) + 0.4N 0, σ2
2  with 

alternative distribution set as ±gamma(2,1). The number in (.) represents standard deviation

Null σ1
2 0.02 0.02 0.02 0.02

Distribution σ2
2 0.12 0.1 0.08 0.05

FDR

Flex a 0.0661 (0.0610) 0.0501 (0.0406) 0.0303 (0.0151) 0.0038 (0.0029)

Hybrid 0.0082 (0.0201) 0.0060 (0.0117) 0.0035 (0.0045) 0.0032 (0.0029)

GoF 0.0018 (0.0030) 0.0016 (0.0025) 0.0016 (0.0020) 0.0009 (0.0014)

Efron’s locfdr 0.3998 (0.0278) 0.3163 (0.0310) 0.2141 (0.0309) 0.0641 (0.0180)

TPR

Flex a 0.7509 (0.0817) 0.7766 (0.0671) 0.8123 (0.0314) 0.8243 (0.0179)

Hybrid 0.6534 (0.0560) 0.6941 (0.0459) 0.7390 (0.0292) 0.8156 (0.0308)

GoF 0.6250 (0.0384) 0.6646 (0.0356) 0.7143 (0.0332) 0.7522 (0.1349)

Efron’s locfdr 0.8709 (0.0155) 0.8674 (0.0156) 0.8638 (0.0160) 0.8624 (0.0162)

σ1
2

Flex a 0.0276 (0.0126) 0.0236 (0.0067) 0.0240 (0.0029) 0.0237 (0.0045)

Hybrid 0.0218 (0.0071) 0.0219 (0.0080) 0.0201 (0.0049) 0.0215 (0.0019)

GoF 0.0207 (0.0016) 0.0204 (0.0015) 0.0197 (0.0014) 0.0200 (0.0027)

σ2
2

Flex a 0.0788 (0.0342) 0.0663 (0.0245) 0.0500 (0.0098) 0.0418 (0.0034)

Hybrid 0.1238 (0.0295) 0.0996 (0.0221) 0.0761 (0.0106) 0.0457 (0.0126)

GoF 0.1399 (0.0221) 0.1158 (0.0187) 0.0889 (0.0156) 0.1113 (0.2297)

η
Flex a 0.5334 (0.0378) 0.5346 (0.0223) 0.5312 (0.0126) 0.5222 (0.0311)

Hybrid 0.5865 (0.0442) 0.5694 (0.0471) 0.5459 (0.0254) 0.5345 (0.0362)

c Flex a 0.5772 (0.1606) 0.5140 (0.1452) 0.4410 (0.0815) 0.5238 (0.1177)

Hybrid 0.7215 (0.1412) 0.6883 (0.1162) 0.6221 (0.0995) 0.5138 (0.1065)
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Table 4

Comparison of results where the null is a mixture of four Normal distributions 

0.3 N 0, σ1
2 + N 0, σ2

2 + 0.2 N 0, σ3
2 + N 0, σ4

2  with alternative distribution set as t ± 1.5 truncated at ±0.5. The 

number in (.) represents standard deviation

Null σ1
2, σ2

2 0.005, 0.05 0.11, 0.13

Distribution σ3
2, σ4

2 0.10,0.15 0.1, 0.3

FDR Flex a 0.0194 (0.0314) 0.0223 (0.0153)

Hybrid 0.0069 (0.0109) 0.0196 (0.0195)

GoF 0.0056 (0.0040) 0.0127 (0.0146)

Efron’s locfdr 0.5796 (0.0200) 0.4503 (0.0224)

TPR Flex a 0.7306 (0.0781) 0.5307 (0.0710)

Hybrid 0.7101 (0.0809) 0.5046 (0.0935)

GoF 0.7160 (0.0256) 0.4276 (0.1624)

Efron’s locfdr 0.8735 (0.0102) 0.9248 (0.0067)
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Table 5

Set4Δ Mutant Data Results

# of interesting genes Cutoff c μ1 σ1
2 μ1 σ2

2 η

Flex a 505 0.400 0.000 0.004 −0.002 0.042 0.615

Hybrid 328 0.664 −0.001 0.005 −0.003 0.082 0.668

GoF 264 0.851 −0.020 0.116 0.000 0.006 0.299

Efron’s locfdr 1348 NA −0.001 0.006 NA NA NA
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