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Abstract

DNA methylation marks have recently been used to build models known as “epigenetic

clocks” which predict calendar age. As methylation of cytosine promotes C-to-T mutations,

we hypothesized that the methylation changes observed with age should reflect the accrual

of somatic mutations, and the two should yield analogous aging estimates. In analysis of

multimodal data from 9,331 human individuals, we find that CpG mutations indeed coincide

with changes in methylation, not only at the mutated site but also with pervasive remodeling

of the methylome out to ±10 kilobases. This one-to-many mapping enables mutation-based

predictions of age that agree with epigenetic clocks, including which individuals are aging

faster or slower than expected. Moreover, genomic loci where mutations accumulate with

age also tend to have methylation patterns that are especially predictive of age. These

results suggest a close coupling between the accumulation of sporadic somatic mutations

and the widespread changes in methylation observed over the course of life.
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Introduction

Practically since the elucidation of the DNA double helix, it has been postulated that

progressive damage to this fundamental structure is the cause of aging1–5. The primary

support for this theory relates to somatic mutations, which accumulate in the genomes of

most tissues and species throughout life4,6–9. Such accumulation has been associated with

multiple characteristics of old age, including immune dysfunction10–12,

neurodegeneration13–15, and cancer16–19.

Aging has also been associated with other major types of molecular changes beyond

DNA mutations20,21, leading to debate as to which of these aging “hallmarks” are

fundamental causes22–25. In particular, much recent attention has been given to associations

of age with DNA methylation, a dynamic epigenetic mark found primarily at CG dinucleotides

(CpG sites) throughout the genome26. CpG methylation has diverse functional

consequences including X chromosome inactivation27,28, chromatin and transcriptional

regulation26,29, cell-type specification, and maintenance of pluripotency30–32. DNA methylation

patterns have been found to change very regularly over the course of life, prompting the

creation of statistical models, termed ‘epigenetic clocks’, which attempt to predict an

individual’s age using their DNA methylation profile33–35. Subsequent research has shown

that epigenetic clock predictions correlate with a host of age-related biological attributes,

including frailty, Alzheimer’s disease, all-cause mortality, life-extending intervention36, and

time-to-death37–40. Such observations have bolstered epigenetic theories of aging, which

propose that progressive remodeling of the epigenome leads to aging phenotypes via the

dysregulation of gene expression, cellular function, and senescence24,41–43. The degree to

which epigenetic changes are direct causes of aging, however, remains unclear.

Despite the separate interest in DNA mutations and DNA methylation as theories of

aging, the relationship between the two processes is not well understood. One recent study

reported that somatic mutations in DNA-binding sites for Tet Methylcytosine Dioxygenase 1
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(TET1), the primary enzyme involved in the removal of methylation marks44, are associated

with local hypermethylation45. Another study demonstrated an association between somatic

mutations, subsequent clonal expansion of blood cells, and accelerated epigenetic aging46.

Most other research linking DNA sequence and methylation has focused on inherited

germline variants rather than acquired somatic mutations, such as efforts to identify methyl

quantitative trait loci (me-QTLs) linking common polymorphisms to methylation levels of

specific CpG sites47–49.

Nonetheless, an intrinsic biochemical connection between DNA mutation and

methylation occurs at 5-methyl cytosine residues6,50,51, which spontaneously deaminate over

time to yield thymine52. A prerequisite for this mutational event is cytosine methylation,

relating somatic mutation to prior epigenetic modification of DNA. Conversely, a prerequisite

for DNA methylation is the presence of a cytosine, which may be eliminated by prior somatic

mutation. Given this interdependence, we considered that the separate links that have been

established between DNA mutation and aging, and DNA methylation and aging, might each

reflect a common underlying process whereby methylation potentiates mutation and/or

mutation potentiates changes in methylation.

To explore this hypothesis, we set out to comprehensively examine the relationship

between somatic DNA mutations and DNA methylation in large collections of human tissue

samples characterized for both layers of molecular information. In what follows, we identify

several types of interaction between somatic mutation and DNA methylation, both

one-to-one and one-to-many (Fig. 1a). Based on these findings, we use somatic mutations

as a surrogate for epigenetic marks in measures of aging, indicating the degree to which

epigenetic aging is explained by somatic mutations (Fig. 1b).
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Results

Genome-wide hypomethylation of mutated CpG sites

To study the connections between somatic mutations and DNA methylation marks, we

analyzed multi-omics data from human patients cataloged in The Cancer Genome Atlas

(TCGA)53–55 and the Pan-Cancer Analysis of Whole Genomes (PCAWG)56. Tumor biopsies

had been drawn from a diversity of tissue types and characterized by whole-exome

sequencing (TCGA, 8,680 exomes across 33 tissues) or whole-genome sequencing

(PCAWG, 651 genomes across 7 tissues). In each case, DNA from the tumor sample was

compared to a second DNA sample drawn from the same individual, with differences used

to define somatic mutations (typically comparing the tumor DNA sequence to whole blood,

Methods). These data had been complemented by methylation profiling of the same tissues

via the Illumina Infinium HumanMethylation450 BeadChip, which provides methylation

fraction readouts (the fraction of DNA reads that are methylated) for approximately 450,000

CpG sites genome-wide57.

From these data, we considered all single base-pair substitution mutations (n =

3,457,875 mutation events) and CpG sites for which all individuals had a reliably measured

methylation value (n = 326,751 CpG sites, Methods). Consistent with previous reports6,50,

CpG sites were the most frequently mutated dinucleotide accounting for 13.5% of all somatic

mutations genome-wide (Fig. 2a). The vast majority of these were C>T transitions (82.3%,

Supplementary Fig. 1a) occurring at sites that tended to be heavily methylated

(Supplementary Fig. 1b).

We next asked whether individuals harboring a mutated CpG site exhibit lower levels

of methylation at that site compared to non-mutated individuals (Fig. 2b). We reasoned that

once mutated, the site would no longer constitute a CG dinucleotide, reducing its likelihood

of methylation. Indeed, we found a significant decrease in methylation in individuals with a
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mutation at a CpG site compared to non-mutated individuals at the same site

(Mann-Whitney p = 3.90⨉10–9, Fig. 2c, Methods), with loss of methylation proportional to

the frequency of reads with the mutant allele (Pearson r = –0.17, p = 2.08⨉10–53, Fig. 2d).

These results supported a model in which CpG mutations occur primarily at

hypermethylated sites due to the spontaneous deamination of methylcytosine and can

become fixed in the genome of daughter cells causing a decrease in methylation

proportional to the mutated clonal population.

Mutated sites show extensive remodeling of the surrounding methylome

During this exploration, we noted numerous cases in which somatic mutations coincided not

only with hypomethylation at the mutated CpG site but also with atypical methylation of

numerous CpGs in the surrounding genome. An illustrative example was the C>T mutation

at base pair 56,642,556 of chromosome 16 in the individual TCGA-GV-A3QI (Fig. 3a). CpG

sites adjacent to this somatic mutation were strikingly hypermethylated in this individual, with

such hypermethylation extending over a contiguous region more than 30 kb downstream.

This effect encompassed the metallothionein 2A gene as well as additional metallothionein

family members MT1E and MT1M, for which methylation-linked repression has been

associated with metastasis in multiple cancer types58–61.

To move beyond anecdotal observations, we devised a general test for whether

somatic mutations are associated with remodeled methylation at surrounding CpGs. In a

window centered on each mutated site, we computed a quantity we called ΔMF: the change

in methylation fraction observed for CpGs in the window, comparing the mutated individual

to matched non-mutated individuals (Fig. 3b, Methods). We observed that ΔMF tended

toward substantially more extreme values than expected at random (n = 2,600 mutated sites

with sufficient nearby CpGs, p < 10–124, Fig. 4a), with mutated loci more than four times as

likely to have an extreme decrease in nearby methylation (ΔMF < –0.3, Fig. 4b). Mutated
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loci were also enriched for nearby methylation increases, albeit more weakly (Fig. 4b).

Examination of different window sizes showed that the methylation increases/decreases

were localized to ±10 kb from the site of mutation, with CpGs close to the mutated site

having the most extreme methylation changes (Fig. 4c). Deeper explorations revealed that

the aberrant methylation patterns: [1] are specific to genomic context, occurring exclusively

at mutations to CpG sites (Fig. 4d); [2] have a direction of change that depends on local

CpG density (i.e., whether they are inside CpG islands29, Fig. 4d); and [3] increase

proportionally with the fraction of DNA in the sample harboring the mutation (Fig. 4e). These

results indicated that our earlier observations were not anecdotal but that CpG mutations are

generally associated with an atypical pattern of methylation in the surrounding DNA.

Somatic mutations mirror epigenetic predictions of age

While mutation of any particular CpG site is exceedingly rare in the human population and

thus a poor predictor of age, its corresponding CpG methylation fraction varies regularly in a

manner that is often age-associated33. We considered, however, that the one-to-many

relationship revealed by our previous analysis (Fig. 4), by which a single CpG mutation

maps to a broad profile of methylation changes in the surrounding DNA, might bridge this

apparent gap between sporadic mutation accumulation and consistent methylation change.

Accordingly, we compared two procedures for the prediction of human chronological age:

the first using an individual’s profile of CpG methylation values, as in previous epigenetic

aging models (methylation clock), and the second using their profile of somatic mutations,

including the counts of somatic mutations within 10 kb of each of these same CpGs

(mutation clock, Methods, Fig. 5a). Evaluating these models using a nested cross-validation

procedure (Methods), we found that the methylation clock predicted age with an accuracy of

r = 0.77 (Pearson correlation), while the mutation clock had an accuracy of r = 0.70 (Fig.

5b-c). Examining predictions within each individual tissue, both models were most accurate
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at predicting age in brain samples and least accurate in thymus samples (Supplementary

Fig. 2).

Beyond their similar accuracies of age prediction, we found that the two clocks

agreed significantly in several other key aspects. First, the predictions from both models

were highly correlated across individuals (r = 0.81), and this relationship persisted even after

controlling for calendar age (partial correlation = 0.60, p = 6.14⨉10–124, Fig. 5d, Methods).

For example, for individuals predicted by mutations to be one year older than their calendar

age, the methylation clock yielded a corresponding overprediction of 0.75 ± 0.53 years

(mean ± stdev). This same agreement in over/underprediction (similarity in model residuals)

was observed when comparing the mutation clock to previously published methylation

clocks (Fig. 5e)33,34,39. Second, CpG sites for which the surrounding mutation burden was

most associated with age also tended to have the most age-associated methylation values

(Fig. 5f, Methods). One example was the CpG site cg19236454 (chr19:42,799,926), for

which the local mutation burden progressively increased with age (±10 kb, r = 0.18), while

the methylation of the site was progressively lost (r = –0.18, Fig. 5g). Thus, mutation and

methylation profiles were synchronized with respect to predictions of age (Fig. 5h), both

globally (genome-wide) and locally surrounding individual CpG sites.

Discussion

In this study, we have observed notable associations between CpG mutation and

methylation at multiple scales. At the scale of single nucleotides, CpG sites altered by

somatic mutation, the most frequent mutation type genome-wide (Fig. 2a, Supplementary

Fig. 1a-b), exhibit loss of methylation at that site (Fig. 2c-d). At a larger scale, such mutated

sites coincide with sweeping methylation changes across numerous CpGs within the

surrounding genomic region (Fig. 3, 4a-c). Plausibly as a result of this larger-scale
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relationship, individuals whose mutations indicate increased genomic age also tend to have

older methylomes (Fig. 5d, h).

A fundamental tension addressed in this study is that two individuals very rarely

share a somatic mutation at the same CpG site; thus, mutations would initially seem too

sparse to explain the numerous CpG sites at which methylation reliably changes with age.

However, our findings show that single mutations can correspond to appreciable shifts in the

methylome, with a graded relationship that depends on the frequency of the mutated allele

(i.e., clonality of the mutant cell population, Fig. 4e). Consistent with these findings, we see

that within individuals of the same calendar age, mutation and methylation clocks agree on

which individuals are aging faster or slower (Fig. 5d-e) and that somatic mutations explain

almost 50% of the variation in methylation age across individuals (Fig. 5b, h).

The mechanisms by which a CpG mutation affects its methylation state or,

conversely, CpG methylation potentiates its own mutation, have already been established.

The prior methylation of a CpG makes a subsequent somatic mutation more likely due to

methylcytosine deamination52. In turn, when either nucleotide of the CpG site is mutated, the

site is no longer a CpG, substantially decreasing the likelihood of future methylation by a

DNA methyltransferase62.

For mutations exhibiting larger-scale gains or losses of methylation in the

surrounding kilobases, it is conceivable that either methylation or mutation, or neither, may

be the primary causal agent. The observed association between somatic mutation and local

hypermethylation (Fig. 4a) may occur if hypermethylation creates an environment prone to

methylcytosine deamination events, giving rise to rare somatic mutations embedded within

hypermethylated regions. This model does not, however, explain the frequently observed

co-occurrences of mutations with neighboring hypomethylation throughout the genome (Fig.

4a), as hypomethylation should decrease, not increase, the local probability of mutation.
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An alternative possibility is that mutations are the primary causes of subsequent

changes in methylation. Mutations within the DNA binding site of a methylase or

demethylase enzyme could plausibly affect enzyme activity, dysregulating the methylation

state of the surrounding genome63–65. Such a relationship has been reported explicitly for

somatic mutations in the DNA binding sites of TET1, a demethylase, leading to local gains of

methylation45. More broadly, it is well known that germline DNA sequence variants govern

the methylation patterns of many CpG sites, affecting as many as 40% of CpGs

genome-wide (“meQTLs”)66. Somatic mutations in these sequences may yield effects on

methylation analogous to those observed for inherited variants.

A third possibility is that mutation and methylation events are not causal of each

other, but that both are downstream of some earlier event. One such event might be related

to the repair of DNA double-strand breaks (DSBs), which have been demonstrated to result

in both somatic mutations and methylation changes near the site of repair67–72. Here, the

mutation and methylation changes would be indicative of an earlier DSB repair, an activity

recently suggested to cause epigenetic aging41.

Regardless, understanding the causality between mutations, methylation, and aging

has important implications for how we seek to prevent or reverse aging. In particular, if

mutations are the fundamental driver of aging phenotypes and epigenetic changes simply

track this process, then strategies aimed at epigenetic reversal41,73–77 may be treating a

symptom rather than a cause.

As the current large human datasets measuring both somatic mutations and

methylation pertain to cancer patients, the relevance of our findings to normative aging

should be examined, i.e., in normal individuals and tissues. This limitation notwithstanding,

we would note that mutation burdens in cancerous and normal tissues are similar78,79 and

that the majority of mutations found in tumors are thought to represent normal mutational

processes unrelated to cancer78,80. A second limitation is that our analysis is cross-sectional
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rather than longitudinal, with each individual measured at a single time point only. Here, a

longitudinal study design could greatly inform the actual order of events. In addition, there

exist other factors associated with epigenetic aging that do not explicitly implicate somatic

mutations. Some epigenetic changes clearly reflect alterations in tissue composition with

age81,82, and other changes are associated with the expression of developmental genes83–89

such as in the binding sites of the polycomb repressive complex90,91. Some of these factors

may nonetheless relate to DNA mutations, for instance somatic mutations can drive

alterations in tissue composition92,93.
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Online Methods

Data access and preprocessing. We obtained paired DNA methylation (Illumina 450k array)

and somatic mutation data from two public consortia: TCGA53–55 and PCAWG56. Relevant to

TCGA, we used the PAN-CAN cohort (http://xena.ucsc.edu/), which includes 8,680 samples

from 33 cancer types with both Illumina 450k methylation array data and somatic mutation

calls. Data from the PCAWG consortium (https://dcc.icgc.org/pcawg) include 651 samples

from 7 cancer types with both Illumina 450k methylation array data and whole-genome

somatic mutation calls. Methylation data from both cohorts were further processed as

follows. First, we removed CpG sites for which any sample had a missing value, leaving

273,202 CpG sites for TCGA and 326,749 CpG sites for PCAWG. Second, we removed

samples for which the mean methylation fraction (over all remaining CpGs) was more than

three standard deviations outside of its expected (mean) value over all samples. Third, each

sample was quantile normalized.

Characterizing CpG mutation frequency. Based on UCSC hg19 human genome

annotations94, the number of nucleotides that comprise CpG residues equals 2 bp *

28,299,634 CpG sites, within a total genome length of 3,137,144,693 bp. Therefore, 1.8% of

randomly distributed mutations are expected to be CpG mutations, and the remaining 98.2%

of mutations are not (Fig. 2a). As CpG sites are palindromic, CG on one DNA strand is

equivalent to GC on the complementary strand; thus, for simplicity, we refer to all CpG

mutations on either strand as alterations to the C residue in the first position. This

convention was used to record the frequency of each dinucleotide sequence resulting from a

CpG mutation (Supplementary Fig. 1a). For these cumulative analyses relating to the

overall frequency of CpG mutation (Fig. 2a, Supplementary Fig. 1a-b), the PCAWG

samples were used exclusively because they had whole genome sequences, encompassing

all CpG sites, rather than exome sequences only.
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Characterizing methylation at mutated CpG sites. The methylation status of two categories

of CpG sites were compared: “Non-mutated sites”, where no mutation was observed in any

individual, and “Mutated sites”, where at least one individual had a mutation (Fig. 2b). For

CpG sites of the first category (265,399 non-mutated sites), the distribution of methylation

fractions was plotted (Fig. 2c). For CpG sites of the second category (8,037 mutated sites),

some individuals harbor a mutation at that particular CpG, and some do not. In this case, the

distributions of CpG methylation fractions were plotted separately for the mutated versus

non-mutated individuals (Fig. 2c). For analyses of methylation associated with mutated sites

(Fig. 2c-d), TCGA samples were used exclusively, as there were many more occurrences of

CpG mutations in this dataset due to its much larger sample size.

Calculating mutation-associated methylation change. Somatic mutation events (i, j) were

defined as (site, sample) pairs for which the nucleotide present at site i in sample j assumed

a different (A,C,G,T) value than in the matched normal tissue. For each mutation event, the

genomic “locus” was defined as a ± kilobase window (upstream and downstream)𝑤

centered on the mutated site i. Matched background samples b were defined as those

without any somatic mutations in this window and that were of the same tissue type and

approximate age (±5 years) as the mutated sample. The methylation fraction of CpG site k

in sample j is denoted by . Using these definitions, we calculated ΔMF, the median𝑚
𝑘, 𝑗

change in methylation fraction in the window comparing sample j to matched background

samples.
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We calculated ΔMF in ±10 kb windows for each mutation event in the PCAWG data, where

[1] the mutation was a single base pair substitution with MAF ≥ 0.8, [2] there were at least 15

viable matched background samples, and [3] there was at least one CpG site within 10 kb of

the mutated base. Filtering against these criteria left 2,600 mutation events. Random control

events were chosen to create a background distribution of ΔMF values at genomic loci

lacking somatic mutations in any sample. For each true mutation event, we randomly chose

100 non-mutated nucleotides from the corresponding mutated sample and calculated ΔMF

at these loci. To perform this calculation, we treated the randomly chosen nucleotide as if it

were a mutation and calculated the ΔMF of CpG sites within ±10 kb.

Extent of mutation-associated methylation remodeling. To investigate the extent of

methylation remodeling associated with somatic mutation, we focused on the 25% of

mutation events with the most positive or negative ΔMF values (Fig. 4a). We extended the

range of ΔMF calculation to all measured CpG sites within ±100 kb from each site of

mutation, computing ΔMF at overlapping 2 kb windows across this range. Then we aligned

these these ΔMF values by their linear genomic distance from their respective mutated site

(Fig. 4c).

CpG and CGI enrichment. The genomic background rate of CpG islands (CGIs) and CpGs

was calculated based on the hg19 annotation95,96

(https://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cpgIslandExt.txt.gz). The

frequency of CpGs in CGIs was based on previously published statistics50. To understand

wether mutation type (CpG or non-CpG) and location (CGI or non-CGI) were related to the

degree of mutation-associated methylation change, we divided the frequency of each

mutation type by the expected genome-wide rate (‘fold enrichment’, focusing on the 25% of

mutation events with the most positive or negative ΔMFs). A one-sided binomial statistic was
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used to test for an increase in mutation frequency above the genomic background rate of

each mutation type (Fig. 4d).

Clock datasets and features. Tissue samples used for all clock-related analyses were from

the LGG (Brain), GBM (Brain-2), SARC (Bone), KIRP (Kidney), or THYM (Thymus) cancer

types in TCGA (n = 1,250 individuals). Somatic mutations within the 25 genes having the

highest mutation frequency for that tissue type were removed to mitigate the influence of

driving cancer genes on the analysis. We created a shared feature set for training all clock

models, selecting the 100,000 CpG sites with the greatest average somatic mutation burden

across samples within ±10 kb of the CpG site.

Mutation clock. The mutation clock was based on a gradient boosted tree model, an

XGBoost Regressor97 with default parameters, which we trained to predict chronological age

using features derived from somatic mutations at the 100,000 CpG sites described above. In

particular, the features used to describe an individual sample were (1) the counts of all

somatic mutations within ± 10 kb of each CpG site (the “mutation burden”, Fig. 5a); (2) the

one-hot encoded tissue type; and (3) the genome-wide mutation burden, summing the

mutated allele frequencies (MAFs) across all 100,000 CpG sites. The accuracy of age

prediction was assessed using nested cross validation, where 64% of samples were used

for model training, 16% for hyperparameter tuning, and 20% for testing, with this entire

procedure repeated over five folds (Fig. 5b, Supplementary Fig. 2). Following

hyperparameter tuning, the number of features selected for use in the trained mutation clock

model ranged from 1,711 to 1,781 across folds, with a mean of 1,759.

Methylation clock. The methylation clock was also based on an XGBoost Regressor model,

with identical default parameters97 as per the mutation clock described above. The definition
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of features was also closely matched, focusing on the same 100,000 CpG sites but using

methylation rather than mutation data. In particular, features used to describe an individual

sample were (1) the methylation fraction of each CpG; (2) the one-hot encoded tissue type;

and (3) the overall degree of genome-wide methylation, computed as the sum of methylation

fraction values across all 100,000 CpG sites (Fig. 5a,c, Supplementary Fig. 2). Nested

cross validation was performed as for the mutation clock. Following hyperparameter tuning

within each fold of cross validation, the number of features selected for use in the trained

model ranged from 4,741 to 4,824 across cross-validation folds, with a mean of 4,787.

Application of existing clocks. The Hannum, Horvath, and PhenoAge clocks were refit to the

TCGA pan-cancer dataset, following a previously described procedure33. Briefly, the CpGs

used in these clocks were obtained from the respective publications33,34,39 and a linear

regression model98 with default parameters was trained on these features to predict the

chronological age of TCGA samples. Some CpG sites included in these clocks did not have

methylation values passing quality controls (see above Methods section “Data access and

preprocessing”), so only the remaining 72%, 69%, and 76% of features were used in the

re-fit Hannum, Horvath, and PhenoAge clocks, respectively. Nested five-fold cross validation

was used to assess the performance of each of these re-fit clocks (Supplementary Fig.

3a-b). For each sample, the residual of each methylation clock (predicted age –

chronological age) was compared with the residual of the mutation clock (Fig. 5e).

Local association of methylation, mutation burden, and age. Across the 1,250 individuals

and 100,000 CpG loci used in the mutation and methylation clocks, we compared the

association between the methylation fraction of each CpG site, its mutation burden in the

surrounding 20 kb, and the chronological age of the samples (Fig. 5f). First, we calculated

the mutual information (MI)99 between the methylation fraction and mutation burden (±10 kb)
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at each CpG locus. Second, we selected the 1%, 5%, and 10% of CpG sites with the largest

methylation-age MI and mutation burden-age MI and counted the number of CpGs shared

between these groups. Third, we compared this overlap to the expected rate of overlap

assuming random selection from the 100,000 original CpGs. A two-sided binomial test was

applied to assess statistical significance.

Software. All analyses were performed in the Python 3.10 and R 3.6.1 environments. Data

analysis was conducted using Pandas 1.5.3, SciPy 1.10.0, and Statsmodels 0.13.5. Data

were visualized with Seaborn 0.12.1 and Matplotlib 3.7.1.
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Figures

Figure 1: Links among CpG mutations, methylome remodeling, and aging

a) Various mutational processes affect the genome. Here, we show that some of these
mutations associate with an aberrant DNA methylation pattern at both the mutated site and
at numerous neighboring CpGs.

b) An individual’s DNA mutation profile and DNA methylation profile make similar predictions
of both their calendar age and rate of aging.
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Figure 2: Frequency and methylation status of CpG mutation events

a) Percent of genome-wide somatic mutations that are classified as CpG (n = 467,079
mutations) or non-CpG mutations (n = 2,990,796 mutations). Expected percentages are
calculated supposing mutation probability to be uniform across the genome (Methods).

b) Diagram showing two categories of CpG sites: those where no individual is mutated
(non-mutated CpG site, gray) and those where a mutation has occurred in at least one
individual (mutated CpG site, red) and remaining individuals are non-mutated (blue).

c) Distribution of CpG methylation values for the categories of CpG sites from (b). The
methylation fractions of mutated individuals (red) and non-mutated individuals (blue) are
shown for the 1,000 CpG sites with the highest mutated allele frequency (corresponding to
MAF > 0.53, Methods).

d) Methylation change between mutated and non-mutated individuals at (n = 8,037) mutated
CpG sites. Methylation change is the difference between the median methylation fraction in
mutated individuals and the median methylation fraction in non-mutated individuals of
matched age and tissue. CpG sites are binned into five groups based on MAF, with violin
plots summarizing the distribution of methylation changes within each group. Vertical bars
inside each violin represent the interquartile range.
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Figure 3: Association of mutations with regional methylation patterns

a) Example mutated site where the individual TCGA-GV-A3QI has a C>T mutation at
chr16:56,642,556 of the hg19 human genome. Upper: Ideogram of chromosome 16, with a
red bar indicating the location of the mutated site. The first underlying track shows hg19
base pair coordinates, the second the documented genes in the region, encoding five
Metallothionein (MT) factors, and the third the locations of CpG sites measured on the
Illumina 450k methylation array (vertical bars). Lower: Heatmap of CpG methylation
fractions. Rows are samples (1 mutated, 28 background), and columns are the measured
CpGs within a ±50 kb window proximal to the mutation (n = 62 CpG sites). The color
corresponds to the methylation fraction of each CpG. The mutated sample row and mutated
site column are labeled in red, with the mutation event indicated by a lightning bolt.

b) Calculation of change in methylation fraction, or ΔMF, with reference to a specific mutated
site. i) Heatmap of methylation fractions of the mutated site and CpGs in the surrounding
window, replicated from panel (a). ii) Heatmap of corresponding differences in methylation
between each sample (row) and all other samples in the matrix (median of other rows),
computed separately for each site in the window (columns). The final ΔMF value was
calculated as the overall methylation change of the mutated sample, taking the median
across all sites in the window (Methods).
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Figure 4: Magnitude and extent of methylation changes near somatic mutations

a) Probability distribution of ΔMF values calculated in a ±10 kb window surrounding mutated
(red) versus random control (blue) sites. Mutated sites include n = 2,600 mutated sites with
MAF ≥0.8, ≥15 matched individuals (individuals of same tissue type within ±5 years of age),
and ≥1 measured CpG within the window. Random control sites include n = 260,000
non-mutated sites (Methods). P value shown for a two-sided Mann-Whitney test for a
difference in median absolute deviation (MAD) of ΔMF between the mutated and
non-mutated random control loci.

b) Line plot depicting the fold enrichment for mutated over non-mutated sites as a function of
ΔMF. Fold enrichment is the ratio of the probability of observing a given ΔMF for mutated
sites versus the probability of that ΔMF for non-mutated control sites. ΔMF divided into
equally spaced bins from –0.4 to 0.4.

c) Line plot depicting ΔMF as a function of genomic distance from the site of mutation. For
the 25% of mutated sites with the most positive (top, n = 650) or negative (bottom, n = 650)
ΔMF values from (a), the ΔMF value in overlapping 2 kb windows at each distance from the
mutation is plotted for mutated sites (red) versus random control sites (blue). The shaded
region indicates the 40th-60th percentiles at that same distance.
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d) Enrichment of extreme ΔMF values at CpG sites and CpG islands. Top versus bottom
barcharts show the 25% of mutations with the most positive versus most negative ΔMF
values in panel (a) (n = 650 mutations each). The enrichment of these mutations (bars, y
axis) is considered for different types of sites, depending on whether the site is a CpG
and/or falls within a CpG island (x-axis categories). Enrichment is compared to the genomic
baseline (Methods), with significance determined by a one-sided binomial test. Significant
enrichment (p ≤ 0.001) is marked with (***), and non-significant (p > 0.01) is marked with
(n.s.). CpG Islands are defined as genomic regions ≥ 200 bp, ≥ 50% GC content, and a high
CpG occurrence.

e) Boxplot of the absolute ΔMF value as a function of the mutated allele fraction (MAF).
Includes all mutated sites with ≥15 matched samples (samples of the same tissue type
within ± 5 years of age) and ≥1 measured CpG within ±10 kb (n = 3,880 mutated loci).
Two-sided p value calculated based on the exact distribution of Pearson's r modeled as a
beta function.
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Figure 5: Association between mutation age, methylation age, and chronological age

a) Methylation clock: the methylation fractions of CpGs are used in a gradient boosted tree
model to predict chronological age. Mutation clock: the count of mutations around the same
CpGs is used in an identical model to predict chronological age. Both models incorporate
similar covariates (Methods).

b) Scatter plot of human individuals, showing age predictions from the mutation model
versus their chronological age. Includes 1,250 individuals from five tissues (Methods).

c) Similar to panel (b) but showing age predictions from the methylation rather than mutation
model.

d) Violin plots of the methylation age residual versus mutation age residual. The residual in
each case is the predicted age minus chronological age. Plot includes the same individuals
as in panels (b,c). Pearson r refers to the correlation between methylation age and mutation
age, controlling for chronological age (i.e., partial correlation, p = 6.14 10–124).

e) Distribution of methylation age residuals for the same individuals as in panels (b,c),
computed according to each of four previous methylation clocks. “This study” refers to the
methylation clock shown in panel (c) (Methods). For each clock, the 20% (n = 250) of
individuals with the youngest mutation age for their chronological age are shown in lighter
color (low mutation – chronological age), and the 20% (n = 250) of individuals with the oldest
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mutation age for their chronological age are shown in darker color (high mutation –
chronological age). (***) indicates a significant (p ≤ 10–10) difference in distribution between
the low and high mutation residual age groups, based on a two-sided Mann–Whitney U test.

f) Barplot depicting the ratio of observed to expected overlap between sets of
age-associated CpG sites. The CpGs with maximal (top 1%, 5%, and 10%) mutual
information between local mutation burden (±10 kb) and age or between methylation fraction
and age were chosen. The intersection (overlap) between age-associated mutation burden
and age-associated methylation sets was compared to the expected intersection assuming
random selection (Methods). Significant enrichment (p ≤ 10–10) is marked with (***).

g) Mutation burden (y-axis left) or methylation fraction (y-axis right) is plotted versus
chronological age (x-axis) for CpG site cg19236454. Data from brain (LGG) samples,
considering individuals with a nonzero mutation burden (±10 kb) at this site (n = 67).
Pearson correlation with chronological age: mutation burden = 0.18, methylation = –0.18.
Error bars denote standard error.

h) Diagram summarizing the relationships between three measures of age: mutation,
methylation, and chronological time. Variance explained is calculated as the squared
Pearson correlation between each pair of measures for the same individuals as in panels
(b,c).
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Supplementary Figures

Supplementary Figure 1: Supplemental characterization of CpG mutations

a) Pie chart showing the proportion of CpG mutations (n = 467,079 mutations) that result in
specific mutated nucleotides. Note that 5’-CpG-3’ sites are palindromic, corresponding to a
3’-GpC-5’ sequence on the opposite strand; thus, mutation of the C residue is equivalent to
mutation of the complementary G residue. For simplicity, we refer to all CpG mutations by
the status of the C residue.

b) Barchart showing the median methylation fraction across all PCAWG samples,
considering CpG sites where a mutation has occurred in at least one sample (left, n = 1,137
CpG sites), CpG sites where no mutation has occurred in any sample (middle, n = 325,614
CpG sites), and all measured CpG sites (right, n = 326,751).
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Supplementary Figure 2: Supplemental age prediction accuracy

Bar plot indicating the correlation of chronological age with the age predictions of mutation
versus methylation clocks across individuals (n = 1,250). Correlations are shown across all
tissues and in each of five TCGA tissues individually: LGG (Brain), GBM (Brain-2), SARC
(Bone), KIRP (Kidney), and THCA (Thymus).
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Supplementary Figure 3: Performance comparison to previous epigenetic clocks

a) Pearson r between predicted and chronological age for Hannum, Horvath, and PhenoAge
clocks across the same samples as Fig. 5b (n = 1,250). Nested five-fold cross validation.
The performance of the methylation clock trained in this study (“This study”) is shown for
reference.

b) Pearson r between predicted and chronological age for Hannum, Horvath, and PhenoAge
clocks after re-fitting (Methods). Same samples and validation procedure as (a).
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