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Abstract: Multiplex tissue imaging are a collection of increasingly popular single-cell spatial proteomics 

and transcriptomics assays for characterizing biological tissues both compositionally and spatially. 

However, several technical issues limit the utility of multiplex tissue imaging, including the limited 

number of molecules (proteins and RNAs) that can be assayed, tissue loss, and protein probe failure. 

In this work, we demonstrate how machine learning methods can address these limitations by imputing 

protein abundance at the single-cell level using multiplex tissue imaging datasets from a breast cancer 

cohort. We first compared machine learning methods’ strengths and weaknesses for imputing single-

cell protein abundance. Machine learning methods used in this work include regularized linear 

regression, gradient-boosted regression trees, and deep learning autoencoders. We also incorporated 

cellular spatial information to improve imputation performance. Using machine learning, single-cell 

protein expression can be imputed with mean absolute error ranging between 0.05-0.3 on a [0,1] scale. 

Finally, we used imputed data to predict whether single cells were more likely to come from pre-

treatment or post-treatment biopsies. Our results demonstrate (1) the feasibility of imputing single-cell 

abundance levels for many proteins using machine learning; (2) how including cellular spatial 

information can substantially enhance imputation results; and (3) the use of single-cell protein 

abundance levels in a use case to demonstrate biological relevance. 

Introduction 

 
Multiplex tissue imaging (MTI) are a set of single-cell spatial proteomics and transcriptomics assays for 

highly detailed profiling of biological tissues. With MTI, single-cell abundance levels and spatial 

distribution of 10-150 of proteins and/or 500-2000 RNAs can be quantified simultaneously (Francisco-

Cruz et al., 2020; Sheng et al., 2023). MTI enables characterization of individual cells as well as tissue 

organization, and MTI has been used in studies of healthy tissue (Neumann et al., 2022), COVID 

(Werlein et al., 2023), cancer (Lewis et al., 2021), and other diseases (Kitko et al., 2022; McCaffrey et 

al., 2022; Sepe et al., 2022). There are many MTI platforms, including cyclic immunofluorescence 

(CycIF) (Lin et al., 2018), CO-Detection by indEXing (CODEX) (Black et al., 2021), CosMx (Z. R. Lewis 

et al., 2022), Xenium (Janesick et al., 2022) and multiplex immunohistochemistry (Tsujikawa et al., 

2017). MTI has been used to generate large datasets in NIH consortia such as the NIH Human 

BioMolecular Atlas Program (HuBMAP Consortium, 2019) and the NCI Cancer Moonshot Human 

Tumor Atlas Network (Rozenblatt-Rosen et al., 2020). MTI is also an increasingly common assay in 

cancer (Tan et al., 2020), where it has proven important for quantifying tumor spatial organization and 

microenvironment heterogeneity (Blise et al., 2022) and connecting these features to cancer subtypes, 

prognosis, and therapy response (Friebel et al., 2020; Steele et al., 2020). 
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However, several key factors limit the usefulness of MTI. Only 10-150 proteins and/or several thousand 

RNAs can be assayed in a single experiment, and hence the information obtained from a single 

experiment is bounded. Further, MTI assays can suffer from several technical issues that reduce the 

information obtained, including tissue loss or folding, probe failure, illumination artifacts, or errors in 

downstream image processing. These limitations greatly impact MTI data quality and substantially 

reduce the overall utility of MTI. To mitigate these limitations and improve utility of MTI, machine learning 

and deep learning approaches can be used to computationally increase the numbers of proteins/RNAs 

available from MTI and mitigate assay failures. Computationally increasing—or imputing—additional 

data by filling in missing data with predicted values is already common in other molecular assays, such 

as single-cell RNA sequencing (scRNA) (Chen et al., 2022; Gong et al., 2018; He et al., 2020; 

Kharchenko et al., 2014; Talwar et al., 2018; Tran et al., 2022; van Dijk et al., 2018; Xu et al., 2021), 

bulk genomics (Qiu et al., 2020), and bulk transcriptomics (Patruno et al., 2021). While imputation has 

been applied to MTI images (Sims & Chang, 2023; Ternes et al., 2021), to the best of our knowledge 

imputation on MTI single-cell datasets has not been explored. Imputation has been applied to MTI 

image data (Pati et al., 2023; Wu et al., 2023), being able to reconstruct protein expression in images. 

However, imputing single-cell data is especially valuable because single-cell datasets require fewer 

computational resources to process than images and can be readily integrated with other molecular 

datasets.  
 

In this study, we applied machine learning (ML) and deep learning (DL) methods to impute protein 

abundance in tissue-based cyclic immunofluorescence (t-CyCIF) (Lin et al., 2018) datasets obtained 

from breast cancer tissues. Because t-CyCIF is an open and quantitative multiplexed tissue imaging 

assay, it is ideally suited for imputation. We evaluated the performance of ML and DL methods to predict 

protein abundance levels in t-CyCIF single-cell datasets that included 20 proteins. Three distinct ML/DL 

approaches—regularized linear regression, gradient-boosted trees, and autoencoders—were used to 

impute single-cell protein abundance values across both patients and timepoints. Spatial information 

was introduced to improve imputation results. To demonstrate a biological application of imputed single-

cell protein abundance, we used imputed data to predict whether single cells were more likely to come 

from pre-treatment or post-treatment breast cancer biopsies Overall, our results demonstrate that 

accurate imputation is possible for many proteins, that spatial information significantly improves 

imputation results, and that imputed protein values are useful in a biological application. 
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Results 

Study Cohort and Analysis Overview 
 

The multiplexed tissue imaging single-cell datasets used in this study were generated using a 20-plex 
t-CyCIF (Lin et al., 2018) protein panel applied to a cohort of hormone receptor-positive (HR+), HER-2 
negative metastatic breast cancer biopsies. t-CyCIF is a unique multiplexed tissue imaging assay that 

has been shown to provide robust and repeatable quantifications of protein concentrations across a 
range of biological samples. The tissue biopsies and datasets are part of the NCI Cancer Moonshot 
Human Tumor Atlas Network (Rozenblatt-Rosen et al., 2020) and have detailed associated clinical 

 

Figure 1: Overview of dataset, study motivations, and analysis approaches. a: Biopsies were obtained from four 
HR+ breast cancer patients before and after the same standard-of-care therapy for a total of eight biopsies. b: each 
biopsy was assayed using the multiplexed tissue imaging assay t-CyCIF to quantify abundance levels of 20 proteins 
and then processed using an image analysis pipeline to create single-cell feature tables (total number of cells identified: 
475359); c: the key tasks addressed by this work are imputing failed proteins and inferring additional proteins not present 
in an multiplex tissue imaging (MTI) experiment; d: approaches for training and testing ML models for imputing proteins 
across patients.  
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metadata. Our dataset includes a total of eight biopsies derived from four patients (Fig. 1a) that 
received a CDK4/6 inhibitor in combination with endocrine therapy, which is a common combination 
therapy in metastatic HR+ breast cancer. Each patient 
contributed a pair of biopsies, a pre-treatment biopsy and a 
biopsy taken at the time of tumor progression.  
Image stacks collected from t-CyCIF were processed using 
the MCMICRO image analysis pipeline (Schapiro et al., 
2021) to generate single-cell feature tables (Fig. 1b). Each 
row in the table is a single cell identified in the image, and 
the table columns are the protein abundance levels 
calculated via mean pixel intensity per cell. In total 475,359 
single cells were identified across all biopsies, with an 
average of 59,400 cells per biopsy. To perform in-patient 
evaluation, either the pre-treatment or the post-treatment 
biopsy was used for training a machine learning model while 
the remaining biopsies were used for testing model 
performance. Biopsy timing was not used in this study. In 
total 16 proteins were shared between all biopsies, including 
eight proteins for identifying cell types (lineage proteins) and eight proteins for characterizing cellular 
functional states (functional proteins) (Table 1). 
 

The imputation task in this study was to predict protein abundance levels for a withheld protein or set 

of proteins. Preprocessing was performed to remove all columns from the datasets except protein 

intensities, followed by a min-max scaling approach, which maps values between zero and one. Thus, 

model error is in the range [0,1] where lower error represents better performance. For each machine 

learning experiment, one or more proteins were withheld and used as the target variable(s) for the 

predictive model, and the remaining protein abundances were used as input features for the model. 

This task simulates the key application for imputation in MTI: computationally increasing proteins not 

originally included in an MTI assay or inferring protein levels where the assay failed (Fig. 1c). Three 

machine learning methods were used for imputation: elastic-net (EN) regularized linear regression (Su 

et al., 2012), light gradient-boosting machine (LGBM) (Ke et al., 2017), and neural network 

autoencoders (AE) (Zhai et al., 2018).  

 

These algorithms offer different advantages for addressing the complexities of our dataset and research 

objectives. Elastic Net (EN) is a linear model that effectively handles high-dimensional data like that in 

our MTI datasets by using regularization to manage multicollinearity and select relevant proteins. 

However, EN requires a separate model to predict each protein, and this is time-consuming. Light 

Gradient Boosting Machines (LGBM) use a non-linear approach for developing predictive models and 

are amongst the most efficient and best performing methods for tabular data like our MTI datasets. Like 

EN, LGBM also requires a model for each protein. Autoencoders (AEs) can learn non-linear 

relationships, reduce dimensionality, and denoise data, allowing a single model to impute multiple 

proteins at once, although their compression techniques may lead to some loss of precision. 

Autoencoders were chosen for this study due to their ability to reduce dimensionality and denoise data 

while preserving essential information. This helps in data imputation and improving data quality before 

further analysis. EN and LGBM are straightforward to implement and handle linear and non-linear 

relationships, respectively, while AEs provide efficient preprocessing and multi-protein imputation.  

 

Imputation model training and evaluation were conducted using a leave-one-out cross-validation 

(LOOCV) approach (Fig. 1d). In this methodology, each patient was considered a single data point, 

whereby a model was trained on all biopsies except those from one patient. Subsequently, the model's 

Table 1: Overview of proteins assayed using 
t-CyCIF and their use as functional or lineage 
proteins. Lineage proteins are used to identify 
cell types whereas functional proteins are 
used to characterize cell function. 

Lineage Protein Functional Protein 

CD45 Ki67 

αSMA pERK 

eCadherin PR 

CK19 EGFR 

CK14 p21 

CK17 pRB 

CK7 AR 

Vimentin HER2 
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performance was assessed using the biopsies from the patient excluded during training. This LOOCV 

approach was chosen to prevent data leakage from biopsies associated with the same patient as the 

test biopsy, thereby closely approximating real-world application scenarios. Model performance was 

calculated by averaging the mean absolute error (MAE) scores across all runs of the model on a 

particular train-test dataset split. Statistical evaluations were carried out using the Mann-Whitney U test, 

and multiple hypothesis tests were adjusted using the Benjamini-Hochberg correction method.  

 

Protein abundance imputation with elastic net and light gradient-boosting machines 

 

To establish baseline performance of our imputation models, we conducted a test using mean 

imputation, where values were imputed by using the mean protein abundance value in the training 

dataset. Using mean values for imputation serves as a null or baseline model to determine if a machine 

 

 

Figure 2: Imputation results for null model and elastic net and Light GBM machine learning models across 
patients. a: Imputation results for all proteins demonstrates improved mean absolute error (MAE) by using Elastic Net 
(EN) compared to a null model. b: Imputation results using EN & Light GBM (LGBM) show low MAE for imputation for 
12 out of 16 available proteins. c: Patient protein expression for four proteins (CK19, ER, pRB, CK17) is highly variable; 

 p-value: ns: not significant, p <= 1.00e+00 *: 1.00e-02 < p <= 5.00e-02 **: 1.00e-03 < p <= 1.00e-02 ***: 1.00e-04 < 
p <= 1.00e-03 ****: p <= 1.00e-0  

 

 

 

s: ns: not significant, p <= 1.00e+00 *: 1.00e-02 < p <= 5.00e-02 **: 1.00e-03 < p <= 1.00e-02 ***: 1.00e-04 < p <= 1.00e-03 ****: p 
<= 1.00e-0 
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learning model provides genuine improvements over a simple heuristic. The EN model outperformed 

the null model by an average of 0.078 MAE indicating that the EN model demonstrated superior 

performance compared to the null model (Fig. 2a). This performance difference was statistically 

significant, with an average adjusted p-value less than 0.0001 for all proteins. Proteins CK17 and Ki67 

were most accurately imputed with MAE of 0.05. Proteins for which the imputation MAE exceeded 0.2 

included CK19, ER, CK14, and PR. 

  

Using Light Gradient Boosting Machine (LGBM) yielded improved imputation accuracy compared to 
EN (Fig. 2b). Like the EN, LGBM performance for the same 12 of 16 proteins was between 0.05 and 
0.20 MAE. LGBM imputation accuracy for CK19 and ER are like the EN and greater than 0.2 MAE. 
Overall, LGBM displayed more accurate imputation results than EN (Table 2) both in terms of mean 
and standard deviation. To provide a comprehensive overview of performance, a mean of all proteins 
column is included to show the average imputation accuracy across all proteins for each model (Fig. 
2a, Fig. 2b). While using LGBM improved imputation accuracy compared to the EN, some proteins still 
exhibit a high MAE, such as CK19 and ER. These proteins exhibited high variance (Table S2), 
presenting a significant challenge for accurate imputation. Figure 2c shows protein abundance 
distributions of selected proteins with especially high or low variance to illustrate why imputation is 
difficult for proteins such as CK19 and ER that exhibit high variance.  

 

Table 2: Mean and standard deviation of performance for EN, LGBM and AE. 

Model/Network EN LGBM AE Single AE Multi 

Mean (Std) 0.11 (0.07) 0.10 (0.06) 0.13 (0.09) 0.13 (0.09) 
 

We also evaluated imputation accuracy within patients by modifying the LOOCV approach described 

above. The modified within-patients LOOCV approach included one biopsy from each patient in the 

training dataset and used the remaining biopsy from the same patient for testing. Surprisingly, 

imputation accuracy in the across-patient LOOCV approach was higher than imputation accuracy in 

the within patients for some proteins (Fig. S1). We hypothesize that this performance difference may 

be attributable to the more diverse training dataset in the across-patient approach. This diverse training 

dataset may enable imputation models to better handle heterogeneity across patients. 

 

Protein abundance imputation using autoencoders and all model comparisons 
 

An autoencoder (AE) is a deep learning neural network for accurate reconstruction of high-dimensional 
data that include two distinct components: (1) an encoder network that maps a high-dimensional input 
to a lower-dimensional representation in a latent space and (2) a decoder network that reconstructs the 
original high-dimensional input from the low-dimensional latent space representation. The goal of an 
AE is to perform information-preserving dimensionality reduction of its input to the latent space so that 
it can then accurately reconstruct the input from the latent representation. AEs have been successfully 
used for imputation in various biological domains, including single-cell RNA (Grønbech et al., 2020; 
Hou et al., 2020; Lotfollahi et al., 2020; Talwar et al., 2018), genomics (Qiu et al., 2020) and more 
(McCoy et al., 2018). Unlike LGBM and EN models, AEs can impute multiple features simultaneously 
due to their ability to fully reconstruct the entire input data. Leveraging this capability, we conducted 
both single-protein and multi-protein imputation experiments based on the order of protein assays 
during t-CyCIF's multiple imaging rounds. T-CyCIF involves multiple rounds to stain, incubate, and 
capture images. Proteins were sequentially removed from each round, and the AE was trained and 
evaluated for each set of proteins. Initially, proteins from the first round were removed, and the AE was 
trained and evaluated. This process was then repeated for all proteins in the second round, and so on. 
To maintain simplicity, no other pairings of proteins were made beyond the rounds. 
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The AE was trained using biopsies from three patients, including both pre- and post-treatment samples, 
with biopsies from a fourth patient reserved for validation. Aggregating all biopsy data allowed the AE 
to develop an internal representation focused on minimizing reconstruction error. During the imputation 

phase, we initially replaced the target protein's values with the mean expression levels across the 
dataset. The modified dataset was processed through the AE, which performed continuous cycles of 

 
Figure 3: Autoencoder imputation results and performance comparison between machine learning models. a: 
The autoencoder (AE) is trained and then uses an iterative approach to impute single or multiple proteins. To start, 
proteins to be imputed are replaced with either zero or the mean of the intensity values in the training set. Then, the 
autoencoder is used iteratively to predict protein intensities using output values as new input values for each iteration. 
b: AE single- and multi-protein imputation performance. c: performance comparison between all evaluated ML models 
shows similar performance overall and that LGBM performs best, followed by EN and finally AE. There is no significant 
difference between single and multi-protein imputation performance for AE. p-values: ns: not significant p <= 1.00e+00 
*: 1.00e-02 < p <= 5.00e-02 **: 1.00e-03 < p <= 1.00e-02 ***: 1.00e-04 < p <= 1.00e-03 ****: p <= 1.00e-0 
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encoding and decoding to iteratively refine the imputed values. For each cycle, the AE replaced the 
original protein values with the decoded data from the previous cycle. This iterative process was 
repeated 10 times, as each protein required a different number of optimal iterations for accurate 
imputation. We used the mean expression from iterations five to ten as the final imputed value (Fig. 
3a).  
 
AEs accurately imputed proteins in both single- and multi-protein experiments (Fig. 3b). Imputation 

accuracy of CK19 levels is between 0.15-0.35 MAE, while imputation of the best performing proteins, 

CK17 and p21, is between 0.05 and 0.10 MAE. Like the EN and LGBM models, imputation performance 

is worst for the proteins with the most variable abundance levels in our breast cancer cohort, including 

CK19, ER, and PR.  

We next compared performance for all three machine learning models used for imputation. Overall, 

LGBM performed best, followed by the EN and the AEs. These performance differences are consistent 

between models (Fig. 3c). However, performance differences between the models are relatively 

modest, with the LGBM achieving a mean accuracy of 0.10 MAE, followed by the EN with a mean 

accuracy of 0.11 MAE, and the AEs with a mean accuracy of 0.13 MAE (Fig. 3c). Autoencoder 

performance differences between the imputation of single proteins and that of multi-proteins are 

minimal. 

 

To further evaluate the performance of imputation in MTI using machine learning, we performed 

imputation on an additional t-CyCIF dataset from the Human Tumor Atlas Network (Rozenblatt-Rosen 

et al., 2020). This dataset was taken from a breast cancer tissue microarray and included two tissue 

cores from each of 26 breast cancer tumors. On average, each core included approximately 9850 cells. 

Unlike the cancers in our 

main analysis cohort, 

these cancers are 

primary disease rather 

than metastatic and 

represent all different 

subtypes of breast 

cancer. This data is 

publicly available at the 

NCI Human Tumor Atlas 

Portal (see Data 

Availability section), and 

the same primary image 

processing analysis 

pipeline used in our main 

analysis was used to 

generate a single-cell 

dataset for imputation. 

From this single-cell 

dataset of a breast cancer 

tissue microarray, we 

extracted the proteins 

shared with the original 

dataset. We then 

replicated our original 

 
Figure 4: Imputation performance of EN, LGBM, and AE machine learning models 
on an independent t-CyCIF dataset. Dataset was obtained from a breast cancer tissue 
microarray that includes two cores each from 26 tumors. Imputation results are similar 
to those obtained in our primary cohort and dataset, showing that our imputation 
methods are applicable beyond the primary cohort to other cohorts and datasets. p-
values: ns: p <= 1.00e+00 *: 1.00e-02 < p <= 5.00e-02 **: 1.00e-03 < p <= 1.00e-02 ***: 
1.00e-04 < p <= 1.00e-03 ****: p <= 1.00e-0 
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imputation experiments using the EN, LGBM, and AE models, employing the same LOOCV approach 

as before. Results from this analysis show accurate imputation from EN and LGBM models with 

approximately the same level of overall accuracy as in our main dataset. Accuracy of the AE models 

was significantly lower in this dataset as compared to accuracy in our main dataset, but it is unclear 

why this drop in performance occurred. The LGBM model outperformed all other models, while the AE 

performed better than the EN but worse than the LGBM (Fig. 4, Table S2). 

 

Using cellular spatial information to improve imputation 

A key advantage of MTI datasets is that the spatial coordinates of each cell are known, making it 
possible to quantify spatial information around individual cells. We hypothesized that the spatial 
information available in t-CyCIF could be used to improve imputation performance. To test this 
hypothesis, we quantified the spatial cellular context surrounding a target cell (cell of interest) by 
calculating the mean protein abundance of neighboring cells. Average abundance levels of all proteins 
in neighboring cells were then added to our prior set of input features to create a feature set that 
includes both single-cell protein abundances plus average neighbor abundances (Fig. 5a).  

When no neighboring cells were detected, a value of zero was assigned for neighbors’ protein 

abundances. Radii of 15, 30, 60, 90 and 120 micrometers (µm) were used to identify neighboring cells 

and assess the impact of using different sizes of radii on imputation performance. Only features for one 

 
Figure 5: Using spatial information improves imputation performance for LGBM. a: Schematic for creating a 
feature table based on spatial neighbors found in selected radii. Exemplary 15 µm radius is shown. Red marks the cell 
of interest (or origin) and protein abundance levels of cells in its neighborhood are averaged to get neighborhood 
abundance levels. b: LGBM imputation results across patients with MAE scores for 0 µm, 30 µm, 60 µm reveal 
significant improvement for several proteins such as EGFR, ER,ECAD and PR. p-values: ns: p <= 1.00e+00 *: 1.00e-
02 < p <= 5.00e-02 **: 1.00e-03 < p <= 1.00e-02 ***: 1.00e-04 < p <= 1.00e-03 ****: p <= 1.00e-04 
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radius setting were used for training a model, and hence a single set of spatial features was included 

as input for a predictive model.  

A radius of 15 µm captures most of the immediate neighbors of a cell, whereas larger radii capture the 
extended neighborhood of a cell. 

 

We evaluated imputation accuracy using added spatial information in only LGBM and AEs because 

LGBM performed better than EN and AEs can perform multi-protein imputation. Using spatial 

information improved overall imputation accuracy for LGBM (Fig. 5b, Fig. S2), single protein AE (Fig 

6a, Fig. S3) and multi-protein AE (Fig. 6b, Fig S4). Importantly, imputation accuracy for proteins that 

Table 3: Mean and standard deviation of performance for LGBM and AEs for different radii. Mean and (standard 
deviation) for each model are listed. 0µm is considered as baseline without any use of spatial information. 

Network 0 µm [Baseline] 30 µm 60 µm 

LGBM 0.10 (0.06) 0.10 (0.06) 0.10 (0.05) 

AE Single Protein 0.13 (0.09) 0.10 (0.06) 0.11 (0.06) 

AE Multi Protein 0.12 (0.09) 0.11 (0.06) 0.12 (0.07) 

 

 
Figure 6: Using spatial information improves imputation performance. a: Single protein imputation MAE for 0 µm, 
30 µm and 60 µm leads to improved imputation accuracy for proteins such as AR, CK14, CK19, ER and more. Proteins 
for which imputation improved when using spatial information are in bold and underlined. b: Multi-protein imputation 
MAE scores for 0 µm, 30 µm and 60 µm and leads to improved imputation accuracy for proteins such as AR, CK14, 
CK19, ER and more. c: Comparison of LGBM and AE imputation performance for 0,30 and 60µm shows similar 
performance of all models. p-values: ns: p <= 1.00e+00 *: 1.00e-02 < p <= 5.00e-02 **: 1.00e-03 < p <= 1.00e-02 ***: 
1.00e-04 < p <= 1.00e-03 ****: p <= 1.00e-04 
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had proven difficult to impute well due to their very high levels of variance (see Supplemental Data, 

Fig. S3) was improved significantly with spatial information (Fig. 6a). In particular, imputation of CK19, 

ER, and PR was much more accurate with spatial information. LGBM performance also improved for 

other proteins such as CK17, CD45, Ecad, ASMA and p21. Performance of the AE achieved 

improvements in single-protein imputation for most proteins, with CK19 showing the greatest 

improvement (Fig. 6a). Multi-protein imputation also benefited from spatial information integration (Fig. 

6b). However, performance gains were not as pronounced compared to the single protein imputation 

model. Aligned with prior research (Fischer et al., 2022), imputation accuracy generally improves up to 

a certain neighborhood radius and then plateaus or declines (Table 3, Fig. S1). However, the LGBM 

does not show the same improvement up until a certain radius, but instead remains largely steady, with 

a peak performance observed using 60 µm (Table 3, Fig. S2). Imputation performance is improved by 

incorporating spatial information (Table S1). 

Using Imputation to Predict Treatment Timepoints of Breast Cancer Cells 

 
Figure 7: Experimental setup and validation for using imputed values to predict treatment timepoints for single 
cells. a: An initial tile classifier was used to identify tissue strongly associated with treatment timepoints. Next, cells in 
tissue associated with treatment timepoints were to train a cell classifier to identify whether cells came from pre-
treatment or post-treatment biopsies. b-c: Green squares show tiles strongly associated with treatment timepoints. d: 
Classification accuracy of the cell classifier shows improved performance using imputed values as compared to 
performance using original values. p-values: ns: p <= 1.00e+00 *: 1.00e-02 < p <= 5.00e-02 **: 1.00e-03 < p <= 1.00e-
02 ***: 1.00e-04 < p <= 1.00e-03 ****: p <= 1.00e-04 
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To evaluate the utility of imputed single-cell protein values from our machine learning models, we used 

these imputed values to predict whether cells were in pre-treatment or post-treatment timepoints. Using 

a machine learning classifier that predicts whether single cells are most likely to come from a pre- or 

post-treatment, we compared classifier accuracy using imputed values with classifier accuracy using 

original values. The dataset used for this analysis is our primary dataset that consisted of four pre-

treatment and four post-treatment biopsies. 

 

Initially poor classifier performance was observed because not all biopsy tissues exhibited strong 

signals associated with a treatment timepoint. To address this issue, we developed a two-step process 

using two machine learning classifiers (Fig. 7a). First, we selected 300 µm x 300 µm tiles for each 

biopsy that were associated with treatment timepoint by using a tile machine learning classifier (Fig. 

7b, Fig. 7c). The average protein expression of all cells within a tile was used as input to this tile 

classifier, and the tiles correctly predicted as pre- or post-treatment by the classifier were selected and 

used for further analysis. Second, the cells from the correctly predicted and subsequently selected tiles 

were then used as the dataset for single-cell imputation and then timepoint prediction using a single-

cell classifier. This single-cell classifier was trained to classify single cells as either pre-treatment or 

post-treatment based on protein abundance levels. Accuracy of this single-cell classifier was compared 

using both imputed values and the original values. 

 

To prevent data leakage, we employed LOOCV across patients. For each iteration, a biopsy was 

designated as the test set, while the remaining biopsies, excluding those from the same patient, were 

used for training the models. We then compared classification accuracy using the original protein 

abundance data without adjustment to accuracy using the original data together with one protein’s 

values replaced with imputed data. Imputation was performed using the LGBM model because it was 

the most accurate in prior analyses. No spatial data was used in the imputation model for simplicity and 

so that a comparison between original and imputed data was straightforward. Overall, classification 

accuracy was higher with imputed data as compared to the original data (Fig. 7c). We hypothesize that 

the improved accuracy using the imputed data versus accuracy using the original data may result from 

imputation reducing the noise in the data and errors in the primary image analysis pipeline. These 

findings validate the biological relevance and utility of imputed data for predicting cancer treatment 

timepoints. 

 
Discussion 
 
In this study, we utilized machine learning models to accurately impute single-cell protein abundance 
levels in breast cancer tissue using datasets obtained from the t-CyCIF multiplexed tissue imaging 
(MTI) assay. Our datasets comprised eight biopsies from a cohort of four metastatic breast cancer 
patients, facilitating the training and evaluation of these models. Within a range of [0,1], the imputation 
performance for most proteins exhibited a mean absolute error (MAE) between 0.05 and 0.15. However, 
proteins with high variance in our cohort, such as CK19 and ER, were more challenging to impute, with 
MAE ranging from 0.15 to 0.35. The LGBM model, a gradient-boosted regression tree approach, 
showed modestly better accuracy than an Elastic Net (EN) model or a deep learning autoencoder (AE). 
Incorporating spatial features into the models, represented by neighboring cells' protein abundance 
levels, enhanced their accuracy and reduced the average MAE by 0.02. This improvement was 
particularly significant for proteins with high variance that were otherwise difficult to impute. This use of 
spatial information complements recent research indicating that cell communication may vary and 
requires careful evaluation using multiple cellular neighborhoods (Fischer et al., 2022). Our results are 
concordant with this observation as they show a similar pattern of improved protein performance using 
a diverse set of radii. 
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While the LGBM shows the overall best performance, there are tradeoffs to consider when choosing a 
machine learning model for single-cell protein abundance imputation in MTI datasets. Traditional ML 
models such as LGBM and EN can only impute one protein per model, which requires training and 
storing a model for each protein to be imputed. Using a single model for each protein is time and cost 
inefficient. In contrast, an AE can impute multiple proteins at once and even all proteins included in their 
training data, requiring only a single training session and model. While AEs perform marginally worse 
than LGBM and EN for protein imputation, their capability for multi-protein imputation offers an 
advantage in reduced training time and cost. Multi-protein imputation, as opposed to sequential 
imputation, also models inter-protein relationships, and potentially yields more biologically pertinent 
relationships to explore. 
 
We have demonstrated robust performance of our imputation methods and biological significance of 
imputed values. Using an independent MTI dataset from a cohort of 26 breast cancers that included all 
major subtypes of the disease, our imputation methods showed similar performance to that in our 
primary cohort. Imputation results across these datasets suggest that our machine learning methods 
are versatile and can potentially be used in other MTI datasets. To demonstrate the biological 
significance of our imputed data, we used imputed protein abundance levels to accurately predict 
whether individual cells are taken from pre-treatment or post-treatment biopsies. This application shows 
that our approach produces biologically relevant imputed data that can be used in biomedical research. 
 
Limitations of this work include a focus on protein abundance rather than RNA expression, the small 

number of proteins used for imputation, the cohort composition of metastatic breast cancers, and the 

small sample size. These analyses demonstrate that it is possible to impute protein abundance in MTI, 

but imputation of RNA expression has not been explored. This analysis used the sixteen proteins that 

were shared amongst all biopsies, and it is uncertain if other proteins can be imputed as accurately as 

these sixteen. This analysis also focused on breast cancer biopsies and diseased tissue, and 

imputation results may be different in healthy tissue or in other diseases. A study like ours would benefit 

from using a larger and more diverse cohort and from different MTI assays with more proteins. Different 

and larger datasets would help establish the robustness and generalizability of our imputation methods. 

 
In summary, this study demonstrates that machine learning can effectively impute biologically 
meaningful single-cell protein abundance levels using MTI datasets. Our results provide a foundation 
for future applications of machine-learning imputed data in single-cell MTI datasets. One potential 
application is imputation of additional single-cell and cellular neighborhood features, which can in turn 
aid in understanding tissue ecosystems. Another future application is the use of imputed datasets to 
predict biomedical outcomes such as tissue response to perturbations or, in the case of disease, 
response to therapy.   

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 27, 2024. ; https://doi.org/10.1101/2023.12.05.570058doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.05.570058
http://creativecommons.org/licenses/by/4.0/


Data availability 
 
The datasets used for this study are available in DataVerse. 
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/RBIJSQ&version=1.0 and 
Table 4 lists the HTAN Biopsy and Biospecimen IDs used in this study. More information on these 
biopsies and biospecimens is available at https://humantumoratlas.org/explore 
 
Table 4: Human Tumor Atlas Network (HTAN) biopsy and biospecimen IDs. 

HTAN Biopsy ID HTAN Biospecimen ID 

9 2 1 HTA9_2_11 

9 2 2 HTA9_2_21 

9 3 1 HTA9_3_11 

9 3 2 HTA9_3_21 

9 14 1 HTA9_14_6 

9 14 2 HTA9_14_14 

9 15 1 HTA9_15_7 

9 15 2 HTA9_15_15 

 
 
All TMA data is available through the HTAN Data Portal as part of the HTAN TNP-TMA Project 
(https://data.humantumoratlas.org/) 
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Code availability 

 
The source code of this work is freely available in the GitHub repository. 
https://github.com/goeckslab/MTIProteinImputation 
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Methods 

 

Experimental Setup 
 
The BOND RX Automated IHC/ISH Stainer was used to bake FFPE slides at 60°C for 30 minutes, to 
dewax the sections using the Bond Dewax solution at 72°C, and for antigen retrieval using Epitope 
Retrieval 1 (Leica™) solution at 100°C for 20 minutes. Slides underwent multiple cycles of antibody 
incubation, imaging, and fluorophore inactivation. All antibodies were incubated overnight at 4°C in 
the dark. Slides were stained with Hoechst 33342 for 10 minutes at room temperature in the dark 
following antibody incubation in every cycle. Coverslips were wet-mounted using 200 μL of 10% 
Glycerol in PBS prior to imaging. Images were acquired using a 20x objective (0.75 NA) on a 
CyteFinder slide scanning fluorescence microscope (RareCyte Inc. Seattle WA). Fluorophores were 
inactivated using a 4.5% H2O2, 24 mM NaOH/PBS solution and an LED light source for 1 hour. 
The detailed protocol is available in protocols.io (dx.doi.org/10.17504/protocols.io.bjiukkew). 
 

Data Preparation 
 
The original source files include X and Y spatial coordinates and bio-morphological information 
(orientation, area, extent, etc.) for each cell. These features are removed for the initial imputation 
experiments, which solely rely on protein information.  
 
To prepare the available data for the machine learning models and deep learning networks, we used 
Min-Max Scaling to scale features to be in the [0,1] range.  
 
Statistical Validity: 
For robust statistical validity, we conducted more than 30 experiments (n > 30) for each protein 
imputation and each model. 
 

Elastic Net 
 
To setup an experiment using the Elastic Net, the scikit-learn library was used and within this library 
the ElasticNetCV, which automatically performs cross validation of error values. To support our results 
with statistical significance as well as a high enough numbers of trials, we performed multiple 
experiments n > 30. Each run was performed using a different random seed.  

 

Light GBM 
 
To set up a training and evaluation pipeline for our Light GBM (Ke et al., 2017) model, we used the 
Ludwig (Molino et al., 2019) platform, which enables “End-to-end machine learning pipelines” in a low 
code environment. To set up a Ludwig network only a config file specifying the features, in this work 
the proteins, and the target to be imputed is required. We automated this process by using a 
combination of shell and make scripts. Each run was assigned a different random seed to ensure 
reproducibility.  
 

Auto Encoder 
 
The Auto Encoder imputation was set up to make use of an iterative approach. As a first step, the 
preprocessed source data was loaded. To impute a specific protein, the protein values were replaced 
with a mean value calculated by using all available values for the protein in question. After the dataset 
was prepared and the protein in question replaced, the data was used as input for the auto encoder. A 
full encode and decode process was performed (Fig. 2), and the output was stored as an 
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intermediate result. From this intermediate result, the imputed protein values were taken and used as 
a replacement of the mean protein values created in the preparation step. After this, another round of 
imputation was performed. This process was preformed 10 times, which resulted in a 10-step iterative 
imputation process. Reported MAE and RMSE values are calculated by using the last 5 iterative 
decoding’s, calculating the mean of the decoding’s for the protein and then calculate the MAE and 
RMSE. 
 
For each model and network, a minimum of 30 experiments were performed to establish statistical 
significance. To create reproducible but different results, each experiment used a unique random 
seed. 
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