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Abstract

Synthetic lethality refers to a genetic interaction where the simultaneous perturbation of gene
pairs leads to cell death. Synthetically lethal gene pairs (SL pairs) provide a potential avenue for
selectively targeting cancer cells based on genetic vulnerabilities. The rise of large-scale gene pertur-
bation screens such as the Cancer Dependency Map (DepMap) offers the opportunity to identify SL
pairs automatically using machine learning. We build on a recently developed class of feature learning
kernel machines known as Recursive Feature Machines (RFMs) to develop a pipeline for identifying
SL pairs based on CRISPR viability data from DepMap. In particular, we first train RFMs to pre-
dict viability scores for a given CRISPR gene knockout from cell line embeddings consisting of gene
expression and mutation features. After training, RFMs use a statistical operator known as average
gradient outer product to provide weights for each feature indicating the importance of each feature
in predicting cellular viability. We subsequently apply correlation-based filters to re-weight RFM
feature importances and identify those features that are most indicative of low cellular viability.
Our resulting pipeline is computationally efficient, taking under 3 minutes for analyzing all 17, 453
knockouts from DepMap for candidate SL pairs. We show that our pipeline more accurately recovers
experimentally verified SL pairs than prior approaches. Moreover, our pipeline finds new candidate
SL pairs, thereby opening novel avenues for identifying genetic vulnerabilities in cancer.

Introduction
Synthetic lethality refers to the concept that simultaneous perturbation of gene pairs leads to cell death
but individual perturbation does not [43]; see Fig. 1A for a schematic. The identification of synthetically
lethal gene pairs provides a potential avenue for selective targeting of cancer cells based on genetic
vulnerabilities and has already led to the development of therapies for specific patient subpopulations [39,
44]. The recent rise of large-scale perturbation screens such as the Cancer Dependency Map (DepMap) [7]
offers an opportunity to identify novel SL pairs using machine learning. DepMap consists of a matrix of
(real-valued) viability scores for each combination of 1078 cell lines and 17, 453 CRISPR gene knockouts;
a subset of DepMap is visualized in Fig. 1B. To identify candidate SL pairs from such data, the goal is
to find gene pairs (A,B), such that knockout of gene A induces a low viability score in cells that show a
particular expression or mutation pattern for gene B. The difficulty in identifying SL pairs stems from
the fact that the number of combinations of different expression and mutation patterns is huge.

Various computational approaches have been developed for identifying SL pairs. Motivated by the
observation that SL pairs frequently arise in paralogs (i.e., genes arising as a result of duplication) [15,
19, 20, 41], recent work trained a random forest model to predict whether a pair of paralog genes
form an SL pair based on 22 hand-crafted features [18]. As such, the trained model is limited by the
number of available features for prediction. Another line of work formulated SL pair identification
as a link-prediction problem with links existing between SL gene pairs [4, 9, 29, 33]. This approach
requires SL pairs as training data, but only few experimentally validated SL pairs are known. To
overcome this limitation, these works rely on non-experimentally verified SL pairs from SynLethDB [26]
or protein-protein interaction databases to augment the training set, which may lead to many false
positive results. An alternative approach [55] built a predictor for the confidence of SL interactions
using knockdown data from the Connectivity Map [52]; namely, it trained a neural network to map from
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Figure 1: (A) Schematic describing the concept of synthetic lethality. Two genes (denoted A and B)
form a synthetic lethality pair if the simultaneous perturbation of both genes leads to cell death but the
individual perturbations do not. (B) A visualization of the DepMap CRISPR gene knockout data used
in our pipeline. It consists of cellular viability scores for 17, 453 gene knockouts across 998 cell lines. (C)
An overview of our pipeline. For each knockout, we train a Recursive Feature Machine (RFM) to predict
the viability score from the gene expression and mutation features of a cell line. Feature importances
are obtained from the trained RFM using a statistical operator known as average gradient outer product
(AGOP). Given that each feature corresponds to (the expression pattern or mutation of) a gene, the
genes can be ranked based on their feature importances. For example, for the knockout of ARID1B,
the feature with the highest importance corresponds to the mutation of ARID1A. The second step of
our pipeline re-weights the feature importances based on their Pearson correlation coefficient (PCC)
with viability, thereby selecting features that are indicative of low cellular viability. The effect of such
re-weighting is shown on the example of ARID1B knockout.

a pair of expression vectors, corresponding to expression after knockdown of each gene in a pair, to a
confidence score quantifying whether the genes form an SL pair. Labeled data for these confidence scores
were obtained using GEMINI [60], a computational model for gene interactions. This again could result
in many false positive results. Alternatively, statistical hypothesis testing-based pipelines were developed
to characterize SL pairs, and the test results were corrected and filtered through hand-crafted criteria to
balance the number of false positives and false negatives [34, 51]. Overcoming the need for any labeled SL
pair data or hand-crafted statistical criteria, recent work [3] formulated the problem of SL pair screening
as a feature learning task where the goal is to identify the genomic features that are most predictive of
low viability under a gene knockout. This feature learning approach is the one used by the “best model”
listed in the DepMap portal. Current feature learning approaches have been limited to utilizing random
forests, since these simple machine learning models have been the only non-linear models that could
output feature importances. If instead we could identify the features learned by state-of-the-art machine
learning models, we may be better powered to find SL pairs.

In this work, we present a computationally efficient pipeline for SL pair screening by leveraging a
recently developed class of feature learning methods known as Recursive Feature Machines (RFMs).
RFMs were introduced in [47] and identify features learned by kernel machines, a class of machine
learning algorithms that have received renewed interest in machine learning due to their connection to
infinitely wide neural networks [32]. RFMs identify task-relevant features using a statistical operator,
known as average gradient outer product (AGOP). AGOP has been studied in the context of task-relevant
dimensionality reduction [27, 53, 59], since it identifies and amplifies the directions in data for which
predictions vary the most. Given the effectiveness of kernel machines on related tasks such as virtual
drug screening [48, 49] and the ability of AGOP to identify task-relevant features, we propose RFMs
as a natural model for SL pair screening. Our approach is as follows: for each CRIPSR gene knockout
from DepMap, we train an RFM to predict the viability score for each cell line from its mutation
and gene expression features, and we use the AGOP to obtain the most predictive features. Since we
are interested in pairs that reduce viability, we apply Pearson correlation-based filters to re-weight the
predictive features and identify those that are indicative of low viability. Fig. 1C provides an overview
of our pipeline. We will show that our pipeline recovers the experimentally verified SL pairs from [18]
more accurately than previous random forest based approaches including PARIS [3] and the “best model”
provided by the DepMap portal. Furthermore, by analyzing the top candidate pairs identified by our
model, we obtain new candidate SL pairs that were not found using prior approaches.
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Results
Formulating SL pair screening as a single index problem. We start by providing a novel for-
mulation of the SL pair screening problem, which will motivate our computational approach to this
problem. Recall that our goal is to find candidate SL gene pairs (A, B) such that the knockout of gene A
induces a low viability score in cell lines exhibiting a particular expression or mutation pattern of gene
B. We formulate this mathematically as follows. Let (X, yg) ∈ Rd×n ×Rn denote training data where X
denotes the embedding of n cell lines into d expression and mutation features and yg denotes the viability
scores when knocking out gene g. If g is part of an SL pair, then there exists a one-hot vector u∗ ∈ Rd

such that yg = h(XTu∗) for some function h : Rd → R, and the non-zero entry in u∗ indicates the
gene that forms an SL pair with g. This mathematical model is known as a single-index model, which
has been extensively studied in the statistical literature [27, 28, 59] and received renewed interest in
machine learning [2, 6, 17, 47]. Given that the work introducing RFMs empirically demonstrated higher
sample efficiency of RFMs over other models including deep neural networks in solving such single-index
problems [47], RFMs are a natural approach for SL pair screening.

Overview of our pipeline (SL-RFM). Our pipeline is built using the publicly available cellular
viability scores for all combinations of 17, 453 CRISPR gene knockouts on 998 cell lines provided by
DepMap (see Data Availability). We dropped 80 cell lines for the downstream analysis to include only the
ones present in The Cancer Genome Atlas (TCGA) [57]. The first step in our pipeline is to train an RFM-
based predictor to map from mutation and genomic embeddings of a cell line to the corresponding viability
score under a particular knockout. To build such a predictor, we encoded each cell line as a 32, 629
dimensional vector, where the first 16, 568 real-valued features reflect gene expression and the remaining
16, 061 features represent the presence of either a damaging or hotspot mutation (see Data Availability
and Methods for a detailed description of the gene expression and mutation features). We note that
we used only the expression and mutation features provided by DepMap that are present in TCGA.
Expression features are log transformed transcripts per million (TPM) (see Methods) and mutation
features are binary (either 0 or 1) representing whether the gene has a mutation (either damaging or
hotspot). After training the RFM, the model returns a list of weights for each feature denoting its
importance for predicting viability for a given knockout. To ensure that the top ranked features, i.e.,
those with highest feature importance, are indicative of decreased viability, we re-weight the features by
multiplying them with the Pearson correlation coefficient (PCC) between the value of the feature across
all cell lines and the viability scores. Lastly, motivated by the formulation of SL pair screening as a single-
index model, we identify candidate SL pairs by selecting those knockouts that contain a distribution of
feature importances where the top ranked feature is well separated from the remaining features. We
quantify such distributions via the difference between the maximum feature importance and the mean
feature importance for a given knockout (see Methods). Training details for our pipeline are presented
in Methods. In particular, the RFM framework requires the choice of a kernel. We tested the commonly
used Gaussian and Laplace kernels and found that the Laplace kernel consistently outperformed the
Gaussian kernel in terms of predictive performance on the DepMap data (see Methods and SI Fig. 1).
Thus, all results are shown using the Laplace kernel.

Our pipeline more accurately recovers known experimentally verified SL pairs. We first
analyze the performance of our pipeline on the experimentally verified SL pairs from [18] and compare
the results to the following three models: (1) a Pearson correlation coefficient (PCC) baseline, which
ranks features by their correlation with viability and corresponds to the last filtration step in our pipeline;
(2) a state-of-the-art random forest model for SL screening (PARIS) [3]; (3) the “best model” from the
DepMap portal. The models were evaluated as follows. For each SL pair (A, B) from [18], we applied
each method to predict viability under knockout of gene A and to predict viability under knockout of
gene B. For each prediction task, each method outputs an importance weight for each feature, which
translates into a rank based on the importance weight for the feature corresponding to gene B in the
first prediction task and gene A in the second prediction task. Fig. 2A shows the minimum of these
ranks for each method; SI Fig. 2 contains the ranks for each gene separately. Since the DepMap portal
only provides the top 10 most important genes per knockout, for fair comparison across models the
rank is denoted as > 10 if the pair was not identified within the top 10 most important features. We
observe that SL-RFM recovers all experimentally validated SL pairs from [18] as the top ranked feature
with the exception of ME2/ME3, which no model was able to identify accurately. In Fig. 2A, we also
indicate whether the SL pair arises as a result of expression or mutation based features. In Fig. 2B, we
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(A) Effectiveness of Our Pipeline
ScoreSL-RFM (Ours)DepMapPARISPCCExperimentally Verified SL Pairs from [1]

0.00961111SMARCA2/SMARCA4

0.00221111ARID1B/ARID1A

0.00291111STAG1/STAG2

0.00101111CREBBP/EP300

0.008515> 103VPS4A/VPS4B

0.00241111DDX17/DDX5

0.00161114ENO1/ENO2

0.00011116SMARCC2/SMARCC1

0.01381> 1012UBC/UBB

0.03681111MAGOH/MAGOHB

8.596e-5> 10> 10> 10 > 10ME2/ME3

0.28631111FAM50A/FAM50B

(B)

SMARCA2/SMARCA4
STAG1/STAG2
VPS4A/VPS4B
DDX17/DDX5
ENO1/ENO2

SMARCC2/SMARCC1
UBC/UBB

MAGOH/MAGOHB
FAM50A/FAM50B

Dependency on Underexpression

Dependency on Mutation

ARID1B/ARID1A
CREBBP/EP300

Figure 2: Our pipeline (denoted SL-RFM) accurately recovers experimentally verified paralog SL pairs
from [18], and the feature importances for the identified SL pairs are consistent with those expected from
a single-index model. (A) SL-RFM outperforms (1) a Pearson correlation coefficient (PCC) baseline; (2)
the PARIS random forest approach from [3]; and (3) the best model from the DepMap portal described
in [18]. Values in the table indicate the rank of the SL pair out of 17, 755 possible gene pairs (lower
is better with a minimum value of 1). The score column quantifies the difference between maximum
feature importance and mean feature importance provided by our method for the knocked out gene in
the SL pair. On the right, we group SL pairs by their dependence on expression or mutation features.
(B) Plots of the feature importance distributions for six SL pairs from [18], with the top feature labelled.
Each distribution of feature importances corresponding to an SL pair identified by SL-RFM indicates a
top feature that is separated from the remaining features, which is consistent with that of a single-index
model. On the other hand, for the pair ME2/ME3 not identified by SL-RFM, we do not observe a clear
separation between the top feature and the remaining features. The insets show how the top feature
varies with viability under the given knockout.

present the feature importances for our method for specific knockouts from the table in Fig. 2A (the
feature importance distributions for all pairs are provided in SI Fig. 3). In particular, we observe that
the knockouts for which SL-RFM accurately recovered the SL pairs contain distinct feature importance
patterns consistent with those expected from a single index model. Namely, there is usually one important
feature corresponding to the gene that forms a synthetically lethal pair with the knockout. Note that in
the one case for which SL-RFM does not identify the SL pair (ME2/ME3), there is no clear separation
between the top feature and the remaining features. Lastly we emphasize the computational efficiency
of our method: it involves solving a least squares problem with 32, 629 features and 998 samples for each
knockout, which can be parallelized for all knockouts in a straightforward manner. As a result, the time
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to extract the feature importances for each knockout from SL-RFM is under 3 minutes, whereas that for
PARIS is roughly 13 days.

Experimentally 
VerifiedScore

DepMap Rank 
of Our FeatureOur Top FeatureKnockout

0.09363ZFY_expRPS4X

✓0.03682MAGOHB_expMAGOH

0.01792CHMP4A_expCHMP4B

✓0.01642PPP2R2A_expMASTL

✓0.0138> 10UBB_expUBC

✓0.01345PPP2R1B_expPPP2R1A

0.0123> 10KLHL9_expPELO

0.0118> 10MVK_expSCAP

✓0.0104> 10AIFM2_expGPX4

✓0.0087> 10VPS4B_expVPS4A

0.0079> 10CDH19_expSOX10

0.00782MED31_expMED1

✓0.00752FERMT1_expFERMT2

SL Pairs Within Our Top 92 that Differ From DepMap

(C)

(A)

(B) (D)

Figure 3: Analysis of top scoring SL pairs returned by our pipeline. (A) Visualization of the top 92
highest scoring SL pairs from SL-RFM and their corresponding top features, categorized by (1) if under-
expression induces sensitivity to the knockout, (2) if over-expression induces sensitivity to the knockout,
and (3) whether the two genes form a self pair. We note that expression features generally had more
signal than mutation features, which is consistent with the findings of prior work [21]. (B) Validation
that the majority of top scoring self-pairs identified by SL-RFM are oncogenes, based on OncoKB [11].
(C) A list of the SL pairs found among the top 92 highest scoring pairs from (A) for which the top feature
differs from the top feature found using the best DepMap model. We observe that seven of these have
been experimentally verified in prior work. (D) Distribution of feature importances for the remaining six
candidate SL pairs identified from our analysis in (C) along with corresponding insets illustrating how
the top feature varies with viability.
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RFM uncovers novel candidate SL pairs. While we have thus far shown that our pipeline is able to
accurately predict given experimentally verified SL pairs, the ultimate goal is to enable de novo identifica-
tion of candidate SL pairs. Given that feature importances for known SL pairs followed our hypothesized
single-index model by exhibiting a gap between the most important feature and the remaining features
as shown in Fig. 2B, we used this to define a score (difference between maximum feature importance and
the mean feature importance per knockout) to sort all knockouts. We selected a threshold to identify
candidate SL pairs based on the elbow in the score distribution shown in SI Fig. 4. This results in 92
candidate SL pairs given by top scoring knockouts and the gene corresponding to the top feature for
each knockout (see Fig. 3A as well as SI Figs. 5, 6, 7, 8 for the feature importance distributions for these
SL pairs). The 4 highest scoring pairs, DDX3X/DDX3Y, EIF1AX/EIF1AY, FAM50A/FAM50B, and
RPP25L/RPP25, are all experimentally verified SL pairs [18, 35, 46]. Other high scoring (and experimen-
tally verified [46]) paralog SL pairs include CDK4/CDK6, EAF1/EAF2, and COPG1/COPG2. Notably,
SL-RFM also identifies non-paralog SL pairs including MTAP/PRMT5, MTAP/WDR77, GPX4/AIFM2,
and MASTL/PPP2R2A, which all have been experimentally verified [1, 5, 36]. Furthermore, we identify
327 genes that are paired with themselves, including the prominent oncogenes KRAS, BRAF, PIK3CA,
which were previously identified to build SL pairs with themselves [51]. Such genes may be related to the
concept of oncogene addiction [56]. In Fig. 3B, we use OncoKB [11] to validate that the majority of high
scoring self-pairs are indeed oncogenes. In contrast, SI Fig. 9A shows that the majority of non-self gene
pairs identified by the DepMap model that were not found by our model have not been experimentally
verified. Similarly, SI Fig. 9B shows that the DepMap model proposes far more self-pairs than our model
with the majority of these self-pairs not appearing in OncoKB, suggesting that the DepMap model may
be producing false positives.

To propose new candidate SL pairs, we filtered the top 92 scoring pairs to those that did not appear
using the best model from DepMap. This resulted in 13 SL pairs (see Fig. 3C). Upon further investi-
gation, seven of these pairs identified via our pipeline have already been experimentally verified [1, 5,
18, 31, 46, 54]. The remaining six pairs identified by our pipeline, RPS4X/ZFY, CHMP4B/CHMP4A,
PELO/KLHL9, SCAP/MVK, SOX10/CDH19, and MED1/MED31 all present clear characteristics of SL
pairs; namely, these knockouts have a select few top features, which are associated with reduced viability
(see Fig. 3D). Of these pairs, we note that only one of these knockouts (RPS4X) formed an experimentally
verified SL pair when considering the top feature from the DepMap model. Indeed, DepMap identified
the pair RPS4X/RPS4Y, which is a pair between an X chromosome encoded ribosomal protein gene
and its Y chromosome encoded paralog [35]. SL-RFM identified RPS4Y as the second most important
feature. Additionally, we note that for this knockout, nine out of the top ten ranking genes from our
model are Y-linked genes, which upon their loss, are known to increase sensitivity of X-linked genes [35].
We also observe that for CHMP4B knockout and MED1 knockout, while the top features of DepMap
and our model differ, the top two features of both models are CHMP4A and CHMP4C for CHMP4B
knockout and MED31 and MED10 for MED1 knockout. Thus, we focus the following discussion on
SCAP/MVK, PELO/KLHL9, and SOX10/CDH19 as potential novel candidate SL pairs.

MVK, or mevalonate kinase, is an essential enzyme in the mevalonate pathway, an important metabolic
pathway that synthesizes isoprenoids for cellular processes [8]. Upregulation of mevalonate metabolism
enhances both cancer development and the training of immunity cells [25]; thus a therapeutic challenge
is to target the cancer cells without impairing the immunity cells. SCAP, or sterol regulatory element
binding protein (SREBP) cleavage activating protein, regulates and chaperones genes SREBP-1 and
SREBP-2, which regulate triglyceride and cholesterol levels in the body [37]. SREBP-2 appears to stim-
ulate mevalonate metabolism [25]. β-catenin may bind with SREBP-2 to activate mevalonate genes and
promote EMT towards an invasive cancer phenotype. On the other hand, SREBP2-dependent activation
of mevalonate production seems to play a role in memory T cells, but the exact relationship is unclear
[25]. Further research is needed to elucidate whether SCAP inhibition could decrease proliferation of
cancer cells while enhancing immune cell response when mevalonate metabolism is upregulated.

Pelota mRNA surveillance and ribosome rescue factor (PELO) is a key gene in the cell meiotic division
process. Recent work has shown that PELO and PLK1, an oncogene, bind to and degrade SMAD4, a
tumor suppressor, in prostate cancer (PCa) [23]. PELO is highly expressed in PCa tissues and knockdown
of PELO inhibits prostate cancer cell growth. On the other hand, kelch-like family member 9 (KLHL9)
deletion is considered a driver of the mesenchymal subtype of Glioblastoma (GBM). There is a causal
link between KLHL9 deletion and aberrant coactivation of transcription factors C/EBPβ, C/EBPα, and
STAT3, which are key regulators of this subtype of GBM [13]. While they are individually implicated
in the proliferation of tumors, existing literature has not yet determined the relationship between PELO
and KLHL9 in tumors. Fig. 3D shows that both the RFM features and the PCC plot indicate that
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knockout of PELO under low expression of KLHL9 is correlated with low cellular viability.
SOX10, or SRY-box transcription factor 10, regulates the migration of neural crest (NC)-derived

cells, which are essential in embryonic development [10, 30]. Recent work has shown that CDH19, or
Cadherin 19, is a direct target of SOX10, and they work together to help develop NC cells into the
enteric nervous system (ENS) during embryonic development [30]. However, NC cells can also develop
into melanoma. SOX10 is considered an oncogene that is heterogeneously expressed in melanoma, and
its deficiency is linked to a low proliferative/high invasive phenotype [10]. While less is known about the
interaction between SOX10 and CDH19 in melanoma, there is evidence that CDH19 may be in a similar
oncogenic pathway as SOX10. CDH19 is widely overexpressed in melanoma, and antibodies targeting
CDH19 cause tumor growth inhibition in melanoma cancer cell lines [40].

Interestingly, while the DepMap model identifies SOX10 as a self pair, SL-RFM identifies the following
six genes as top features for predicting viability under SOX10 knockout: CDH19, ROPN1, EXTL1,
SOX10, FGFBP2, and MIA. SI Fig. 10 shows the expression of these genes against viability under
SOX10 knockout as well as the joint expression of these genes with SOX10 in TCGA. We observe a
clear relationship between these genes and low viability scores for melanoma cell lines. Moreover, the
oncogene SOX10 is consistently overexpressed in TCGA melanoma samples; see SI Fig. 10B. ROPN1, or
Rhophilin Associated Tail Protein 1, produces a protein located in the fibrous sheath of sperm flagella [22].
Similar to CDH19, ROPN1 is an embryonic cell migration and neuronal development gene that is widely
overexpressed in melanoma [16, 50]. MIA, or melanoma inhibitory activity, is used as a marker of
melanoma and is a direct target gene of SOX10 [24]. Previous work has shown that SOX10 inhibition
reduces MIA expression levels, which may be responsible for melanoma cell invasion [24]. There are some
connections between SOX10, EXTL1, and FGFBP2 in the conjunctival epithelium. EXTL1 is a tumor
suppressor that is among the top 5 most significantly upregulated factors in conjunctival melanoma [58].
FGFPB2, or Fibroblast Growth Factor Binding Protein 2, is part of the Fibroblast growth factor (FGF)
system, and has been shown to be upstream of SOX9, which regulates SOX10, during the formation of
ocular glands in embryonic development [14]. Reducing FGF signaling eliminated SOX10 expression,
and knockout experiments in mice showed that SOX10 is essential for lacrimal gland development [14].
Another work [42] has shown that a different member of the EXT-family, EXTL2, controls FGF signaling
in heparan sulfate biosynthesis. It is plausible that EXTL1 and FGFBP2 are in a pathway upstream of
SOX10 that is implicated in conjunctival embryonic development and conjunctival melanoma. Overall,
these experimental results suggest SOX10 as a highly attractive therapeutic target in melanoma.

Experimental data further validates selectivity of candidate SL pairs identified by our
pipeline. We first use DepMap data to demonstrate that the identified candidate SL pairs are selective
across cancers. For example, if a knockout forms an SL pair based on under-expression of a gene, we
expect to observe low viability in the cell lines that have low expression of the gene. On the other hand, if a
knockout forms an SL pair based on over-expression of a gene, we expect to observe low viability in the cell
lines that have high expression of the gene. To this end, we computed the product between the viability
scores for a knockout and the expression of its suggested SL partner gene averaged across cell lines for
a given cancer type. Fig. 4A shows the results for the top 92 SL pairs from our pipeline upon grouping
cell lines by cancer type. This visualization highlights cancers that are predicted to be most susceptible
to a given SL pair. In line with these results, somatic mutations of AXIN2, which cause over-expression
of AXIN2, are associated with a higher risk of colorectal cancer and elimination of mutant CTNNB1
decreases clonogenicity of colorectal cancer cells [12, 45]. For the pair PELO/KLHL9 identified by SL-
RFM in Fig. 3, which exhibited dependency on under-expression, the predicted susceptible cancers are
Leukemia, Lung Cancer, and Pancreatic Cancer. For SCAP/MVK and SOX10/CDH19, which exhibited
dependency on over-expression, the predicted susceptible cancers are Lung Cancer and Melanoma.

To further assess the relevance of the identified SL pairs, we used the 10, 667 samples from TCGA to
confirm that the simultaneous perturbation of genes in the predicted SL pairs does not occur in patients
(see Methods). Analyzing first the 67 suggested SL pairs with dependency on under-expression, Fig. 4B,
compares the percentage of TCGA samples exhibiting expression below a fixed level for these SL pairs as
compared to 67 randomly sampled gene pairs (averaged over 10 random draws of pairs). By definition,
both curves are monotonically increasing and obtain a maximum value of 100%. Yet, we observe that
early on in the graph, there is a sizable nearly 40% gap between the two curves, indicating that patient
samples less often exhibit simultaneous under-expression of SL gene pairs as compared to random gene
pairs. Repeating this analysis for the 9 SL pairs with dependency on over-expression (i.e., comparing the
percentage of TCGA samples exhibiting low expression of gene A and high expression of gene B for these
predicted SL pairs as compared to 9 randomly sampled gene pairs (averaged over 10 random draws of
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pairs), we observe up to 10% gap between the two curves, indicating that there are fewer patient tumor
samples with the simultaneous under-expression of gene A and over-expression of gene B in the candidate
SL pairs compared to random gene pairs (see SI Fig. 11). In particular, for the suggested candidate SL
pairs SOX10/CDH19 and SCAP/MVK, where the dependency is on the knockout of the first gene and
over-expression of the second gene, we observe that there are almost no samples with over-expression
of CDH19/MVK and under-expression of SOX10/SCAP (see Fig. 4C and SI Fig. 12). Similar plots
based on GTEx data [38] are provided in SI Fig. 13 and further corroborate these results. Overall, this
analysis provides additional evidence that our pipeline can be used to automatically identifying potential
SL pairs.

(A)

(B)

Viability Score !Expression

Unbolded: Dependency on underexpression
Orange: Dependency on overexpression
Bolded: Novel SL pair proposed by SL-RFM and not identified by DepMap

(C)

Figure 4: Existing experimental data further corroborates SL pairs suggested by our pipeline. (A)
Heatmap of the predicted SL pairs and the average product between viability score of a knockout and
the z-score of the expression of the top feature across DepMap cell lines aggregated by cancer type. For
SL pairs with dependency on under-expression, we look for positive (blue) values. For SL pairs with
dependency on over-expression, we look for negative (red) values. (B) Visualization validating that SL
pairs with a dependency on under-expression are not simultaneously under-expressed in patient data
from TCGA. Comparing the 67 out of 92 SL pairs with a dependency on under-expression that have
data in TCGA (we omitted RPP25L/RPP25, COPG1/COPG2, and CHMP3/CHMP2A for this reason)
to 67 randomly sampled gene pairs (sampled 10 times), we plot the average percentage of TCGA samples
for which both genes have an expression below the given x-axis coordinate (error bars indicate 1 standard
deviation). The curve on the right corresponds to the difference between the curves on the left. Overall,
we observe that a substantial percentage of identified SL candidate pairs are never simultaneously under-
expressed in patient samples. Analogous plots based on GTEx data are provided in SI Fig. 13. (C) For
the proposed pair SOX10/CDH19, we plot the average percentage of TCGA samples that have expression
of SOX10 below the expression cutoff, c, and CDH19 expression above 20−c and compare with the curve
for randomly sampled gene pairs (sampled 10 times) and SOX10/CDH19 in melanoma (SCKM). These
curves show that there is no simultaneous under-expression of SOX10 and over-expression of CDH19 in
patient samples from TCGA. Gene expression for TCGA data used in plots (B, C) was transformed via
log2(normalized count + 1).
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Summary and Discussion
The identification of synthetically lethal gene pairs is a promising approach for developing targeted
treatments for cancer. Large-scale perturbation screens, such as the Cancer Dependency Map (DepMap),
present exciting opportunities for screening SL pairs using machine learning. Despite the availability of
such data, it has been difficult to identify clinically relevant SL pairs. A promising approach has been
to frame SL pair screening as a feature learning problem, where the goal is to identify, for a given
knockout, the corresponding expression or mutation features most indicative of low viability. Given that
random forests have been the only (nonlinear) machine learning models that provide explicit feature
importances, prior work, including the “best model” from DepMap and PARIS from [3], used random
forests for SL screening. In recent work, we showed that kernel machines provide a more powerful
approach for related screening tasks [48, 49], suggesting that such models may provide a more powerful
alternative to random forests for SL pair screening. In this work, we built a computationally efficient
and effective pipeline for SL pair screening by leveraging a recently developed class of feature learning
kernel machines known as Recursive Feature Machines (RFMs). The construction of our pipeline is
motivated by formulating the problem of SL pair screening as the prominent single-index model studied
in the statistical literature, which can be solved using an RFM. We demonstrated that our pipeline more
accurately recovers experimentally verified SL pairs than the “best model” from DepMap and previous
state-of-the-art approaches based on random forests. Moreover, we applied our pipeline to identify novel
candidate SL pairs. We identified as top candidates PELO/KLHL9, MVK/SCAP, and SOX10/CDH19,
which were not found using prior approaches but have strong supporting evidence based on experimental
data from DepMap and The Cancer Genome Atlas (TCGA). In the following, we discuss implications of
our results and future extensions.

Identifying synthetically lethal gene groups. In this work, we focused on the problem of identify-
ing gene pairs, which when simultaneously perturbed lead to cell death, by formulating it as a single-index
problem. An interesting next direction is to investigate whether our pipeline can also be used to identify
patterns of groups of genes that are associated with low cellular viability under a given knockout; this
represents a natural extension of single-index to multi-index modeling. Another interesting extension is
to consider combinatorial screens in which more than one gene is perturbed. While such settings are
challenging since there is limited data on the effects of combinatorial perturbations on cells, we envision
that our pipeline could serve as a useful step in determining candidate experiments for identifying novel
SL gene interactions.

Flexible and scalable approach for screening. The flexibility and computational efficiency of our
pipeline, which takes less than 3 minutes to run on the full DepMap dataset on a single GPU, opens novel
avenues for rapidly obtaining novel biological hypotheses of key features. In particular, while our current
pipeline explores expression and mutation features, there are a number of other features including copy
number, ploidy, and features from multimodal data that we could integrate to identify novel candidates
of cancer vulnerabilities. We envision that integrating such features could provide novel insights into
biological mechanisms associated with cancer and support the development of novel targeted treatments.
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Methods
Overview of datasets and pre-processing

Below, we provide an outline of all datasets and data pre-processing utilized in this work.

• DepMap

– The viability dataset is a 1078 cell lines × 17,453 knockout matrix where every entry is a
number denoting the viability of the cell after the gene is knocked out.

– The gene expression dataset contains a 19,194-dimensional gene expression (log2(TPM +
1)) vector for 1,408 cancer cell lines.

– The damaging mutations dataset contains a 17,257-dimensional vector for 1,702 cancer cell
lines with values in [0, 1, 2], where 0 indicates no mutation, 1 indicates at least one heterozygous
damaging mutation, and 2 indicates at least one homozygous damaging mutation.

– The hotspot mutations dataset contains a 450-dimensional vector for 1,702 cancer cell lines
with values in [0, 1, 2], where 0 indicates no mutation, 1 indicates at least one heterozygous
hotspot mutation, and 2 indicates at least one homozygous hotspot mutation.

• TCGA

– The TCGA dataset contains 10667 samples from patients with 36 different cancers: Acute
Myeloid Leukemia (LAML), Adrenocortical Cancer (ACC), Bile Duct Cancer (CHOL), Blad-
der Cancer (BLCA), Breast Cancer (BRCA), Cervical Cancer (CESC), Colon Cancer (COAD),
Colon and Rectal Cancer (COADREAD), TCGA Endometrioid Cancer (UCEC), Esophageal
Cancer (ESCA), Glioblastoma (GBM), Head and Neck Cancer (HNSC), Kidney Chromophobe
(KICH), Kidney Clear Cell Carcinoma (KIRC), Kidney Papillary Cell Carcinoma (KIRP),
Large B-cell Lymphoma (DLBC), Liver Cancer (LIHC), Lower Grade Glioma (LGG), Lower
Grade Glioma and Glioblastoma (GBMLGG), Lung Adenocarcinoma (LUAD), Lung Can-
cer (LUNG), Lung Squamous Cell Carcinoma (LUSC), Melanoma (SKCM), Mesothelioma
(MESO), Ocular Melanomas (UVM), Ovarian Cancer (OV), Pancreatic Cancer (PAAD),
Pheochromocytoma and Paraganglioma (PCPG), Prostate Cancer (PRAD), Rectal Cancer
(READ), Sarcoma (SARC), Stomach Cancer (STAD), Testicular Cancer (TGCT), TCGA
Thymoma (THYM), Thyroid Cancer (THCA), or Uterine Carcinosarcoma (UCS). These are
all the cancers available on the Xena portal except for Pan-Cancer (PANCAN) and Forma-
lin Fixed Paraffin-Embedded Pilot Phase II (FPPP). The gene expression dataset contains a
40,543-dimensional gene expression (log2(TPM + 1)) vector and mutation dataset contains a
40,543 -dimensional binary vector indicating the presence of non-silent somatic mutation.

Each cell embedding is a concatenation of the DepMap gene expression vector and DepMap mutation
vector, where the mutation vector contains a 1 if the cell has a damaging or hotspot mutation and 0 oth-
erwise. The gene expression vector is z-scored across cell lines, so the mean gene expression for each gene
is 0. The cell embedding is normalized to norm 1 under the ℓ2 norm for each cell. For ease of downstream
analysis, we only kept cell features that are present in both the DepMap and TCGA datasets. The final
dimensions of the gene expression features and mutation features are 16,568 and 16,061, respectively.
We also only kept cell lines that are present in both the viability and gene expression/mutation datasets.
This leaves 998 cells. The final cell embedding is a 998× 32, 629-dimensional matrix.

Training details

We trained a RFM for each knockout that is trained to map cell line embeddings to viability scores for
each knockout. Since the cell embeddings are the same per knockout, we trained RFMs efficiently by
modeling this problem as a multi-output regression problem where the number of outputs are equal to
the number of knockouts. When trained RFMs using a Laplace kernel as the base predictor, i.e., the
kernel function is K(x, x̃) = exp(−L||x − x̃||2). We directly solved the kernel regression problem with
L = 1 and performed one iteration of feature-learning through the average gradient outer product. We
used ridge regularization with a coefficient of 10−6 to avoid numerical issues with solving exactly. If
Y ∈ R998×17453 is the viability matrix and X ∈ R998×32629 is the cell embedding, then the solution to
our kernel regression problem is

α = Y ⊤(K(X,X) + 10−6I)−1;
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where K(X,X)ij = K(xi, xj) with xi, xj denoting embeddings of cell lines i, j. We then utilize the
AGOP of the trained kernel machine to extract relevant features. In particular, for a cell line x and KO
k, let the trained kernel machine be given by

fk(x) = K(x,X)αk = exp(−L||x−X||2)αk .

Since we are primarily interested in feature importances, we compute the average magnitude of gradient
entries of fk. These are given by the diagonal of the AGOP as follows:

g̃k =
1

n

n∑
i=1

∇fk(xi)⊙∇fk(xi);

where ⊙ denotes elementwise multiplication (Hadamard product). Note that feature importance alone
is insufficient for identifying SL pairs. In particular, we must ensure that the top feature induces low
cellular viability. To this end, we use Pearson correlation coefficient (PCC) to additionally re-weight
features based on their association with low viability. Namely, for mutation features, the presence of
a mutation should be negatively correlated with the viability score. For expression features, a strong
positive correlation with viability indicates that the knockout is synthetically lethal with under-expression
of the feature and a strong negative correlation indicates that the knockout is synthetically lethal with
over-expression of the feature. To incorporate these relationships into our pipeline, we re-weight the
feature importances according to

gk = g̃k ⊙ |ck| .
where ck is a 32, 629-dimensional vector where each entry is the PCC of the feature gene with viability
under the knockout and coordinate i of ck is 0 if coordinate i represents a mutation feature and the PCC
of the feature is positive. Moreover, for entries of ck corresponding to expression features, we only utilize
features within 3 standard deviations of the mean to omit outliers.

Metrics for evaluating performance

To find the best kernel to use, we benchmarked the performance of Laplacian and Gaussian kernels to
predict the viability scores for each knockout. The Laplacian kernel is defined as K(x, x̃) = exp(−L||x−
x̃||2) and Gaussian kernel is defined as K(x, x̃) = exp(−L||x− x̃||22) for L > 0. For our experiments, we
used L = 1 for both kernels. We also benchmark predicting the mean for each knockout over cell lines.
We used 5-fold cross validation for the target task and reported the metrics computed across all folds in
SI. Fig. 1.

Let C = 998 denote the number of cell lines and K = 17453 denote the number of knockouts. Let
Ŷ ∈ RC×K denote the predicted viabilities for cells under each knockout generated through 5-fold cross
validation. Let Y ∈ RC×K denote the ground truth. Let Ȳ (c) = 1

K

∑K
k=1 Y

(c)
k denote the average

viability for cell line i. Let ŷ,y ∈ RCK denote the vectorized versions of Ŷ and Y respectively, and ¯̂y, ȳ
their respective means. We use the same three metrics as those considered in [48, 49]. All evaluation
metrics have a maximum value of 1 and are defined below.

1. Pearson R:

r =
⟨ŷ − ¯̂y,y − ȳ⟩

∥ŷ − ¯̂y∥2∥y − ȳ∥2
;

2. Mean R2:

R2 =
1

C

C∑
c=1

(
1− ∥Ŷ (c) − Y (c)∥22

∥Y (c) − Ȳ (c)∥22

)
;

3. Mean Cosine Similarity:

c =
1

C

C∑
c=1

⟨Ŷ (c), Y (c)⟩
∥Ŷ (c)∥∥Y (c)∥

.

In SI Fig. 1B, we evaluate the prediction performance for computational simplicity in two specific
cell lines, A549 and HUH7, using 5-fold cross validation. For each cell line, we obtain a list of knockouts
sorted from most lethal to least lethal for the cell. We generate the same sorted list using predicted
viability scores from the Laplacian kernel, mean over cell lines, and a random shuffle. We then plot the
percentage of knockouts that overlap between these lists, indexed by the number of the most lethal knock-
outs. Laplacian kernel out-performs the other two benchmarks, demonstrating that SL-RFM effectively
identifies the top most lethal knockouts for held out cell lines.
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Score computation from feature importances

To propose candidate SL pairs, we look for knockouts for which feature importance distributions exhibit
a gap between the most important feature and other features consistent with a single-index model. We
thus define the following score to automatically identify such SL pairs. Let vk be a vector of feature
importances for the predictor fk trained to predict viability scores of knockout k. We define

score(k) = max(vk)− mean(vk) .

We then sort the knockouts by their scores. The knockouts with the highest scores and the genes
associated with the top feature for these knockouts are proposed as candidate SL pairs.

Data Availability
All datasets considered in this work are publicly available. The CRISPR-Cas9 viability screens
(CRISPRGeneEffects.csv), cell line expression (OmicsExpressionProteinCodingGenesTPMLogp1.csv),
cell line mutation data (OmicsSomaticMutations.csv), cell line (Model.csv), and DepMap feature im-
portances (Chronos_Combined_predictability_results.csv) were downloaded from DepMap version
22Q4. The TCGA data was downloaded from the UCSC Xena datahub (tcga.xenahubs.net), and the
GTEx data is Gene TPM data from GTEx Analysis V8 (GTEx_Analysis_2017-06-05_v8_RNASeQCv1.
1.9_gene_tpm.gct.gz). A list of oncogenes was obtained from OncoKB at https://www.oncokb.org/
cancer-genes.

Code Availability
The code is available at https://github.com/uhlerlab/synthetic_lethality.
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Supporting Information

(A)

Mean Over Cell TypeGaussian KernelLaplacian Kernel

0.6640.7440.742Pearson R
0.413 ± 0.2270.522 ± 0.2160.522 ± 0.209R2

0.797 ± 0.0830.841 ± 0.0720.840 ± 0.072Cosine Similarity

Comparing Performance in Predicting Cell Viability, SL Genes 

Comparing Performance in Predicting Cell Viability, All Genes 

Mean Over Cell TypeGaussian KernelLaplacian Kernel

0.9290.9330.935Pearson R
0.865 ± 0.0410.872 ± 0.0410.875 ± 0.040R2

0.938 ± 0.0200.942 ± 0.0200.943 ± 0.019Cosine Similarity

(B)

SI Figure 1: Comparison of model performance in predicting viability data. All metrics are described
in Methods. (A) Comparison of RFM with varying base kernels (Laplace and Gaussian kernel) on
predicting cell viability, where test cell lines are held out using 5-fold cross validation. (B) Analyzing
predictions for individual cell lines from five-fold cross-validation. We compare the list of predicted
knockouts and the list of ground truth knockouts sorted by viability score for sample cell lines (A549
and HUH7). We observe that RFM with the Laplace kernel base predictor outperforms both a mean
over cell line benchmark and a random baseline, illustrating the effectiveness of our selected model on
held-out test data.
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Effectiveness of Our Pipeline
SL-RFM 
(Ours)

SL-RFM 
(Ours)

DepMapDepMapPARISPARISPCCPCCExperimentally Verified 
SL Pairs from [1]

1111647111SMARCA2/SMARCA4

2281> 101419178371ARID1B/ARID1A

11113133111STAG1/STAG2

145781> 101435150771CREBBP/EP300

115541503471103VPS4A/VPS4B

11111071111DDX17/DDX5

83781> 1015070116904ENO1/ENO2

17911> 101157718226SMARCC2/SMARCC1

N/A1> 10> 10N/A1N/A2UBC/UBB

21> 10152001151MAGOH/MAGOHB

1695915938> 10> 10494433071564014850ME2/ME3

1111530131FAM50A/FAM50B

SI Figure 2: Ranks of all models from Fig. 2 when considering the first gene in the pair as the knockout
(white) or the second gene in the pair as the knockout (gray). The minimum rank between white and
gray columns is reported in Fig. 2. We note that DepMap only provides the top 10 most important
features for prediction. If the SL pair gene does not appear among the top 10, we denote the rank as
> 10. All other models return the full set of feature importances.
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SI Figure 3: SL-RFM feature importance plots for knockouts part of SL pairs from [18].
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SI Figure 4: The distribution of scores for the knockouts. To suggest candidate SL pairs, we utilize a
score cutoff of 0.0071 (shown as a dashed vertical line). This results in 92 knockouts.
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SI Figure 5: SL-RFM feature importance plots 1-28 of our proposed SL pairs.
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SI Figure 6: SL-RFM feature importance plots 29-56 of our proposed SL pairs.
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SI Figure 7: SL-RFM feature importance plots 57-84 of our proposed SL pairs.
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SI Figure 8: SL-RFM feature importance plots 85-100 of our proposed SL pairs.
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(A) Non-Self SL Pairs Within DepMap Top 100 that Differ From Our Predictions 

Experimentally 
Verified?

Rank Among 
Predicted 

Pairs
Our Rank of 

DepMap FeatureDepMap Top FeatureKnockout

24> 10C11orf53POU2AF2

30> 10GATA1ZFPM1

51> 10SIMC1SLF1

75> 10SYDE1FERMT2

785RNF43TCF7L2

812CHMP4CCHMP4B

✓894EXOC6BEXOC6

96> 10CD19PAX5

(B)

SI Figure 9: Comparison of the SL pairs suggested by our pipeline to those suggested by DepMap. (A)
A list of the non-self SL pairs out of the top 100 pairs proposed by the best model from DepMap that
differ from pairs proposed by our pipeline. We sort DepMap pairs by score, as defined by difference
between max feature importance and mean feature importance for a given knockout. Since DepMap
only published the feature importances of the top 10 features for each knockout, the score was calculated
using the 10 provided features. Note that only two out of ten of the top pairs of DepMap not found using
our method are experimentally verified. (B) Comparison of the percent of self-pairs proposed by our
method and DepMap that are verified oncogenes in OncoKB. We observe that the model from DepMap
proposes many more self-pairs than our method, but that most of these pairs are not verified oncogenes
in OncoKB.
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(A)

(B)

SI Figure 10: (A) A visualization of the relationship between expression of genes associated with the
top six most important features for predicting viability scores under knockout of SOX10 using SL-RFM.
The majority of cell lines with over-expression of the targets are derived from skin cancer and have low
viability under the SOX10 knockout. (B) Joint expression of these genes and SOX10 in TCGA. The
majority of melanoma samples have SOX10 overexpressed. These analyses suggest that knocking out
SOX10 causes low viability for cells with over-expression of the genes associated with these top features,
which occurs frequently in melanoma.

26

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.03.569803doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569803
http://creativecommons.org/licenses/by-nc/4.0/


SI Figure 11: Visualization showing that for SL pairs of the form (A, B) with dependency on knockout
of gene A and over-expression of gene B, there are few TCGA samples exhibiting low expression of gene
A and high expression of gene B. For 9 randomly sampled gene pairs (sampled 10 times) and the 9 SL
pairs with dependency on over-expression of the form (A, B), we plot the average percentage of TCGA
samples that have expression of the gene A below the expression cutoff, c, and the expression of the gene
B above 20 − c. In the figure on the right, we plot the difference between the two curves. For c < 10,
there are up to 10% fewer TCGA samples with low expression of gene A and high expression of gene B
than random samples. As c increases, this relationship flips since there can be many samples for which
gene B is under-expressed.
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SI Figure 12: Visualization showing that for the SL pairs we propose, there are fewer TCGA samples with
expression patterns corresponding to proposed synthetically lethal gene interactions than random pairs.
The dependency of PELO/KLHL9 is on under-expression, so we validate that there are fewer TCGA
samples with the under-expression of both genes than random pairs. The dependencies of SCAP/MVK
and SOX10/CDH19 are on over-expression, so we validate that for expression cutoff below 10, there are
fewer TCGA samples with the under-expression of SCAP/SOX10 and over-expression of MVK/CDH19.
For SCAP/MVK and SOX10/CDH19, we plot the average percentage of TCGA samples that have
expression of SCAP/SOX10 below the expression cutoff, c, and the expression of MVK/CDH19 above
20−c. We also plot each of these curves upon stratifying the TCGA samples by cancer type based on our
analysis in Fig. 4. Namely, the susceptible cancer type for PELO/KLHL9 is glioblastoma (GBM), the
type for SCAP/MVK is lung cancer (LUNG), and the type for SOX10/CDH19 is skin cancer (SCKM).
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SI Figure 13: Visualization showing that SL genes with a dependency on under-expression are not
simultaneously under-expressed in GTEx data. The GTEx TPM expression data was normalized as
log2(TPM + 1). For 67 randomly sampled gene pairs (sampled 10 times) and the 67 out of 92 SL
pairs with a dependency on under-expression and with data in TCGA (we omitted RPP25L/RPP25,
COPG1/COPG2, and CHMP3/CHMP2A for this reason), we plot the percentage of GTEx samples
for which both genes have an expression below the given x-axis coordinate. On the right, we plot the
difference of the percentage of GTEx samples with expression of randomly sampled gene pairs below
the cutoff and the percentage of GTEx samples with expression of SL pairs with expression below the
cutoff. Overall, we observe up to a 40% difference, indicating that our candidate pairs are almost never
simultaneously under-expressed in GTEx samples.
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