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Abstract 
 
Here, we present FLiPPR, or FragPipe LiP (limited proteolysis) Processor, a tool that 
facilitates the analysis of data from limited proteolysis mass spectrometry (LiP-MS) 
experiments following primary search and quantification in FragPipe.  LiP-MS has 
emerged as a method that can provide proteome-wide information on protein structure 
and has been applied to a range of biological and biophysical questions.  Although LiP-
MS can be carried out with standard laboratory reagents and mass spectrometers, 
analyzing the data can be slow and poses unique challenges compared to typical 
quantitative proteomics workflows.  To address this, we leverage the fast, sensitive, and 
accurate search and label-free quantification algorithms in FragPipe and then process 
its output in FLiPPR.  FLiPPR formalizes a specific data imputation heuristic that 
carefully uses missing data in LiP-MS experiments to report on the most significant 
structural changes.  Moreover, FLiPPR introduces a new data merging scheme (from 
ions to cut-sites) and a protein-centric multiple hypothesis correction scheme, 
collectively enabling processed LiP-MS datasets to be more robust and less redundant.  
These improvements substantially strengthen statistical trends when previously 
published data are reanalyzed with the FragPipe/FLiPPR workflow.  As a final feature, 
FLiPPR facilitates the collection of structural metadata to identify correlations between 
experiments and structural features.  We hope that FLiPPR will lower the barrier for 
more users to adopt LiP-MS, standardize statistical procedures for LiP-MS data 
analysis, and systematize output to facilitate eventual larger-scale integration of LiP-MS 
data. 
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INTRODUCTION 
 
 Structural proteomics is an expanding subfield within the space of proteomics 

that aims to explore protein structure, dynamics, and stability in a global, unbiased 

manner.  The field is defined by several emerging methods that convert structural 

information into mass, enabling mass spectrometry data to measure structural 

information on many distinct proteins in a complex mixture.  Four leading structural 

proteomic methods include hydrogen-deuterium exchange (HDX),1-3 methionine 

oxidation methods (e.g., SPROX),4,5 fast photochemical oxidation of proteins (FPOP), 6,7 

and limited proteolysis mass spectrometry (LiP-MS).8-10  In these methods, regions 

within proteins that are solvent-accessible are labeled, respectively, by deuterium at 

backbone amides, by oxidation at methionine from H2O2, by oxidation at any amino acid 

from HO radicals, or by cleavage from a sequence-permissive. 11 Crosslinking mass 

spectrometry (XL-MS) is another method that can provide rich structural information in 

the form of residue-residue contacts (which can serve as distance restraints),12-15 though 

it differs from the other methods in that it requires sequencing low-abundance 

crosslinked peptides from vast search spaces, creating a unique set of technical 

challenge.16,17 

 Amongst the labeling-based methods, LiP-MS has emerged as a popular 

structural approach because it has a few key advantages (e.g., residue-level resolution, 

proteome-wide coverage) without some drawbacks that affect other methods (e.g., need 

for specialized purpose-built instruments, need to identify rare low-abundance species, 

significant amplification of the search space).  In its modern form (devised by Feng et 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569947doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569947
http://creativecommons.org/licenses/by-nd/4.0/


al.), the experimentalist subjects a complex mixture of proteins to a pulse of proteolysis 

with a non-specific protease (typically proteinase K) under native conditions, causing 

solvent-accessible or unstructured portions within proteins to get cleaved (Figure 1A).9  

Afterward, the sample is subjected to in-solution trypsin digest under denaturing 

conditions, which produces a mixture of tryptic and half-tryptic peptides that are 

sequenced by LC-MS/MS.  The non-tryptic cut-site of each half-tryptic peptide reveals a 

residue that was solvent accessible in the parental protein.  LiP-MS is a very accessible 

structural proteomic method because, in most samples, half-tryptic peptides are 

numerous, abundant, and don’t require specialized search settings to identify.  Data-

dependent acquisition (DDA)8,18 and data-independent acquisition (DIA)10,19 workflows 

have both been implemented.  So far, it has been applied to probe a range of biological 

and biophysical questions at the proteome scale, such as metabolic rewiring in 

response to nutrients,19 aging in yeast,20 aging in rodents,21 thermostability,22 protein 

folding,18,23 among others. 

A LiP-MS study is usually designed as a quantitative experiment in which two (or 

more) closely related samples are generated and subjected to the same workflow; half-

tryptic peptides that are present with significantly different abundances between two 

sample types represent locations associated with a structural change (strictly speaking, 

a change in proteolytic susceptibility) between the respective conditions.  Most studies 

to date have employed area-under-the-curve label-free quantification (LFQ) to assess 

these abundance differences, with a few studies applying SILAC quantification or 

isobaric mass tag  
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Figure 1.  Summary of LiP-MS Workflow and Processing in FLiPPR.  (A) The top row is a 
simple schematic of LiP-MS sample preparation, featuring a control condition (red) and a test 
condition (blue) simultaneously subjected to limited proteolysis (LiP) by proteinase K (PK) and 
then complete trypsinolysis.  The second row represents data handling in the FLiPPR 
pipeline: raw mass spectra are searched and quantified in FragPipe, and the ions file is 
processed by FLiPPR, which produces a range of outputs featured in the third row.  (B, C) 
How FLiPPR treats missing data at the ion level.  Case i: If quantifications are available for an 
ion in all replicates of test and control, then averages are calculated, and the P-value is 
assessed with a two-tailed t-test.  Case ii: If one quantification is missing in either the test or 
the control, the missing value is dropped, and the P-value is assessed with a two-tailed t-test 
comparing n to n–1 values.  Case iii: If all the values are missing in either the control or the 
test (in the example shown in B, it is the control) and all the values are present in the other 
condition, then the ion is considered “all-or-nothing” (AON).  The n missing values are filled by 
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Gaussian imputation, then averages are calculated as in case i; P-values are calculated with 
a one-tailed test.  All other permutations of missing data result in an ion being disqualified. 

methods instead.5,8,24,25 Some key advantages of LFQ-based quantification are its high 

dynamic range and remarkable ability to independently assess missing features in 

distinct conditions (or replicates), which has outsized importance in LiP-MS and can 

provide very insightful information if used judiciously.   

The experimental details to prepare samples for LiP-MS have been carefully 

developed and advanced by Picotti and co-workers,10 which we have used with minor 

modifications in our adaptation of the method to study protein refolding (see 

Experimental Section in Supplementary Information).  On the data analysis side, 

however, we have found that several developments from our lab have been valuable.  

While the relevance of these improvements was first realized in the context of our 

ongoing studies applying LiP-MS to protein folding, we believe they would be useful for 

LiP-MS studies in general, and here report a computational tool called FLiPPR 

(FragPipe LiP-MS Processor) to formalize our data analysis workflow and facilitate its 

adoption by the structural proteomics community. 

First and foremost, FLiPPR implements a unique treatment of missing data 

tailored to LiP-MS.  Sometimes, when a protein misfolds, core regions that were 

completely inaccessible to proteinase K can become proteolytically susceptible (as 

shown in the case of Figure 1A); this results in a situation in which a half-tryptic peptide 

will be detected only in samples containing the misfolded protein but will be absent in 

samples containing the native protein, resulting in missing data.  A process is necessary 

to distinguish this scenario (where the missing data are informative (e.g., Figure 1B, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569947doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569947
http://creativecommons.org/licenses/by-nd/4.0/


case iii)) from scenarios where missing data should instead prevent a feature from 

being included in an analysis.   

Secondly, LiP-MS is fundamentally a “peptide-centric” technique, and so data 

compression, propagation of error, and data disagreement must be considered from the 

level of ions to modified peptides to peptides, and – we argue here – ultimately to cut-

sites (cf. Figure 2).  Since most quantitative proteomics studies focus on the protein 

level and have an additional “protective” layer to buffer against noise by averaging 

across peptides, data processing for LiP-MS raises unique concerns not addressed by 

commercial software packages. 

Thirdly, we have found that correlating the outcome of LiP-MS refolding 

experiments with biophysical and structural features (such as percent disorder, 

isoelectric point, and domain structure) has helped illuminate key trends and have so far 

accumulated these metadata on a case-by-case basis.  However, since many of these 

biophysical traits can now be calculated (or predicted) from sequence alone, valuable 

metadata can be generated in an automated manner, which we anticipate will be 

constructive for scaling up the interpretation of structural proteomics across species and 

clades.   

Finally, FLiPPR seamlessly accepts output from FragPipe (Figure 1A), an open 

software suite developed by the Nesvizhskii lab that has fast, powerful, and state-of-the-

art algorithms for spectral search (MSFragger)26,27  and LFQ (IonQuant).26,28  Most DDA-

based LiP-MS studies to date (including ours) have employed Proteome Discoverer29 to 

perform search and LFQ (via the Minora feature detector node), though we have found 
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that this workflow has been rate-limiting, particularly for studies that cross-compare an 

extensive set of conditions (e.g., LFQs with >9 raw files) which run very slowly.  Indeed, 

our initial motivation for developing FLiPPR was to facilitate a shift to FragPipe to 

analyze LiP-MS data.  In addition, FLiPPR creates a pipeline that formalizes some of 

the subtle data analysis considerations we have made in our years of experience 

working with LiP-MS data.  Hence, we expect FLiPPR will contribute to standardizing 

the analysis workflow for this emerging and exciting proteomic technique by building off 

a popular, free platform. 

 
 

COMPUTATIONAL SECTION 

 Inputs.  The central input to FLiPPR is the “combined_ion” file generated by an 

LFQ in FragPipe using IonQuant (Figure 1A).  Modifications to the default parameters 

are provided in Table 1, and their rationale is described in greater depth in the results 

section.  For users less experienced with FragPipe, workflow files providing a template 

to specify a job are provided as supplements to this paper.  Successful execution of a 

job generates a combined_ion file.  The experiment should (minimally) consist of 6 

separate raw files comprising triplicates (ideally, biological) of at least two conditions (a 

control and a test condition, e.g., native protein extract and refolded protein extract in a 

global refolding assay).  Experimental designs can sometimes involve a single test 

condition or multiple test conditions that are all compared to a common control 

condition.  FLiPPR can process both situations; in either case, LFQs in FragPipe are 
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calculated with all raw files and submitted with the sequence and naming convention 

shown in Figure S1. 

 

Table 1.  Modifications to Default FragPipe Settings for LiP-MS 
Taba Setting Default Value Value for LiP-MS 
MSFragger Precursor mass tolerance -20–20 ppm -10–10 ppm 
MSFragger Cleavage ENZYMATIC SEMI 
MSFragger Peptide mass range 500–5000 500–8000 
Quant MS1 MBR ion FDR 0.01 0.05 
Quant MS1 MBR top runs 10 100b 

a Denotes which workflow tab when setting up a job in the FragPipe GUI.  b Studies that include 
more than 10 individually collected MS files will benefit from allowing match-between-runs 
across all files.  Ideally, this value is set greater than the number of MS files as recommended 
by the LFQ-MBR FragPipe tutorial. 
 

 LiP-MS studies are frequently conducted as two parallel experiments: the “LiP 

experiment” – which consists of all conditions including the control subjected to 

proteinase K and then trypsin – as well as a parallel “trypsin-only (TrP) experiment” 

(also called the normalization experiment) in which the samples are treated identically 

but the proteinase K treatment is withheld.  The trypsin-only experiment is analyzed as 

a “standard” quantitative proteomics experiment that operates at the protein-level and 

addresses whether protein abundances have changed between the control and test 

conditions9,10.  This second quantitative calculation is essential because abundance 

differences between half-tryptic peptides in the LiP experiment convolve changes in 

proteolytic susceptibility with changes in overall protein abundance, an effect that must 

be controlled.  If there is a significant change in protein abundance between a test and 

control condition, peptide fold-changes are normalized.  Hence, the second input to 

FLiPPR is the “combined_protein” file generated by FragPipe for the TrP experiment.  
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For experimental designs involving multiple tests, FLiPPR offers two ways to carry out 

normalization: either a single “representative” test can be compared to the control to 

generate a standard set of normalization factors for all tests, or alternatively, the TrP 

experiment can comprise all the same test conditions as the LiP experiment (giving 

each test/control comparison a unique set of normalization factors).  Figure S1 

illustrates how these two normalization schemes can be implemented. 

 

 Processing Ion Quantifications.  The combined_ion file provides raw 

integrated ion counts for each precursor ion (that was confidently sequenced at the 

MS2-level) in each of the separate runs, applying an FDR-based validation criteria to 

assign an ion count in runs where the peak was not identified but could be confidently 

“matched between runs.”  At this level, FLiPPR applies a particular heuristic to 

managing missing data.  The heuristic is applied to the set of 2n raw files (where n is 

the number of replicates per condition that were conducted) corresponding to each pair-

wise comparison between a test condition and the control (Figure 1C).  If all 2n ion 

counts (quans) are available, a simple ratio of averages is tabulated, and a P-value is 

calculated using a two-tailed t-test with Welch’s correction for unequal population 

variances (Figure 1C, case i).  If one ion count is missing, a ratio is still calculated, but 

rather than treating the missing value as a zero (as commonly employed), it is dropped, 

and the ratio/P-value is calculated using one fewer replicate for either the test or control 

condition (Figure 1C, case ii). 
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 A special case arises if all the ion counts are missing for all the replicates of one 

condition (either test or control; Figure 1C, case iii).  This can be interpreted as arising 

from a scenario where a portion of the protein is entirely inaccessible to Proteinase K in 

the control condition and then becomes accessible in the test condition (or vice versa).  

In our experience of analyzing protein folding experiments with LiP-MS, these situations 

carry among the richest information since they report on large structural changes.18,23  

However, because arguing for an effect based on missing data is fraught, a safeguard is 

employed that the ion must be observed in all replicates of the other condition (either 

control or test).  We refer to these as “all-or-nothing” ions (Figure 1B, case iii).  Any 

other combination of missing data (either because there are two missing ion counts or 

because one condition is missing all data, and the other condition is missing even one 

ion count) results in the ion being discarded and not used for quantification for this 

test/control comparison.  For all-or-nothing ions, a ratio is calculated as a ratio of 

averages after Gaussian imputation for the three missing values (selected from a 

normal distribution with a standard deviation of 103 and a mean of 104 – an 

approximation for the limit of detection of a feature in a high-resolution MS1 scan on 

Orbitrap instruments).  The P-value is calculated by a one-tailed Welch’s t-test.  At the 

end of this step, a (ratio, P-value) pair is assigned to each “valid” ion for each pair-wise 

test/control comparison.  Ions with too many missing data are discarded. 

 

 Merging Data from Ions to Cut-Site.  Most proteomics experiments seek to 

measure quantitative differences in protein abundance across conditions, but LiP-MS 
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seeks to measure quantitative differences in proteolytic susceptibility at a particular cut-

site.  Consequently, there are several distinct ions that can be combined and averaged  

 

Figure 2.  Three Merging Schemes for 
Ion Data.  The top row represents five 
distinct ions that can be grouped together 
in three ways.  (A) Ions that differ in charge 
state for the same modified peptide can be 
merged.  (B) Modified peptides that differ in 
a specific modification (such as methionine 
oxidation) but correspond to the same base 
peptide can be merged.  (C) Peptides that 
correspond to the same proteinase K cut-
site can be merged.  LiP-MS analyses 
typically merge ions to the peptide level; 
FLiPPR introduces further merging to the 
cut-site level. 

 

from the raw ion count level to the cut-site level (Figure 2).  These correspond to all the 

ions that map to a given modified peptide (e.g., charge state 2+ or 3+), all the modified 

peptides that map to a given peptide (e.g., oxidized-methionine or not), and all the 

peptides that map to the same cut-site (e.g., the peptides [G].D104IFAEMKATYR114.[Q] 

and [G].D104IFAEMK110.[A] both report on the activity of proteinase K between G103 and 

D104 because they differ in regard to whether the subsequent trypsin digest missed the 

cleavage at K110).  An alternative scenario where multiple peptides can encode the 

same cut-site arises when both half-tryptic peptides created by proteinase K are 

sequenced (e.g., [G].D104IFAEMK110.[A]  and [K].W99VNSG103.[D]). 
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For all the ions that can inform on the susceptibility at a given cut-site, the (ratio, 

P-value) pairs for those ions are collectively considered.  If they all agree in direction 

(i.e., the signs of the t-test statistics are all the same), then the ratios are combined by 

taking the median, and the P-values are combined with Fisher’s method to provide an 

updated (ratio, P-value) for the cut-site.  If there are two independent ions and they 

disagree (e.g., the ion is more abundant in the test condition in the 2+ charge state but 

more abundant in the control condition in the 3+ charge state), then a median is still 

calculated, but the P-value is set to 1, implying there is no confidence as to whether this 

cut-site was more susceptible in the test or control condition.  These cut-sites are 

discounted from the tally of the total valid cut-sites.  If there are three ions, then a 

“majority rules” heuristic is applied: the disagreeing ion is disregarded, and the (ratio, P-

value)s are only combined for the agreeing ions.  In practice, it is relatively rare for more 

than three ions to be mapped to the same cut-site, but where this occurs, if a majority 

(or all) of the ions agree in direction, they are combined.  If there is a tie, the P-value is 

set to 1.   

In experimental designs with multiple test conditions, this compression is carried 

out separately for each test-to-control comparison.  As shown in Figure 2, FLiPPR 

implements merging at all three levels (e.g., merge all ions together that map to the 

same modified peptide, peptide, or cut-site).  The lowest level of merging (to a modified 

peptide) could be useful for studies focusing on PTMs and their effect on protein 

structure.  The middle level of merging (to a peptide) is the one that historically we have 
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used,18,23 as well as others.8-10,20-22  The highest level of merging (to cut-site), to the best 

of our knowledge, is novel to this analysis workflow. 

 

 Output.  FLiPPR produces four key output files for each test-to-control 

comparison: An ions file, a modified_peptides file, a peptides file, a cut-sites file, and a 

protein_summary file.  Each row in the cut-sites file corresponds to a cut-site that was 

quantified by the LiP-MS experiment.  A cut-site is indexed either by the host protein’s 

Uniprot code and the site of the PK cleavage site (for half-tryptic peptides) or by a 

Uniprot code and the residue range of the sequenced peptide (for tryptic peptides).  

Under optimal conditions, LiP-MS experiments typically produce similar numbers of half-

tryptic and full-tryptic peptides.  In our experience, both kinds of peptides encode 

equally useful structural information, though half-tryptic peptides do provide higher 

structural resolution, down to the single residue-level. In contrast, tryptic peptides 

correspond to the absence of a PK cut site.  They still provide quantitative information 

though at a lower structural resolution, and correspond to a residue range rather than 

an individual residue.  We have generally weighted both datatypes equally, although 

FLiPPR output files have a column that delineates which modified 

peptides/peptides/cut-sites are half-tryptic, and the user can opt to consider those 

exclusively if desired. 

Abundance ratios for each cut-site (as well as normalized abundance ratios, 

based on the outcome for the corresponding protein in the trypsin-only experiment) are 

provided along with raw P-values and FDR corrected P-values by the Benjami-
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Hochberg (BH) procedure for multiple hypothesis testing.30  BH correction is applied on 

a per-protein basis, meaning that the set of P-values for all quantified cut-sites for a 

given protein are subjected to FDR correction, and this process is iterated separately 

(and independently) for each protein.  The logic for applying multiple hypothesis 

correction in this way is the following: Our null hypothesis is that a protein is not 

structurally perturbed by the treatment in the test condition relative to the control.  Each 

quantified cut-site provides an opportunity to reject this hypothesis.  However, the more 

cut-sites that are quantified for a given protein, the higher the likelihood that one of them 

will show a significant effect due to chance.  Hence, BH correction ensures that proteins 

are not artificially easier to call structurally altered simply by having higher coverage. 

 The peptides and modified_peptides files are formatted identically, except ratios, 

normalized ratios, P-values, and BH-adjusted P-values are reported for each peptide or 

modified peptide, which involves fewer ions being merged; hence, these files contain 

more entries.  For completeness, an ions file is provided as well (with no merging), 

which is like the output originally generated by FragPipe and differs solely in that it 

incorporates our heuristics for treating missing data. 

 The protein_summary file provides a high-level view of which proteins were 

structurally altered by the treatment and which ones were not.  To do this, it counts the 

total number of cut-sites (or peptides) that were quantified and how many were 

significant according to a P-value and effect-size cutoff.  We generally use 2-fold as an 

effect-size cutoff (|log! fold– change| > 1) and 0.01 as a P-value cutoff (or alternatively, 

0.05 for BH-adjusted P-values).  For the largest effect sizes (|log! fold– change| > 6), we 
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relax the P-value cutoff slightly of 0.016.  The user can decide whether to make the 

assessment at the level of peptides or cut-sites and whether to use adjusted for normal 

P-values.  Our current recommendation is to use adjusted P-values at the cut-site level.  

To “call” a protein structurally altered, we typically require that two or more cut-sites (or 

peptides) be significant. 

 

 FLiPPR Add-Ons: Metadata Integration.  When provided with the same fasta 

file used as the search database during the LFQ analysis, FLiPPR can supplement the 

protein summary data with an array of metadata using open-source packages available 

in Python.  Mass, molecular weight, length, and pI are obtained using Biopython.31  

Protein disorder is predicted using Metapredict32 with the default disorder score 

thresholds.  Optionally, protein domain information can be supplemented from 

DomainMapper,33 though this requires that a user provide a DomainMapper output.  

Moreover, when provided with DomainMapper outputs, FLiPPR can perform advanced 

structural analyses by mapping cut-sites to regions within domains or linkers. 

 

 Installing FLiPPR.  Readers interested in using FLiPPR should clone the 

repository from GitHub at https://github.com/FriedLabJHU/FragPipe-Limited-Proteolysis-

Processor.  FLiPPR is built in Python and all its dependencies (pandas, scipy, numpy, 

metapredict, biopython, protfasta, seaborns, and matplotlib) 

can be installed through Python distributions and package managers. 
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RESULTS 

 Optimizing FragPipe LFQ for Analyzing LiP-MS Data.  FragPipe features a 

sophisticated label-free quantification (LFQ) algorithm called IonQuant,28 which 

integrates ion intensities and performs an FDR-controlled match between runs (MBR) to 

include ion intensities from unassigned features.  FragPipe, by default, uses a restrictive 

FDR cutoff (1%), which we found was less ideal for LiP-MS experiments, particularly in 

the context of our heuristics for managing missing data (Figure 3A).   

 
Figure 3.  The match-between-run (MBR) false discovery rate (FDR) is a key parameter 
for quantifying LiP-MS data.  (A) The total number of quantified ions in an experiment in 
which E. coli extracts were globally unfolded and refolded for 1, 5, or 120 min before 
performing limited proteolysis, with the default (1%) or adjusted (5%) MBR FDR parameter.  
Data were processed in FLiPPR with 12 total raw files (3 replicates of a native extract, used 
as a control, and 3 replicates each of the 3 different refolding times, creating 3 different test 
conditions).  The percent of ions that were all-or-nothing (AON) is marked.  (B) Following the 
merging of ions into peptides, the number of peptides that are significantly different between 
refolded and native (P < 0.01; or P < 0.016 for effect-sizes larger than 64-fold), and what 
proportion of them were AON.  (C) As panel B, except using Benjami-Hochberg adjusted P-
values instead (the threshold for significance is Adj. P < 0.05).  (D) Quality control plots for the 
two MBR FDR settings, showing the coefficient of variation (CV) for each quantified peptide in 
the refolding reaction (shown for the 1 min refolding time) as a function of the P-value that it is 
distinct from the native sample.  Insets provide Spearman’s rank correlation coefficient (rs), P-
value, and median CV across all quantified peptides. 
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 Missing values have an outsized significance in LiP-MS experiments since half-

tryptic peptides that only appear in the test (or control) samples nominally report on the 

most profound structural changes since they imply a region was inaccessible to PK in 

one condition and became accessible in the other.  When we raise the FDR cutoff from 

1% to 5%, we find that the number of quantified ions goes up considerably, but 

importantly, the number of all-or-nothing (AON) ions decreases (Figure 3A).  We 

considered this change because we are quite restrictive in how much missing data 

causes an ion to become excluded, so we thought it advantageous to initially be more 

permissive toward which features are mapped to an ion.  At the same time, by raising 

MBR FDR, we are making it easier to include a feature into an ion’s quantification set, 

which in turn makes it harder for data to be missing and, in turn, harder for an ion to be 

retained as an AON.  The net result is that by being more inclusive, we are more 

confident when an ion is truly an AON.   

 This precaution is merited because even though AON ions are rare, they make 

up a disproportionate fraction of the peptides that rise to the level of being significantly 

different between conditions (Figure 3B).  Higher MBR FDR lowers the percentage of 

significant peptides that are AON, leaving behind the ones that – we believe – are more 

confident.  BH-correction to P-values culls the number of AON peptides that are labeled 

significant (Figure 3C) at a similar frequency to the other significant peptide; this is 

because although AON peptides possess the largest effect-sizes, they also tend to have 

greater variability in the replicates of the condition where they are observed. 
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Of course, the potential cost to raising the MBR FDR is that more unassigned 

features’ ion intensities will be spuriously grouped into an ion quantification set to which 

they do not belong.  This would then be reflected in ion abundances becoming noisier, 

resulting in larger coefficients of variation (CVs) across replicates.  In practice, this does 

not occur, and the quality control plots (shown in Figure 3D) reveal that the CV 

distribution and median are essentially unchanged even with this 5-fold increase in the 

MBR FDR cutoff.  We surmise that the reason this is the case is that we discard ions 

with even two missing values, so features in two separate replicates would have to be 

spuriously matched before the ion would be used for quantification. 

FLiPPR automatically generates plots like the ones shown in Figure 3D, which 

we have employed as a basic data quality control metric.  These charts show, for each 

quantified peptide, its CV in the test condition (i.e., refolded) – which charts the amount 

of reproducibility in the refolding reaction and in the limited proteolysis at that site – as 

well as the P-value against the null hypothesis that the peptide is present in different 

abundances between the test and control.  A “healthy” sample should have a median 

CV between 10-20%, a majority of the peptides not rejecting the null hypothesis (|log10 

P-value| < 2), and a negative trend between the two (less noisy data are more likely to 

reject null hypotheses).  
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Figure 4.  Analysis of LiP-MS at the Peptide or Cut-site Level. (A) Representative volcano 
plot in which each dot represents a peptide quantified in the experiment. Three specific 
peptides are highlighted in red.  Data are from the 1 min time point from refolding assays on 
E. coli extracts and reflect the abundance ratio of refolded/native.  Blue corresponds to half-
tryptic peptides, and black to tryptic peptides.  (B) Histogram of peptide abundance ratios.  
Enrichment of half-tryptic all-or-nothings in the refolded form is frequently encountered after 
global refolding or other test conditions that result in perturbed structures. (C) Accounting of 
the peptides.  Dark gray = all peptides with sufficient data to qualify; light gray = all “valid” 
peptides (e.g., discounting those with inconsistent ions); mustard = significant peptides based 
on effect-size (>2-fold) and P-value (< 0.01, or <0.016 if effect-size > 64); teal = significant 
peptides based on effect-size (>2-fold) and BH-adjusted P-value (< 0.05). (D-F) As panels A-
C, except at the cut-site level rather than the peptide level.  The cut-site at F341 in gpmI that 
results from the merger of the three peptides shown in A is highlighted in red in panel D. 

 

 Merging Peptides into Cut-sites Improves Statistical Confidence.  Figure 4A 

shows a representative peptide-level volcano plot from one of our LiP-MS experiments 

refolding the proteome of E. coli.  Each point represents a confidently identified and 

quantified peptide.  We typically find that half-tryptic peptides are more abundant in 

refolded samples compared to native (Figure 4B), a characteristic that is qualitatively 

consistent with the notion that misfolded proteins are less well-packed and are, 

therefore, more susceptible to PK than natively folded proteins.  In general, we find this 

feature any time the test condition is one that “perturbs” proteins and have seen it in a 
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number of ongoing studies focusing on other variables.  Following the fate of the ca. 

32,500 peptides quantified in this experiment (Figure 4C), we find that a relative minority 

(602) are discounted due to the ions that merge into it showing inconsistent signals.  

FLiPPR keeps these “invalidated” peptides in the output for completeness but sets their 

P-value to 1.  A minority of these peptides are deemed significant (mustard circle) by 

the cutoffs required to call it structurally altered, and these are further culled to a smaller 

set by FDR correction (teal circle). 

 FLiPPR introduces the idea of merging together peptides that map to the same 

PK cut-site.  Following this process, we redraw the volcano plot and relative abundance 

histogram (Figure 4D-E), where the points represent cut-sites instead of peptides.  One 

example, highlighted in red, shows a scenario in which three separate peptides, none of 

which were statistically significant on their own, admitted a significant cut-site once the 

ions were merged by Fisher’s method.  In this LiP-MS experiment, there are 27,900 cut-

sites (instead of 32,500 peptides), but 5,769 cut-sites are assessed as significant 

(Figure 4F; instead of 6,292 peptides).  This slight reduction arises primarily from 

“removing” duplicates, but it is noteworthy that only 8% of significant peptides are lost 

even though 14% of the peptides were merged.  This difference occurs because  

some peptides cross the threshold to significance when their data are merged. Hence, 

we assess that using cut-sites instead of peptides results in a dataset with fewer 

duplications and more “unique” significant sites detected. 
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 Protein-level Trends in LiP-MS Datasets become Sharper and More 

Confident with FLiPPR Analysis.  Our original work on refolding the E. coli proteome 

highlighted the prevalence of nonrefoldability amongst soluble proteins18, and estimated 

that after 1 min of refolding, 56% of E. coli proteins could return to native-like structures, 

a figure that rises to 67% after providing 2 h to refold.  To et al. also called attention to 

the fact that differences in protein coverage are a source of bias: Proteins with more 

identified peptides are more likely to be labeled as “structurally altered” because there 

are more opportunities for a significant effect to be detected.  

We sought to compare how these overall outcomes of the experiment are 

affected by some of the differences in the analysis implemented in FLiPPR (Figure 5A-

C).  If we analyze the data in a manner analogously to the original work (Figure 5A), we 

find that refoldability levels go down (48% at 1 min and 53% at 2 h).  This difference is 

in part due to coverage bias, arising because FragPipe’s search (with MSFragger) 

produces more identifications than ProteomeDiscoverer v2.3 (with Sequest) does: 

Namely, 31,900 and 31,800 peptides at 1 min and 2 h respectively versus 28,700 and 

28,200 in ProteomeDiscoverer.  As mentioned, proteins with more identifications are 

“easier” to label as structurally altered, which can be corrected by adjusting for multiple 

hypothesis testing.  Using adjusted P-values (Figure 5B), the refolding propensities 

become closer to originally reported values (55% at 1 min and 66% at 2 h), and these 

overall trends are not appreciably changed if cut-sites are used instead of peptides 

(Figure 5C).  
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Figure 5. Reanalysis of Refoldability Data with FLiPPR Sharpens Trends.  (A-C) Plots 
show the number of proteins (left y-axis) labeled refoldable (black) and nonrefoldable (red) 
and the fractional refoldability (right y-axis, gray boxes) as a function of refolding time, 
depending on whether calls are made based on peptides without Benjami-Hochberg FDR 
correction (A), with FDR correction (B), or with FDR correction and after merging peptides to 
cut-sites (C).  Data correspond to E. coli refolding assays from ref. 18 (PRIDE: PXD025926). 
(D) Fraction of proteins nonrefolding as a function of protein isoelectric point (pI), based on 
the original analysis (pink) or using FLiPPR using one of three schemes.  Inset shows P-value 
from chi-square test against null hypothesis pI does not explain differences in refoldability. I 
Fraction of peptides (or cut-sites for green symbols) that are assessed as significantly 
different after refolding, as a function of the pI of the protein from which they came, as based 
on the original analysis (pink) or using FLiPPR using one of three schemes. Inset shows P-
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value from chi-square test against null hypothesis pI does not explain differences in 
refoldability. (F) As D except proteins divided by molecular weight. (G) As E except peptides 
divided by the molecular weight of the protein from which they came. 

 

Global protein refolding assays also demonstrated that refoldability possessed 

clear correlations with other biophysical and biochemical variables.  For instance, from 

all the studies we have conducted to date, a general theme has emerged that proteins 

at the extrema of the pI range (the most acidic and the most basic) refold more often 

than those whose pI are between 5–6 (mildly acidic proteins).  Impressively, the pI trend 

become much sharper when the exact same data are analyzed in FLiPPR, taking 

advantage of the two key improvements we have implemented.  Based on the 5-min 

timepoint, the original analysis showed that proteins whose pI is between 5–6 did not 

refold 46% of the time, a fraction that decreases for the proteins in the <5 (37%, 0.80-

fold) or >10 (30%, 0.65-fold) pI ranges.  Using FLiPPR (Figure 5D, red trace), the nature 

of acidic and basic proteins to refold better is more striking.  As before, the peak of 

nonrefoldability (60%) occurs at pI 5–6, but this drops off more dramatically for proteins 

with pI < 5 (40%, a 0.66-fold) or >10 (37%, a 0.62-fold).  The slopes become even 

steeper after FDR correction has been incorporated (Figure 5D, blue trace).  Now, pI < 

5 (pI > 10) proteins have nonrefoldability rates that are 0.57-fold (0.47-fold) that of the 

maximum.  If we accept as a ground-truth that acidic and basic proteins are more 

refoldable than those with pI 5–6 (as we have seen in all our studies to date),18,23 then 

this implies that analyzing LiP-MS data with FLiPPR provides a view that coheres much 

more closely to physical reality. 
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Another metric that shows the FLiPPR-analyzed dataset has more discriminating 

power is the chi-square test on the null hypothesis that pI does not explain differences 

in protein refoldability.  In the original publication, the P-value was placed at 1.3 × 10-5; 

with FLiPPR it becomes closer to 10-11 (depending on whether peptides or cut-sites are 

used).  We emphasize here that this is purely from reanalyzing the exact same raw 

mass spectra. 

One of the signs that the pI-refoldability trend is robust is that it is apparent at 

both the protein level (i.e., assessing proteins as refoldable or not after grouping 

peptides/cut-sites by protein) and at the individual peptide/cut-site level (i.e., not 

grouping these by protein and simply calculating the percent that are significant across 

categories).  At the peptide/cut-site level, we find that FLiPPR produces much sharper 

trends than the original analysis (Figure 5E), and the trends become even more 

apparent as we introduce FDR correction and peptide to cut-site merging.  The 

strengthening of the correlation is apparent in the chi-square tests as well. 

The original work studying refoldability of E. coli proteins documented an 

apparent trend whereby proteins of greater molecular weight were more likely not to 

refold (Figure 5F, pink trace).  However, it was noted that this trend could be the result 

of coverage bias.  In general, the peptides assigned to larger proteins were not more 

likely to be significant (Figure 5G, pink trace), though larger proteins do generally get 

more peptides mapped to them, thereby making it more likely that one of them would be 

significant.  Reexamining this trend is therefore a stringent test for whether our FDR 

correction can “catch” this problem.  Indeed, using FLiPPR with FDR corrections (blue 
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and green traces in Figure 5F), we find that there is some correlation between 

molecular weight and refoldability upto 40 kDa, but afterwards, the trend is flat.  This is 

very well recapitulated at the peptide/cut-site level (Figure 5G), in which peptides are 

indeed more likely to be significant in 30–40 kDa proteins than in proteins <20 kDa, but 

then the trend reverts.  This finding makes sense because 30–40 kDa is the size of the 

largest single domains and our previous findings have found that larger domains 

typically refold poorly; proteins larger than this typically contain multiple domains.  

Hence, we conclude that the more reliable and confident quantification offered by 

FLiPPR improves downstream analysis of LiP-MS data, and in the case of the present 

renalaysis of our original study, firms up one finding (pI) and offers a reinterpretation of 

another (molecular weight). 

 

FLiPPR Enables Rapid Analysis of Data from Non-Model Species, 

Facilitating Cross-Species Comparisons.  Work in our laboratory has focused on 

using LiP-MS as a tool to interrogate protein folding on the proteome-scale,18,23 with a 

focus on addressing how “refoldable” are proteins; namely, if they are globally unfolded 

in 6 M guanidinium chloride and compelled to refold by dilution, how many proteins 

succeed in this challenge and can assume a conformation identical to their native ones 

that were never unfolded?  We have found this can be assessed in a high-throughput 

manner through LiP-MS, in which the proteolysis pattern of a native extract and one that 

is subjected to an unfolding/refolding cycle are compared.  A current goal of ours is to 

perform these assays on many organisms to search for evolutionary trends in 
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refoldability, which in turn prompted us to build computational workflows with higher 

speed and reliability.  For this study, we have refolded the proteome of Bacillus cereus 

(ATCC 14579)34 following an approach similar to those previously described.18,23  The 

methods are described in full in the Experimental Section.  In brief, we grew triplicate 

cultures of B. cereus to a final OD600 of 1.0, lysed by cryogenic pulverization, subjected 

the lysates to global unfolding and refolding, and performed limited proteolysis on the 

native extract and the refolded ones.  Refolding was monitored at three time points 

following dilution: 1 min, 5 min, and 30 min. 

In previous studies, acquisition of biochemical and biophysical metadata for each 

protein provided an important set of metadata which enabled correlates with refoldability 

to be determined from LiP-MS experiments.  However, we relied on databases 

(EcoCyc35 for E. coli, and SGD36 for yeast), which are not available in general for non-

model organisms.  To make metadata acquisition more streamlined and species-

agnostic, we have implemented in FLiPPR a basic infrastructure to automate the 

acquisition of metadata (Figure 6A) using BioPython prediction tools and UniProt.  

When we analyzed the refolding LiP-MS data from B. cereus in FLiPPR, it was clear 

that although its proteins refold on the whole more efficiently than E. coli’s, several 

trends are conserved between the two organisms whilst others are different.  For 

instance, we find in B. cereus that mildly acidic proteins (pI 5–6) are still amongst the 

worst refolders (like E. coli), although one major point of difference is that proteins at the 

extremes of the pI range (<5, >10) are also relatively poor refolders, a behavior quite 

distinct from E. coli (Figure 6B).  Like E. coli, we find a relatively flat dependence on 
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molecular weight for proteins larger than 30 kDa (Figure 6C). Moreover in both E. coli 

and B. cereus, we find that disordered proteins (which contain no globular domains) 

refold the best, and there is a “shallow” additional challenge to refold as the number of 

domains increases beyond one (Figure 6D). Whether or not bacterial proteomes 

generally refold quite poorly (like E. coli) or quite efficiently (like B. cereus) is a question 

of current active research. 

 

Figure 6.  Comparison of nonrefolding rates between two species.  (A) Scheme 
illustrating how protein metadata is retrieved within FLiPPR.  The only required input is the 
same FASTA file provided to FragPipe during the primary search and quantification.  FLiPPR 
produces a metadata .tsv file for the whole proteome, whose information is then merged into 
the output files described above. (B) Fraction of proteins nonrefolding as a function of protein 
isoelectric point (pI), based on cut-sites with FDR correction for two organisms, E. coli (ref. 
18) and Bacillus cereus (data reported in this study).  pI is calculated in BioPython. (C) 
Fraction of proteins nonrefolding as a function of molecular weight (MW), based on cut-sites 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.12.04.569947doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.04.569947
http://creativecommons.org/licenses/by-nd/4.0/


with FDR correction for E. coli and B. cereus.  MW is calculated in BioPython. (D) Fraction of 
proteins nonrefolding as a function of number of domains, based on cut-sites with FDR 
correction for E. coli and B. cereus.  Domain assignment is determined in DomainMapper. 37 

 

DISCUSSION 

 In recent years, FragPipe has become recognized as a leading proteomics 

analysis platform which combines a fast and sensitive search engine and several 

quantification algorithms (with support for LFQ, SILAC, and TMT).  It is also free, easy 

to use, and supports both data-dependent acquisition (DDA) and data-independent 

acquisition (DIA) modalities.  Structural proteomics – an emerging field within 

proteomics – currently suffers from having a panoply of software pipelines which 

hampers interoperability and standardization.  For instance, there are at least 10 

different packages for analyzing crosslinking mass spectrometry data.15  LiP-MS studies 

have historically employed primarily ProteomeDiscoverer (for DDA) and Spectronaut 

(for DIA) with less standardization in how raw quantifications are processed.  Likewise, 

FPOP data has historically been analyzed in ProteomeDiscoverer with user-defined 

workflows to handle the experiment’s specific needs.  Recently, a standardized 

workflow for FPOP experiments in FragPipe was proposed38 showing that this platform 

is well-suited to bring its numerous other strengths to bear in structural proteomics.  Our 

original goal in developing FLiPPR was to create a pipeline that would facilitate using 

FragPipe to analyze LiP-MS data.  Following this goal, we have aimed to build a tool 

that is easy to use, compatible with various experimental designs, provides a range of 

useful outputs (including those for quality control), and facilitates metadata integration. 
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 LiP-MS has been applied to answer a range of biological and biophysical 

questions.  Our lab’s focus on protein refolding – which can produce very divergent 

protein conformations – has made us particularly sensitive to the importance of missing 

data in LiP-MS, and how much useful information can be gained from them if used 

carefully.  FLiPPR formalize these heuristics into software that can be widely used for 

structural proteomics.  Compared to our previous work, we have incorporated two 

further improvements: (1) a protein-centric FDR correction to control for coverage bias; 

and (2) a hierarchy of data merging rules that enables quantification from the ion level to 

the cut-site level.  These two additions create more robust and less redundant datasets.  

The result is greater accuracy, which can be attested by sharper trends and correlations 

upon reanalyzing earlier work on the E. coli proteome (cf. Figure 5).  As we proceed 

with LiP-MS experiments on proteomes from more diverse organisms (such as B. 

cereus, discussed here), we expect that the speed and standardization offered by the 

FragPipe/FLiPPR pipeline will prove invaluable. 

 There are several improvements we foresee adding to future versions of FLiPPR.  

The Picotti lab introduced a mixed linear model to perform normalizations that considers 

data from LiP and TrP experiments collectively, rather than basing decisions on whether 

to normalize by the TrP experiment unilaterally.10  In practice, we have found that when 

LiP-MS is applied to biophysical questions (and the test and control conditions arise 

from the same biological source, but differentiate from each other by treatments 

performed in vitro), normalization is less critical and, in some cases, weakens the data 

by propagating more error to the quantifications.  On the other hand, we acknowledge 
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that careful normalization is required for some biological studies and that this option 

should be added to increase the generality of FLiPPR to other LiP-MS applications.   

 A second outstanding question is how to apply LiP-MS to interrogate the effect of 

post-translational modifications (PTMs) on protein structure.  PTMs can profoundly 

impact protein structure,39,40 and by extension their limited proteolysis pattern, making 

LiP-MS a potential technique to map this effect.  For now, FLiPPR provides an output 

that restricts merging to the modified peptide level, and users can interrogate these files 

to see (for instance) if a phosphorylation within a peptide results in a different outcome 

compared to the same unmodified peptide.  In practice, allostery can induce structural 

changes far from the PTM-site, which creates a “proteoform problem”: a half-tryptic 

peptide associated with a PTM need not be close to the PTM itself, and so sequencing 

such a half-tryptic peptide would not provide enough information to trace it back to the 

specific (set of) PTM(s) that induced it.  Due to this ambiguity, we recommend merging 

over peptide modifications, and regard LiP-MS experiments as probing the “average” of 

all proteoforms for a given protein.  While separating peptide modifications more 

explicitly into proteoform-specific categories is a functionality we plan to add, we 

emphasize that new LiP-MS experiments (potentially of a middle-down nature) will be 

needed to confidently assess the effect of PTMs on structure.   

 In summary, we anticipate growth in the number and variety of applications for 

LiP-MS and hope that FLiPPR will contribute by lowering the barrier to adopt this 

structural proteomic approach and standardizing statistical procedures for LiP-MS data 

analysis. 
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Culture and Lysis of Bacillus cereus (ATCC 14579) 
Saturated overnight cultures of B. cereus cells (ATCC 14579) were used to inoculate 3 
´ 100 mL (biological triplicate) of ATCC Medium: 3 in 250 mL flasks at a starting OD600 
of 0.05. Cells were incubated at 37°C with agitation (220 rpm) to a final OD600 of 1.0, 
followed by centrifugation at 3000 rcf for 10 min at 4°C. Supernatants were removed, 
cell pellets where flash frozen with liquid nitrogen for 30 seconds, and stored at –80°C 
until further use. 
 
Cell pellets were resuspended in 1 mL of native buffer (20 mM Tris pH 8.2, 150 mM 
KCl, 2 mM MgCl2) with the addition of 20 units of DNase I (NEB M0303S) and protease 
inhibitors (500 µM PMSF; Thermo Scientific 36978, 15 µM E-64; Millipore Sigma E3132, 
50 µM Bestatin; Millipore Sigma B8385). Resuspended cells were flash frozen by slow 
drip over liquid nitrogen followed by cryogenically pulverized with a freezer mill (SPEX 
Sample Prep) over 8 cycles consisting of 1 min of grinding, 9 Hz, and 1 min of cooling. 
Pulverized lysates were transferred to a 50 mL centrifuge tube and thawed at 4°C. 
Lysates where then transferred into 1.5 mL microcentrifuge tubes and clarified at 16,000 
rcf for 15 min at 4°C to remove cellular membrane and debris. Clarified lysates were 
then transferred into 3 mL Beckman Coulter Konical tubes (Beckman Coulter C14307) 
in preparation for ultracentrifugation at 33,300 rpm at 4°C for 90 min using a SW55-Ti 
rotor to deplete ribosomes without a sucrose cushion. These clarified supernatants were 
then transferred into new 1.5 mL microcentrifuge tubes and protein concentrations were 
determined using a bicinchoninic acid assay (Rapid Gold BCA Assay, Pierce) in a clear 
96-well plate (Corning Falcon 353075) with a plate reader (Molecular Devices iD3). 
Using the results from the BCA Assay, the clarified lysates were normalized to a protein 
concentration of 2.0 mg mL–1 using the same native buffer (20 mM Tris pH 8.2, 150 mM 
KCl, 2 mM MgCl2). The normalized lysate is used as the starting point for all the 
following workflows. 
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Preparation of Native and Refolded Lysates 
Native lysates were prepared by diluting 58 µL of normalized lysate with native buffer 
supplemented with 5.7 mg of guanidinium chloride (GdmCl) and 15.4 µg of dithiothreitol 
(DTT) such that the final composition of the Native lysates was: 0.116 mg mL–1 protein, 
20 mM Tris pH 8.2, 150 mM KCl, 2 mM MgCl2, 0.1 mM DTT, and 0.06 M GdmCl in a 1 
mL volume. These samples were prepared in biological triplicate and allowed to 
incubate for at least 1 hour at 25°C prior to limited proteolysis. 
 
Unfolded lysates were prepared by concentrating 290 µL of normalized lysate 
supplemented with 28.7 mg of GdmHCl and 77.1 µg of DTT in a Vacufuge Plus 
(Eppendorf) to a final volume of 50 µL. The final composition of the Unfolded lysates 
was: 11.6 mg mL–1 protein, 116 mM Tris pH 8.2, 870 mM KCl, 11.6 mM MgCl2, 10 mM 
DTT and 6 M GdmCl. These samples were prepared in biological triplicate and allowed 
to incubate for at least 16 hours at 25°C prior to refolding and subsequent limited 
proteolysis. 
 
Refolded lysates were prepared by diluting 5 µL of Unfolded lysate into 495 µL of 
refolding buffer (19 mM Tris pH 8.2, 143 mM KCl, 1.9 mM MgCl2). The final composition 
of the Refolded lysates was: 0.116 mg mL–1 protein, 20 mM Tris pH 8.2, 150 mM KCl, 2 
mM MgCl2, 0.1 mM DTT, and 0.06 M GdmCl in a 500 µL volume. These samples were 
prepared in biological triplicate and allowed to incubate for 1, 5 and 30 minutes at 25°C 
prior to limited proteolysis. 
 
Limited Proteolysis of Native and Refolded Lysates 
A stock of PK solution was freshly prepared at a concentration of 0.116 mg mL–1 
Proteinase K in native buffer with 10% glycerol. Triplicate limited proteolysis (LiP) 
samples of Native and Refolded conditions, for all time points, were then generated by 
aliquoting 200 µL of each lysate into new 1.5 mL microcentrifuge tubes containing 2 µL 
of PK solution (1:100 enzyme:substrate mass ratio), quickly aspirated 10 times, and 
incubated for exactly 1 min at 25°C. Samples were then transferred to a 110°C mineral 
oil bath for 5 minutes to inactivate Proteinase K. Boiled samples were then transferred 
into new 1.5 mL microcentrifuge tubes containing 150 mg of urea to achieve a final 
volume of 312 µL and 8 M urea concentration. Triplicate trypsin-only (TrP) controls of 
the Native and Refolded samples were generated in the same way without the addition 
of PK solution. This process generated the following 18 samples: 3 ´ Native_TrP, 3 ´ 
Refolded_TrP, 3 ´ Native_LiP, 3 ´ Refolded_1min_LiP, 3 ´ Refolded_5min_LiP, and 3 ´ 
Refolded_30min_LiP. 
 
All samples then received 6.24 µL of freshly prepared 500 mM DTT (final concentration 
10 mM DTT) to reduce disulfide bonds and incubated for 30 min at 37°C with agitation 
700 rpm followed by 17 µL of freshly prepared 750 mM IAA (final concentration 40 mM 
IAA) and incubated for 45 min in the dark at 25°C to alkylate reduced cysteines. Next, 2 
µL of 0.116 mg mL–1 of LysC (NEB P8109) were added to each sample and incubated 
for 2 hours at 37°C. Samples were then diluted with 1005 µL of 100 mM ammonium 
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bicarbonate followed by 4 µL of 0.116 mg mL–1 of Trypsin-ultra (NEB P8101) and 
incubated at 25°C for 16–24 hours at 25°C. Trypsin was then quenched with 1% v/v 
trifluoroacetic acid prior to desalting with Sep-Pak C18 1cc cartridges (Waters). 
 
Cartridges were first conditioned (2 ´ 1 mL 80% ACN, 0.5% TFA) and equilibrated (4 ´ 
1 mL 0.5% TFA) before samples were slowly loaded under a weak vacuum. The 
columns were then washed (4 ´ 1 mL 0.5% TFA), and peptides were eluted by addition 
of 1 mL of elution buffer (80% ACN, 0.5% TFA). During elution, vacuum cartridges were 
suspended above 15 mL conical tubes, placed in a swing-bucket rotor (Eppendorf 
5910R), and spun for 5 minutes at 300 rcf. Eluted peptides were transferred from 
Falcon tubes back into new 1.5 mL microcentrifuge tubes and dried using a Vacufuge 
Plus (Eppendorf). Dried peptides were stored at −80 °C until analysis. For analysis, 
samples were vigorously resuspended in 0.1% FA in Optima water (ThermoFisher) to a 
final concentration of 1 mg mL–1. 
 
 
Collecting MS2 Spectra 
Chromatographic separation of digests was carried out on a Thermo UltiMate3000 
UHPLC system with an Acclaim Pepmap RSLC, C18, 75 μm × 25 cm, 2 μm, 100 Å 
column. Approximately, 1 μg of protein was injected onto the column. The column 
temperature was maintained at 40 °C, and the flow rate was set to 300 nL min–1 for the 
duration of the run. Solvent A (0.1% FA) and Solvent B (0.1% FA in ACN) were used as 
the chromatography solvents. 
The samples were run through the UHPLC System as follows: peptides were allowed to 
accumulate onto the trap column (Acclaim PepMap 100, C18, 75 μm x 2 cm, 3 μm, 100 
Å column) for 10 min (during which the column was held at 2% Solvent B). The peptides 
were resolved by switching the trap column to be in-line with the separating column, 
quickly increasing the gradient to 5% B over 5 min and then applying a 95 min linear 
gradient from 5% B to 25% B. Subsequently, the gradient was increased from 35% B to 
40% B over 25 min and then increased again from 40% B to 90% B over 5 min. The 
column was then cleaned with a sawtooth gradient to purge residual peptides between 
runs in a sequence. 
A Thermo Q-Exactive HF-X Orbitrap mass spectrometer was used to analyze protein 
digests. A full MS scan in positive ion mode was followed by 20 data-dependent MS 
scans. The full MS scan was collected using a resolution of 120000 (@ m/z 200), an 
AGC target of 3E6, a maximum injection time of 64 ms, and a scan range from 350 to 
1500 m/z. The data-dependent scans were collected with a resolution of 15000 (@ m/z 
200), an AGC target of 1E5, a minimum AGC target of 8E3, a maximum injection time of 
55 ms, and an isolation window of 1.4 m/z units. To dissociate precursors prior to their 
reanalysis by MS2, peptides were subjected to an HCD of 28% normalized collision 
energies. Fragments with charges of 1, 6, 7, or higher and unassigned were excluded 
from analysis, and a dynamic exclusion window of 30.0 s was used for the data-
dependent scans. 
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Analyzing MS Data in FragPipe 
FragPipe v20.0, along with MSFragger v3.8, IonQuant v1.9.8, and Philosopher v5.0, 
were used to analyze raw mass spectra with label-free quantification with match 
between runs enabled. Default settings were used except those delineated in Table 1 of 
the main text. Namely, the peptide digest pattern was set to semi-enzymatic, methionine 
oxidation and N-terminal acetylation were set as dynamic modification, and cysteine 
carbamidomethylation was set as a static modification. The workflows for B. cereus 
refolding and the reanalysis of PXD025926 were setup according to the conventions set 
forth in Figure S1B; wherein multiple LiP control-test pairs are normalized to a single 
TrP control-test pair. FragPipe outputs were the passed to FLiPPR with the command 
shown in Figure S1B. Output files from FLiPPR were then further processed in Python 
to create summaries and graphical representations of both data sets. 
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Configuring FragPipe for LiP-MS Peptide Searches 

 
Figure S1. FragPipe LFQ-MBR workflows for LiP-MS experiments. Limited 
proteolysis experiments can be normalized in a large variety of ways. Here, three 
such scenarios are presented as standard conventions users are encouraged to use 
when analyzing LiP-MS data with FLiPPR. Each figure contains a schematic view of 
two separate FragPipe windows, each using the LFQ-MBR workflow, with the LiP 
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experimental conventions shown on the left and TrP conventions shown on the right. 
Below these schematics, the FLiPPR command-line expression demonstrates how 
the LiP and TrP data must be passed into FLiPPR to achieve the expected analysis 
for the following scenarios: (A) Single LiP control-test pair normalized to a single TrP 
control-test pair. (B) Multiple LiP control-test pairs normalized to a single TrP control-
test pair. (C) Multiple LiP control-test pairs normalized to an equal number of TrP 
control-test pairs. 
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