Title: An epigenome-wide analysis of DNA methylation, racialized and economic inequities, and air pollution

Sarah Holmes Watkins^{*1,2}, Christian Testa^{3,4}, Andrew J. Simpkin⁵, George Davey Smith^{1,2}, Brent Coull⁴, Immaculata De Vivo^{6,7}, Kate Tilling^{1,2}, Pamela D. Waterman³, Jarvis T. Chen³, Ana V. Diez-Roux⁸, Nancy Krieger³, Matthew Suderman^{1,2}, Caroline Relton^{1,2}

¹Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK

²Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK

³Department of Social and Behavioral Sciences, Harvard T H Chan School of Public Health, Harvard University, Boston, MA 02115, USA

⁴Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.

⁵ School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland

⁶Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

⁷Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

⁸Department of Epidemiology and Biostatistics and Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, USA

* **Corresponding author**: Sarah Holmes Watkins. Email: <u>s.h.watkins@bristol.ac.uk</u> address: Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK

Word counts:

Title: 100 characters with spaces (100 max) Key points: 53 words (100 max) Abstract: 348 words (350 max) Main text: 2995 words (3000 max)

Table count:

4 (tables + figures total max 5): 4

Figure count:

1 (tables + figures total max 5): 1

1 Key points

- 2 **Question**: Could DNAm be a mechanism by which adversity becomes embodied?
- 3 **Findings**: Traffic-related air pollution exposure may induce epigenetic changes related to
- 4 inflammatory processes; and there are suggestive associations with measures of structural racism.
- 5 **Meaning**: DNAm may be a biological mechanism through which structural racism and air pollution
- 6 become biologically embodied.

7 Abstract

- 8 Importance: DNA methylation (DNAm) provides a plausible mechanism by which adverse exposures
- 9 become embodied and contribute to health inequities, due to its role in genome regulation and
- 10 responsiveness to social and biophysical exposures tied to societal context. However, scant
- 11 epigenome-wide association studies (EWAS) have included structural and lifecourse measures of
- 12 exposure, especially in relation to structural discrimination.
- 13 **Objective**: Our study tests the hypothesis that DNAm is a mechanism by which racial discrimination,
- 14 economic adversity, and air pollution become biologically embodied.
- 15 Design: A series of cross-sectional EWAS, conducted in My Body My Story (MBMS, biological
- specimens collected 2008-2010, DNAm assayed in 2021); and the Multi Ethnic Study of
- 17 Atherosclerosis (MESA; biological specimens collected 2010-2012, DNAm assayed in 2012-2013);
- using new georeferenced social exposure data for both studies (generated in 2022).
- 19 Setting: MBMS was recruited from four community health centers in Boston; MESA was recruited
- 20 from four field sites in: Baltimore, MD; Forsyth County, NC; New York City, NY; and St. Paul, MN.
- 21 Participants: Two population-based samples of US-born Black non-Hispanic (Black NH), white non-
- Hispanic (white NH), and Hispanic individuals (MBMS; n=224 Black NH and 69 white NH) and (MESA;
- 23 n=229 Black NH, n=555 white NH and n=191 Hispanic).

24 **Exposures**: Eight social exposures encompassing racial discrimination, economic adversity, and air

25 pollution.

- 26 Main outcome: Genome-wide changes in DNAm, as measured using the Illumina EPIC BeadChip
- 27 (MBMS; using frozen blood spots) and Illumina 450k BeadChip (MESA; using purified monocytes).
- 28 Our hypothesis was formulated after data collection.
- 29 **Results**: We observed the strongest associations with traffic-related air pollution (measured via
- 30 black carbon and nitrogen oxides exposure), with evidence from both studies suggesting that air
- 31 pollution exposure may induce epigenetic changes related to inflammatory processes. We also
- 32 found suggestive associations of DNAm variation with measures of structural racial discrimination
- 33 (e.g., for Black NH participants, born in a Jim Crow state; adult exposure to racialized economic
- residential segregation) situated in genes with plausible links to effects on health.
- 35 Conclusions and Relevance: Overall, this work suggests that DNAm is a biological mechanism
- 36 through which structural racism and air pollution become embodied and may lead to health
- 37 inequities.

38 Introduction

20	
39	Recent advances enabling large population-based epigenetic studies are permitting researchers to
40	test hypotheses linking socially-patterned exposures, gene regulation, and health inequities ¹⁻³ . DNA
41	methylation (DNAm) is a plausible biological mechanism by which adverse social exposures may
42	become embodied ^{4,5} , because 1) it plays an active role in genome regulation ⁶⁻⁸ , 2) it changes in
43	response to environmental exposures ^{1,9} and internal human physiology like ageing ² and
44	inflammation ¹⁰ , and 3) induced changes can be long-lasting ¹¹⁻¹⁴ . There is a growing literature
45	reporting associations between DNAm and environmental factors to which social groups are
46	unequally exposed; a recent review ¹⁵ found associations between DNAm and measures of socio-
47	economic position (SEP), including income, education, occupation, and neighbourhood measures;
48	and illustrated timing and duration of exposure is important. Exposure to toxins, including air
49	pollution, is often inequitable between social groups ^{16,17} . A number of EWAS have identified
50	associations with particulate matter $^{18-21}$ and oxides of nitrogen (NOx) 21,22 ; although there is little
51	replication between studies, and some studies have failed to find effects of particulate matter ^{22,23} ,
52	NOx ²³ , and residential proximity to roadways ²⁴ . Two EWAS have each found two (non-overlapping)
53	DNAm sites associated with experience of racial discrimination, one in first generation Ghanaian
54	migrants living in Europe ³ , and one in African American women ²⁵ ; given population and migration
55	differences the lack of replication is perhaps not surprising.
56	However, no EWAS has yet examined associations between DNAm and exposure to racial
57	discrimination and economic adversity, both at individual and structural levels, and measured at
58	different points in the lifecourse, in the same group of people. This is important because it is not
59	clear if the different timing, duration, and levels of these adverse exposures are embodied in
60	different ways involving differing biological pathways. Supporting attention to these issues is a
61	growing body of research documenting how exposure to health-affecting factors such as toxins

61 growing body of research documenting how exposure to health-affecting factors such as toxins,

62 quality healthcare, education, fresh food, and green spaces are determined by the way dominant

63	social groups have structured society, which in turn results in health inequities between dominant
64	social groups and groups they have minoritized ^{4,26} . Structural racism (the totality of ways in which
65	society discriminates against racialized groups ²⁷), for example, results in people of colour often
66	disproportionately bearing the burden of adverse exposures and economic hardship ^{4,28} , thus driving
67	racialized health inequities ²⁹ . Associations between structural racism and cardiovascular health have
68	been shown for discriminatory housing policies and continuing neighbourhood racial segregation ^{30,31} ;
69	with the historical legacy of slavery ³² ; and with state-level institutional domains ³³ . Associations
70	have also been shown for diabetes outcomes in the US ³⁴ and globally ³⁵ .
71	Guided by the ecosocial theory of disease distribution ^{4,5} , we tested the hypothesis that DNAm is a
72	biological mechanism by which embodiment of structural racial discrimination, economic hardship,
73	and air pollution may occur. We tested our study hypothesis using data from US-born participants in
74	two US population based studies with similar exposure data: our primary study, the My Body My
75	Story study (MBMS), and the Multi-Ethnic Study of Atherosclerosis study (MESA), which we use for
76	evidence triangulation ³⁶ due to differences between the two study populations.

77 Methods

78 Participants

- 79 This study utilises biological specimens obtained in 2010-2012 from MBMS and MESA, two US
- 80 population-based studies that contain similar data on the study exposures. In 2021-2022, the study
- team newly conducted epigenetic assays for MBMS and added new georeferenced social exposure
- 82 data. Full study descriptions are in the supplementary materials. Our analyses comprised 293
- 83 participants (224 Black and 69 white) from MBMS; and 975 participants from MESA who were US-
- 84 born (229 Black, 555 white NH, additionally including 191 Hispanic).

85 Social exposures

- 86 We tested the relationship between DNAm and eight variables relating to exposure to racial
- discrimination (both structural and self-reported), economic hardship, and air pollution; these are
- 88 described in detail in Supplementary Table 2.

89 DNA methylation

- 90 For detailed description of DNA extraction and DNAm data generation, please see the
- 91 Supplementary materials. Briefly, for MBMS DNA was extracted from frozen blood spots in 2021,
- 92 and data were generated using the Illumina Infinium MethylationEPIC Beadchip. For MESA, DNA was
- 93 extracted from purified monocytes in 2012-2013 and data were generated using the Illumina
- 94 Infinium HumanMethylation450 BeadChip. We used DNAm beta values for both studies, which
- 95 measure DNAm on a scale of 0 (0% methylation) to 1 (100% methylation).

96 Participant stratification

- 97 EWAS were stratified by self-reported membership of racialized groups, for two reasons. Firstly, for
- 98 most of our exposures, different constructs are represented between the racialized groups; for
- 99 example, being born in a Jim Crow state means something very different for individuals who identify
- as Black versus white. Secondly, stratification prevents potential confounding by racialized group

- 101 due to exposure and a degree of genetic differences between groups. Racialized groups are social
- 102 constructs that are changeable and dependent on local context ³⁷; they are important to our
- 103 research question because group membership is pertinent to the experience of social inequities
- 104 perpetuated by structural racial discrimination.

105 **EWAS**

- 106 All EWAS were conducted using linear regression models implemented using the R package *meffil*³⁸.
- 107 Many exposures had low levels of missing data, complete case numbers for each EWAS can be found
- 108 in Table 3. EWAS details can be found in the Supplementary materials; briefly, we adjusted for age,
- 109 reported gender (MBMS)/sex (MESA), smoking status, blood cell count proportions, and batch
- 110 effects.

111 Sensitivity analysis

- 112 In MESA we conducted a sensitivity analysis to test whether our results were influenced by
- 113 population stratification; details are in the Supplementary materials. Additional sensitivity analysis
- 114 restricted the MESA analysis to participants recruited from the Baltimore and New York sites,
- 115 because these cities bear the greatest similarity to the Boston area in terms of geographical location,
- 116 city environment, and social histories.

117 Meta-analysis

- 118 We meta-analysed associations with air pollution within MBMS and within MESA because air
- 119 pollution is the only exposure we tested that we would hypothesize to have the same meaning, and
- 120 therefore biological effect, for all individuals. We used METAL³⁹ to meta-analyse effect sizes and
- 121 standard errors of the EWAS summary statistics of each racialized group, for black carbon/LAC and
- 122 NOx.

123 Functional relevance of sites passing the genome-wide threshold

- 124 For DNAm sites associated with an exposure, we used the UCSC genome browser to identify
- 125 genomic regions. For sites within known genes, we used GeneCards (https://www.genecards.org/)
- 126 and literature searches to identify putative gene functions. We used the EWAS Catalog to determine
- 127 if associations between DNAm sites and other traits had been reported in previous studies. Where
- 128 multiple DNAm sites were associated with an exposure we performed gene set enrichment analysis
- 129 using the *missMethyl* R package ⁴⁰.
- 130 Biological enrichments of top sites
- 131 Following each EWAS we performed analyses to ascertain whether DNAm sites associated with our
- 132 exposures indicate effects on particular biological pathways, processes or functions. Details are in
- 133 the Supplementary materials; briefly, we conducted gene set enrichment analyses, and for
- 134 enrichments of tissue-specific chromatin states, genomic regions and transcription factor binding
- 135 sites (TFBS).

136 Lookup of associations in *a priori* specified genomic locations

- 137 We hypothesised *a priori* that our EWAS would detect DNAm sites that have been robustly
- associated with our study exposures, or factors that might relate to our exposures, in previous
- 139 studies. See Supplementary materials for details.

140 Results

141 Participant characteristics

- 142 Both cohorts include racialized groups that are underrepresented in epigenetic studies. Beyond this,
- substantial differences existed between the racialized groups within and across MBMS and MESA.
- 144 Overall, MBMS participants were on average 21 years younger than MESA participants, had less
- 145 variability in exposure to air pollution, and far more were current smokers. In both studies, Black NH
- 146 compared to white NH participants had higher BMI, rates of smoking, impoverishment, lower

- education, rates of self-reported exposure to racial discrimination, and were more likely to be born
- 148 in a Jim Crow state and live in a neighbourhood with extreme concentrations of low-income persons
- of colour. In MESA, Hispanic participants reported the lowest levels of personal and parental
- 150 education.

Var	iable	MBMS: Black NH	MBMS: white NH	MESA: Black NH	MESA: white NH	MESA: Hispanic
Tot	alN	224	69	229	555	191
	aphic character					
Age: mean (SI	-	49.02 (7.8)	48.7 (8.3)	71 (8.9)	70.1 (9.5)	68.5 (8.9)
Gender: N (%	•	135 (60.3%)	49 (71%)	133 (58.1%)	264 (47.6%)	86 (45%)
BMI: mean (S	D)	32.1 (7.7)	29.7 (7.2)	30.6 (5.7)	28.7 (5.3)	30.8 (5.5)
Smoking: N (%)	Current	115 (51.3%)	24 (34.8%)	31 (13.7%)	44 (8%)	16 (8.6%)
	Former	31 (13.8%)	23 (33.3%)	101 (44.9%)	262 (47.7%)	80 (43%)
	Never	78 (34.8%)	22 (31.9%)	93 (41.5%)	243 (44.3%)	90 (48.4%)
	Missing	0	0	4 (1.7%)	6 (1.1%)	5 (2.6%)
Childhood ex	posure to racial	ized and econ	omic adversit	<u>y:</u>		
Born in a Jim (%) yes	Crow state ¹ : N	71 (31.7%)	2 (3%)	165 (72.1%)	166 (29.9%)	19 (9.9%)
Parent's highest	<high school<="" td=""><td>29 (18.4%)</td><td>8 (14%)</td><td>95 (42.2%)</td><td>161 (29.3%)</td><td>129 (69.7%)</td></high>	29 (18.4%)	8 (14%)	95 (42.2%)	161 (29.3%)	129 (69.7%)
education: N (%)	>= High school and <4yr college	94 (59.5%)	24 (42.1%)	106 (47.3%)	258 (47%)	51 (27.6%)
	4+ years college	35 (22.2%)	25 (43.9%)	24 (10.7%)	130 (23.7%)	5 (2.7%)
Participant's	<i>Missing</i> <high school<="" td=""><td>66 (29.5%) 34 (15.2%)</td><td><i>12 (17.4%)</i> 8 (11.6%)</td><td><i>4 (1.7%)</i> 23 (10%)</td><td>6 (1.1%) 21 (3.8%)</td><td><i>6 (3.1%)</i> 35 (18.3%)</td></high>	66 (29.5%) 34 (15.2%)	<i>12 (17.4%)</i> 8 (11.6%)	<i>4 (1.7%)</i> 23 (10%)	6 (1.1%) 21 (3.8%)	<i>6 (3.1%)</i> 35 (18.3%)
education: N (%)	>= High school and <4yr college	161 (71.9%)	33 (47.8%)	175 (76.4%)	413 (74.4%)	140 (73.3%)
	4+ years college	29 (12.9%)	28 (40.6%)	31 (13.5%)	121 (21.8%)	16 (8.4%)
	Missing:	0	0	0	0	0
Adult exposu	re to racialized	and economic	adversity:			
Household inc poverty ratio ²		2.2 (2.2)	2.9 (2.3)	3.9 (2.3)	4.8 (2.9)	3.3 (2.1)
	Missing	34 (15.2%)	3 (4.3%)	9 (3.9%)	24 (4.3%)	7 (3.7%)
Index of Concentration at the Extremes for racialized economic segregation ³ : mean(SD) <i>Missing</i>		-0.07 (0.2)	0.19 (0.2)	-0.11 (0.2)	0.16 (0.2)	0.09 (0.2)
		0	0	2 (0.9%)	4 (0.7%)	12 (6.3%)
Black carbon mean (SD)	(µg/m3):	0.64 (0.1)	0.63 (0.17)			
	Missing	0	0			
Light absorpti (10 ⁻⁵ /m): mea	on coefficient an (SD)			0.89 (0.35)	0.6 (0.3)	0.7 (0.4)
Pollution Pro» (scale of 0-5):	-	4.3 (1.1)	3.9 (1.4)	14 (6.1%)	23 (4.1%)	11 (5.6%)

	Missing	5 (2.2%)	0			
Oxides of nitroge parts per billion)	•			31.9 (16.2)	21.55 (12.2)	27 (16.4)
	Missing			14 (6.1%)	23 (4.1%)	11 (5.6%)
Experiences of	0	30 (13.4%)	35 (50.7%)			
Discrimination	1-2	52 (23.2%)	24 (34.8%)			
(EOD, N of domains) ⁵ :	3+	140 (62.5%)	10 (14.5%)			
N (%)	Missing	2 (0.9%)	0			
Major Discrimination	0			129 (56.6%)	534 (96.4%)	131 (68.6%)
Scale (MDS, N	1-2			79 (34.6%)	20 (3.6%)	53 (27.7%)
of domains) ⁶ :	3+			20 (8.8%)	0	7 (3.7%)
N (%)	Missing			1 (0.4%)	1 (0.2%)	0
Predicted cell co	ount proporti	ons				
B Cell		0.08 (0.02)	0.06 (0.01)	0.04 (0.03)	0.03 (0.02)	0.03 (0.02)
CD4+T cells		0.17 (0.05)	0.15 (0.04)	0.04 (0.02)	0.03 (0.03)	0.03 (0.01)
CD8+T cells		0.005 (0.02)	0.002 (0.01)	0.002 (0.006)	0.0007 (0.003)	0.0006 (0.003)
Monocytes		0.124 (0.02)	0.116 (0.02)	0.9 (0.05)	0.91 (0.04)	0.92 (0.04)
Neutrophils		0.55 (0.1)	0.62 (0.08)	0.0003 (0.002)	0.0008 (0.005)	0.0009 (0.007)
Natural Killer		0.1 (0.04)	0.09 (0.04)	0.015 (0.01)	0.012 (0.01)	0.01 (0.01)
Eosinophils		0.007 (0.02)	0.003 (0.009)	0.01 (0.01)	0.01 (0.01)	0.01 (0.01)

151 Table 1: Characteristics of MBMS and MESA participants.

152 ¹ Jim Crow states are the 21 US states (plus the District of Columbia) which permitted legal racial discrimination prior to the
 153 1964 US Civil Rights Act.

154 ² Participants' ratio of household income in 2010 dollars to the US 2010 poverty line given household composition.

155 ³ Census tract measure of economic and racialized segregation, scored from -1 to 1

156 ⁴ NOx measurements were used to construct a weighted score of roadway pollution

⁵ Validated self-report questionnaire measuring the number of domains of exposure to racial discrimination. Score range 0 9, categorised into 0, 1-2, 3

⁶ Validated self-report questionnaire measuring the number of domains of exposure to racial discrimination; combined with
 the attribution aspect from EDS (everyday discrimination scale) to enable comparability between EOD and MDS. Score

161 range 0-5, categorised into 0, 1-2, 3+

162

163 EWAS results and biological interpretation

164	In MBMS, among the Black NH participants one DNAm site, in ZNF286B, was associated with being
165	born in a Jim Crow state. Another DNAm site, PLXND1, was associated with participants having less
166	than high school education. Among white NH participants, no associations passed the genome-wide
167	threshold. See Table 2 for details of gene functions; Table 3 for numbers of associated EWAS sites;
168	and <mark>Supplementary figures 1 and 2</mark> for Miami plots. In MESA, two DNAm sites were associated with
169	racialized economic segregation – one in Black NH participants (in FUT6) and one in white NH
170	participants (a CpG previously associated with BMI); and in Black NH participants one DNAm site (in
171	PDE4D) was associated with an MDS score of 0. The majority of associations in MESA were related to
172	air pollution exposure – among Black NH participants, 12 sites with LAC and 22 sites with NOx.
173	Notably, many of these sites are clustered in genes with putative roles in immune responses and are
174	known to interact with one another, including KLF6, MIR23A, FOS, FOSB, ZFP36 and DUSP1. Among
175	the MESA white NH participants, four DNAm sites were associated with both LAC and NOx, and an
176	additional 3 uniquely associated with LAC. Associations of 53 DNAm sites with birth in a Jim Crow
177	state were the result of confounding by air pollution (see <mark>Supplementary Materials</mark>). Among Hispanic
178	participants, one site was associated with LAC (NPNT) and one with NOx (ADPRHL1). See Table 3 for
179	numbers of associations for all EWAS performed and <mark>Supplementary Figures 3-5</mark> for corresponding
180	Miami plots.

~		Chr Functional relevance	MB	MS	MESA			
Gene	Chr		Black NH	White NH	Black NH	White NH	Hispanic	
		A pseudogene, which is predicted to be involved in regulation of RNA	Born in a					
ZNF286B	17	polymerase 2 (Pol II)-mediated transcription (Pol II transcribes protein-	Jim Crow					
		coding genes into mRNA ⁴¹).	state: 1					
		Encodes a cell receptor involved in axonal guidance, migration of	<hs< td=""><td></td><td></td><td></td><td></td></hs<>					
PLXND1	3	endothelial cells, and regulates atherosclerotic plaque deposition ⁴² .	education:					
			1					
		A Golgi stack membrane protein that is involved in basophil-mediated			residential			
	10	allergic inflammation ⁴³ .			racialized			
FUT6	19				economic			
					segregation:			
		A transcriptional activator and tumour suppressor, which regulates			LAC: 2	LAC: 1		
KLF6	10	macrophage inflammatory responses ⁴⁴ .			NOx: 3	NOx: 1		
		FOS is an early-response gene, and is a subunit of the AP-1 transcription			NOX: 5	NOX: 1		
	14	factor complex, which regulates gene expression involved in lung injury,			LAC: 1			
FOS		repair and transformation ⁴⁵ , as well as regulating many cytokine genes			NOx: 7			
		and T-cell differentiation ^{46,47} .						
FOSB	19	FOSB is another subunit of AP-1.			LAC: 1			
FO3D	13				NOx: 1			
		ZFP36 encodes a protein (TTP) that is a key regulator of post-						
ZFP36	19	transcriptional regulation, which has roles in immune and inflammatory			NOx: 2			
		responses ⁴⁸ .						
	_	DUSP1 is a gene that regulates airway inflammation; DUSP1's key			LAC: 1			
DUSP1	5	mechanism of inflammation modulation may be via modulating the			NOx: 1			
		actions of the protein TTP encoded by the ZFP36 gene ⁴⁹ .						
		Encodes a filament protein responsible for integrity of cell shape and cytoplasm. Pathogens can attach to this protein on the cell surface.						
VIM	10	Putative involvement regulating innate immune response to lung injury			NOx: 1			
		and irritation ⁵⁰						
PDE4D	5	PDE4s, including PDE4D, have roles in cell signalling, as well as			MDS: 1			

		regulating inflammatory responses ⁵¹ .	
MALAT1	11	Metastasis associated lung adenocarcinoma transcript 1, lncRNA that acts as transcriptional regulator; upregulation linked to cancerous tissues and proliferation and metastasis of tumour cells	LAC: 1
CYTIP	2	Modulates activation of ARF (ADP-ribosylation factor) genes, which regulate vesicle budding, tethering and cytoskeleton organization. Dysregulation of ARFs may be involved in cancer cell migration and invasion.	LAC: 1 NOx: 1
ZEB2	2	DNA-binding transcriptional repressor involved in the transforming growth factor- β (TGF- β) signalling pathway that interacts with activated SMADs. May be related to small cell lung cancer ⁵² .	LAC: 1 NOx: 1
PTPRC	1	A receptor-type PTP that is an essential regulator of T- and B-cell antigen receptor signalling.	LAC: 1 NOx: 1
NPNT	4	An extracellular matrix protein that has roles in kidney development and carcinogenesis ⁵³ .	LAC: 1
ADPRHL1	13	a protein encoding a pseudoenzyme involved in cardiogenesis ⁵⁴ .	NOx: 1

181 Table 2: Putative functions of genes in which the top exposure-associated DNAm sites sit; with details of how many sites within that gene were identified, and in which main analysis EWAS

182 they were identified.

		MBMS				MESA					
	Black NH		white NH		Black NH		white NH		Hispanic		
	Ν	N sites	N	N sites	Ν	N sites	Ν	N sites	Ν	N sites	
Birth in a Jim Crow state	224	1	NA ¹	NA ¹	225	0	549	53 ²	186	0	
Parent's highest education (high vs low)	64	0	33	0	117	0	288	0	NA ³	NA ³	
Parent's highest education (high vs mid)	129	0	49	0	128	0	384	0	NA ³	NA ³	
Participant's education (high vs low)	63	1	36	0	54	0	142	0	51	0	
Participant's education (high vs mid)	190	0	61	0	202	0	534	0	156	0	
Household poverty to income ratio	190	0	66	0	218	0	528	0	180	0	
Racialized economic segregation	224	0	69	0	223	1	545	1	174	0	
Black carbon	224	0	69	0	211	12	526	7	175	1	
Nitrogen oxides	219	0	69	0	211	22	526	4	175	1	
EOD ⁵ (1-2 vs 0)	82	0	59	0							
EOD ⁵ (1-2 vs 3+)	192	0	34	0							
MDS ⁶ (1-2 vs 0)					204	1	554	0	184	0	
MDS ⁶ (1-2 vs 3+)					97	0	NA^4	NA ⁴	60	0	

183 Table 3: Summary of the number of DNAm sites passing the genome-wide threshold in each individual EWAS in MBMS (threshold 2.4e-7) and MESA (threshold 9e-8). The list of specific DNAm

184 sites passing the genome-wide threshold can be found in supplementary table 4.¹ The EWAS was not run for Jim Crow birth state for white NH participants in MBMS, due to small cell numbers.

185 ² See text; these 53 sites were driven by air pollution differences between individuals born and not born in a Jim Crow state.³ The two EWAS for parental education were not run for Hispanic

186 participants in MESA, due to small cell numbers.⁴ The EWAS was not run for MDS (score of 1-2 vs 3+) for white NH participants in MESA, as no participants had a score of 3 or more. ⁵ EOD –

187 Experiences of Discrimination scale. ⁶ MDS – Major Discrimination Scale

188 MESA subgroup analysis

- The main impact of removing the Minnesota and Forsyth County sites (which both had very low 189
- 190 levels of air pollution) was to remove the confounding structure between air pollution and Jim Crow
- 191 birth state among white NH participants. It also increased the similarity of air pollution associations
- 192 between the Black NH and white NH participants; for example, of the 19 DNAm sites associated with
- 193 NOx among white NH participants, 12 passed the genome-wide threshold in the Black NH participant
- 194 EWAS. Numbers of associated sites are in Table 4. Miami plots for this MESA subgroup can be found
- 195 in Supplementary figures 6, 7 and 8.

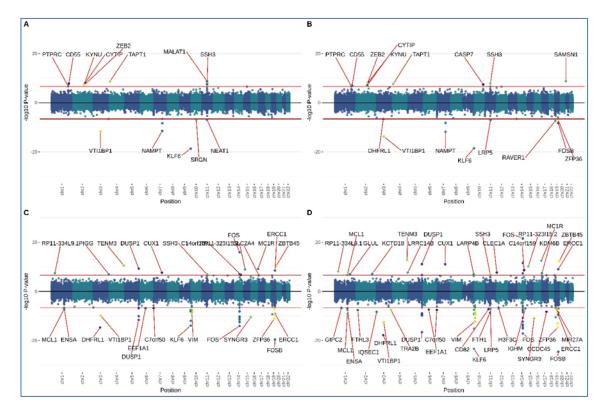
	Bla	Black NH		white NH		spanic
	N	N sites	N	N sites	N	N sites
Birth in a Jim Crow state	221	0	237	0	NA ¹	NA^1
Parent's highest education (high vs low)	115	0	134	0	NA ²	NA ²
Parent's highest education (high vs mid)	125	0	164	0	NA ²	NA ²
Participant's education (high vs low)	54	0	55	0	NA ²	NA ²
Participant's education (high vs mid)	198	0	227	0	NA ²	NA ²
Household poverty:income ratio	214	0	227	1	67	0
Racialized economic segregation	219	1	233	0	59	0
Light Absorption Coefficient	208	10	231	6	57	0
Nitrogen oxides	208	20	231	19	57	0
Major Discrimination Scale (1-2 vs 0)	200	1	236	0	67	0
Major Discrimination Scale (1-2 vs 3+)	94	0	NA ³	NA ³	NA ³	NA ³

196 Table 4: Summary of EWAS results for MESA subgroup analysis.¹ The EWAS for Jim Crow birth state was not run for Hispanic participants due to small cell numbers.² The EWAS for parental and participant education were not run for Hispanic participants, due to small cell numbers.³ The EWAS was not run for MDS (score of 1-2 vs 3+) for white NH and 197

198 199 Hispanic participants in MESA, as no participants had a score of 3 or more.

200 Meta-analysis

201 Meta-analysis in MBMS did not yield any sites passing the genome-wide threshold. In MESA we see


202 approximately similar numbers of associations as with the Black NH subgroup (17 for LAC and 18 for

203 NOx); see Supplementary Table 3. When we restricted to participants recruited at the Baltimore and

204 New York sites, a much larger number of DNAm sites passed the genome-wide threshold (51 for LAC

205 and 79 for NOx); this may be because Minnesota and Forsyth County sites had very low variance in

- 206 pollution levels. The MESA sensitivity meta-analysis identified multiple associations linked to DUSP1,
- 207 FOS, KLF6, MCL1, and VIM; genes that have putative roles in inflammation and immunity.

208

Figure 1: MESA air pollution meta-analysis miami plots. A: MESA full cohort LAC meta-analysis. B: MESA full cohort NOX
 meta-analysis. C: MESA subgroup LAC meta-analysis. D: MESA subgroup NOx meta-analysis.

211 Biological enrichments of exposure associations

212 Gene ontology

- 213 We observed no evidence for gene set enrichments for any Gene Ontology terms among the top 100
- sites of the main EWAS we conducted. However, we did observe that the 22 sites associated with
- 215 NOx above the genome-wide threshold among MESA Black NH participants were enriched for the
- 216 gene ontology terms 'response to glucocorticoid' and 'response to corticosteroid' (FDR>0.05). We
- also observed that the MESA meta-analysis of NOx among all participants was associated with 13
- 218 Gene Ontology terms (FDR>0.05) related to blood-based immune response.

219 EWAS catalog

- 220 We observed a number of relevant enrichments among sites identified in our EWAS. Details of the
- associations (p < 0.05, Fisher's exact test) can be found in the Supplementary Materials and
- 222 Supplementary figures 6-16. Briefly, in MBMS, we see enrichment for inflammation for both NOx
- and LAC EWAS among Black NH participants, and in the NOx meta-analysis. In MESA, we observed

224 consistent enrichment for infection and cancer among Black NH and white NH participants, and also

- in the meta-analyses. We observed enrichment for inflammation among Hispanic participants. We
- also found among both MESA Black NH and Hispanic participants, the racialized economic
- 227 segregation EWAS was enriched for neurological traits. Among both the white NH and Hispanic
- 228 participants, household poverty to income ratio EWAS was enriched for SEP and education. In the
- 229 MESA subgroup analysis, enrichment for prenatal exposures was observed for the Jim Crow birth
- 230 state EWAS among the Black NH and Hispanic participants.
- 231 Enrichment for genomic features
- 232 When we looked at enrichment of genomic locations of the top 100 sites (p < 0.05, Fisher's exact
- 233 test), we found that among MBMS Black NH participants, NOx was the only exposure with
- associated CpGs being located in active genomic regions (please see Supplementary materials for
- details). In the MBMS meta-analyses, NOx was enriched for regions related to gene promoters.
- 236 Among MESA Black NH participants, we observe enrichment for regions related to transcription and
- 237 genome regulation in the LAC and NOx EWAS. We also observed enrichment relating to transcription
- regulation for the birth in a Jim Crow state EWAS. Among MESA white NH participants, we observed
- enrichment for transcription regulation for both measures of air pollution. Among MESA Hispanic
- 240 participants, LAC exposure shows some associations with active genomic regions. When we restrict
- 241 MESA to the New York and Baltimore sites, we see a similar set of enrichments; and in the MESA
- 242 meta-analyses we see consistent enrichment related to transcription regulation and promotors.
- 243 Notably, genomic feature enrichments for NOx among both MBMS and MESA Black NH participants
- 244 involved similar genomic locations (CpG islands and shores) and chromatin states (related to
- 245 promotors), as well as 6 of a possible 9 TFBS.

246 Lookup of associations in a priori specified genomic locations

We did not observe any associations in our EWAS results for sites identified in previous EWAS of
related exposures.

249 **Discussion**

250	The series of EWAS we conducted on a range of adverse exposures at different levels and at
251	different points in the lifecourse, drawing on two different population-based studies with similar
252	exposure data, provide evidence that DNAm may be a biological pathway by which societal context
253	shapes health inequities. This work has shown for the first time associations between DNAm and
254	multiple levels of structural discrimination, in genes that are biologically plausible routes of
255	embodiment involving gene regulation, including inflammation. Additionally, our EWAS and meta-
256	analyses of air pollution showed clear association between two road traffic-related measures of air
257	pollution, and DNAm of multiple CpGs in multiple genes that have been consistently associated with
258	inflammation and infection, suggesting that the material environment people live may induce
259	inflammatory changes. Our study has added to the existing literature on air pollution; there are few
260	EWAS studies looking at NOx (n=3), and none so far looking at black carbon. In total, this work
261	highlights the need for researchers to consider multiple levels of discrimination and adversity across
262	the lifecourse, especially structural inequities in the material world in which people live, to fully
263	elucidate drivers and biological mechanisms of inequitable health.
264	Associations detected at the genome-wide level in MBMS related more closely to early-life
265	exposures (being born in a Jim Crow state, and low educational attainment); in MESA they related
266	more to current experiences and exposures (air pollution, racialized economic segregation, and
267	experiences of discrimination), possibly reflecting the relatively older age of the MESA participants.
268	The much stronger associations with air pollution in MESA compared to MBMS could potentially be
269	due to: (1) the use of purified monocytes in MESA, with a single cell type making associations easier
270	to detect; (2) less variation in exposure to air pollution in MBMS compared MESA; (3) longer
271	duration of air pollution exposure in MESA (due to older age of the participants); or (4) reduced
272	statistical power in MBMS, due to lower quantities of DNA.

273	Notably, inflammation was the predominant pathway indicated in the air pollution analyses, both via
274	putative gene functions and enrichment analyses. These findings underscore that while there is a
275	large psychosocial literature on inflammation being a mechanism by which discrimination harms
276	health ^{28,55,56} , it is also critical to consider inequities in biophysical exposures in the material world as
277	an important driver of this inflammation. Overall, air pollution sites tend to be enriched for
278	inflammation in MBMS and infection in MESA; this could represent different mechanisms of the
279	same process due to the different blood cell types sampled in the two cohorts; with monocytes
280	being specialised in infection prevention, and neutrophils (the highest proportion cell in whole blood)
281	being specialised in inflammatory responses.
282	Our study identified a greater number of associations with air pollution measures than previous
283	work in MESA ^{20,57} ; this is likely due to the fact that we do not adjust for recruitment site (which
284	would reduce variation in the exposure because exposure is location-dependent); and previous
285	analyses have adjusted for racialized group membership, which is also associated with air pollution
286	exposure; this may have masked the effects that we have detected. This joins other research that
287	has demonstrated the importance of considering spatial effects of air pollution 58 .
288	A limitation of our study is that we cannot infer causality. Although it would be possible to conduct
200	A initiation of our study is that we cannot miler causanty. Although it would be possible to conduct
289	Mendelian randomization instrumenting <i>cis</i> -mQTLs, we did not conduct this analysis because we
290	think the results would be highly speculative. Additionally, the MESA sample we used may have been
291	subject to selection bias, because (1) individuals who had experienced prior cardiovascular events
292	were excluded from recruitment, and (2) a number of participants died between Exam 1 and Exam 5.
293	If adversity and discrimination are associated with these cardiovascular events and mortality,
294	associations could be biased in MESA.

295 Conclusions

296 We think this work provides direction for future epigenetic studies to consider the role of

297 inequitable adverse social and biophysical exposures across the lifecourse, including but not limited

- to structural discrimination. Our results suggest inflammation may be a key biological pathway by
- 299 which inequities become embodied, in our case driven primarily by exposure to air pollution, and
- 300 not self-reported racial discrimination. These findings accordingly suggest that attention to how
- 301 social inequities shape biophysical as well as social exposures is crucial for understanding how
- 302 societal inequities can become embodied, via pathways involving DNAm.

303 Declaration statements

304 Ethics approval

- 305 The study protocol, involving use of both the MBMS and MESA data, was approved by the Harvard
- 306 T.H. Chan School of Public Health Office of Human Research Administration (Protocol # IRB19-0524;
- 307 June 10, 2019).
- 308 The original MBMS study protocol, implemented in accordance with the Helsinki Declaration of 1975,
- 309 as revised in 2000, was approved by the Harvard School of Public Health Office of Human Research
- Administration (protocol #11950–127, which covered 3 of the 4 health centers through reciprocal
- 311 IRB agreements), and was also separately approved by the fourth community health center's
- 312 Institutional Review Board. All participants provided written informed consent.
- 313 Information regarding the MESA protocols and their IRB approvals and other information, is
- 314 available at: <u>www.mesa-nhlbi.org</u>.

315 Data sharing

- 316 This study (NIH Grant number R01MD014304) relied on three sources of data, each of which is
- 317 subject to distinct data sharing stipulations: (1) the non-public data from the "My Body, My Story"
- 318 (MBMS) study; (2) the non-public data from the Multi-Ethnic Study of Atherosclerosis (MESA; data
- use agreement G638); and (3) the public de-identified data from the US Census, the American
- 320 Community Survey, and the State Policy Liberalism Index. We provide descriptions of these data

321 sharing stipulations and access to these data below; this information is also available at:

322 https://www.hsph.harvard.edu/nancy-krieger/data-sharing-resources/

323	•	ICE metrics relating to racial composition, income distribution, and housing tenure that were
324		derived from sources in the public domain i.e. the US Census and the American Community
325		Survey are available at the census tract level now on <u>GitHub</u> .
326	•	Code used to construct the variables is available on <u>GitHub</u> and <u>here</u> .
327	•	The State Policy Liberalism Index data used in our study is also publicly available and can be
328		obtained from the <u>Harvard Dataverse</u> . Reference: Caughey, Devin; Warshaw, Christopher,
329		2014, "The Dynamics of State Policy Liberalism, 1936-
330		2014", http://dx.doi.org/10.7910/DVN/ZXZMJB Dataverse [Distributor] V1 [Version].
331	•	De-identified data from the My Body My Story study used for this project will be made
332		available only for purposes approved by the study PI, as stipulated by the study's informed
333		consent protocol. The application form to obtain these data will be made available via this
334		website after completion of this project in late Fall 2024.
335	•	Data from the <u>Multi-Ethnic Study of Atherosclerosis (MESA)</u> must be obtained directly from
336		the MESA website via their application protocol.
337	•	The scripts to run the EWAS and downstream analyses are available on <u>GitHub</u> .
338	•	EWAS summary statistics <mark>will be uploaded</mark> to the <u>EWAS catalog</u> website <mark>upon publication</mark> .

339 Author contributions

- SHW performed quality checks and normalisation of MBMS DNAm data, co-designed and
- 341 conducted the analyses, wrote the first manuscript draft, produced tables and figures, and
- 342 prepared study materials to be shared via the data repository (software code).
- MS provided advice on data QC, co-designed the analyses, and contributed to interpreting the

344 results.

- CR co-led obtaining funds for the research project, co-designed the analyses, and contributed to
- 346 interpreting the results.
- NK led conceptualization of the study, contributed to designing the analyses, and co-led
- 348 obtaining funds for the research project.
- CT accessed the electronic public use data and generated the study variables derived from these
- data, contributed to designing the analyses and interpreting the results, and prepared the study
- 351 materials to be shared via the data repository (data dictionary; software code).
- JTC contributed to designing the analyses and interpreting results.
- PDW facilitated finalizing all human subject approvals and data use agreements and also the
- data transfer of the MBMS epigenetic data from HSPH to Bristol, geocoded the place of birth
- data, extracted the historical census data from PDF files, and contributed to interpreting results.
- AS, BC, KT, and GDS contributed to designing the analyses and interpreting the results.
- IDV led and supervised the assays to extract epigenetic data from the MBMS blood spots and

358 contributed to designing the analyses and interpreting the results.

- ADR facilitated interpretation of the MESA data and contributed to designing the analyses and
- 360 interpreting the study results.
- All co-authors provided critical intellectual content to and approved the submitted manuscript.

362 Funding

- 363 The work for this study was supported by the National Institutes of Health, National Institute of
- 364 Minority and Health Disparities [grant number grant R01MD014304 to N.K. and C.R., as MPIs].
- 365 Additionally, GDS, CR, KT, MS, SHW work within the MRC Integrative Epidemiology Unit at the
- 366 University of Bristol, which is supported by the Medical Research Council (MC_UU_00011/1,3, & 5
- and MC_UU-00032/1). The funders had no role in study design, data collection and analysis, decision
- to publish, or preparation of the manuscript.
- 369 Prior funding supporting our work:

- a) The prior MBMS study was funded by the National Institutes of Health/National Institute on Aging
- 371 (R01AG027122) and generation of the black carbon data for this study was supported by a pilot
- 372 grant from the Harvard NIEHS Center (P30 ES000002).
- b) No additional grant funding to MESA was obtained for the conduct of this study whose Data Use
- Agreement (G638) was approved by MESA (on 11/22/2019) to use pre-existing MESA data.
- 375 Support for generating these pre-existing MESA data is provided by contracts 75N92020D00001,
- 376 HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-
- 377 HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004,
- 378 N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168,
- 379 N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881, and DK063491.
- 380 The MESA Epigenomics & Transcriptomics Studies were funded by NIH grants 1R01HL101250,
- 381 1RF1AG054474, R01HL126477, R01DK101921, and R01HL135009.
- 382 This publication was developed under the Science to Achieve Results (STAR) research assistance
- agreements, No. RD831697 (MESA Air) and RD-83830001 (MESA Air Next Stage), awarded by the U.S
- 384 Environmental Protection Agency (EPA). It has not been formally reviewed by the EPA. The views
- 385 expressed in this document are solely those of the authors and the EPA does not endorse any
- 386 products or commercial services mentioned in this publication.
- 387 Funding for MESA SHARe genotyping was provided by NHLBI Contract N02-HL-6-4278. Genotyping
- 388 was performed at the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA) and at
- 389 Affymetrix (Santa Clara, California, USA) using the Affymetrix Genome-Wide Human SNP Array 6.0.

390 Acknowledgements

- 391 We thank, with written permission: (1) Nykesha Johnson for her insightful comments on this
- 392 manuscript (2) Linda V. Nguyen (Department of Medicine, Brigham and Women's Hospital and
- 393 Harvard Medical School, Boston, MA, USA; May 1, 2023) for her contributions to extracting the DNA

394 from the MBMS blood spots and preparing it for shipment to the Bristol team members for analysis,

- 395 (3) Emily Wright, PhD (Harvard TH Chan School of Public Health; May 1, 2023), for her assistance,
- 396 when a doctoral student, with linking area-based data to the MBMS study participant records; and (4)
- 397 Karen Ho (May 17, 2023), (5) Louise Falk (May 18, 2023), (6) Sophie FitzGibbon (May 24, 2023), and
- 398 (7) Catherine Slack (May 19, 2023) for their role in generating the MBMS Illumina data.
- 399 We are extremely grateful to all the MBMS participants who took part in the original MBMS study,
- 400 the staff at the four participating community health centers, and the researchers who conducted
- 401 participant recruitment and interviews. We are likewise grateful to all the MESA participants and
- 402 investigators whose data and dedicated work enabled us to have incorporate MESA data into our
- 403 research project, including Amanda Gassett, MS for providing us with the air pollution dataset used
- 404 from MESA Air (written permission: July 20, 2023); a full list of participating MESA investigators and
- 405 institutions can be found at: http://www.mesa-nhlbi.org. This paper has been reviewed and
- 406 approved by the MESA Publications and Presentations Committee (DATE).

407 Conflict of interest

- 408 The authors declare no conflict of interest.
- 409

410 **References**

- 411
- Martin EM, Fry RC. Environmental Influences on the Epigenome: Exposure-Associated DNA
 Methylation in Human Populations. *Annu Rev Public Health.* 2018;39:309-333.
- 4142.Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of415ageing. Nat Rev Genet. 2018;19(6):371-384.
- 416 3. van der Laan LC, Meeks KAC, Chilunga FP, et al. Epigenome-wide association study for
 417 perceived discrimination among sub-Saharan African migrants in Europe the RODAM study.
 418 Sci Rep. 2020;10(1):4919.
- 4. Krieger N. *Ecosocial Theory, Embodied Truths, and the People's Health.* New York: Oxford
 420 University Press; 2021.
- 4215.Krieger N. Methods for the scientific study of discrimination and health: an ecosocial422approach. Am J Public Health. 2012;102(5):936-944.

423	6.	Kaluscha S, Domcke S, Wirbelauer C, et al. Evidence that direct inhibition of transcription
424		factor binding is the prevailing mode of gene and repeat repression by DNA methylation. <i>Nat</i>
425		Genet. 2022;54(12):1895-1906.
426	7.	Bell JT, Pai AA, Pickrell JK, et al. DNA methylation patterns associate with genetic and gene
427		expression variation in HapMap cell lines. <i>Genome Biol</i> . 2011;12(1):R10.
428	8.	Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, et al. Passive and active DNA
429		methylation and the interplay with genetic variation in gene regulation. <i>Elife.</i> 2013;2:e00523.
430	9.	Christiansen C, Castillo-Fernandez JE, Domingo-Relloso A, et al. Novel DNA methylation
431		signatures of tobacco smoking with trans-ethnic effects. <i>Clin Epigenetics</i> . 2021;13(1):36.
432	10.	Wielscher M, Mandaviya PR, Kuehnel B, et al. DNA methylation signature of chronic low-
433		grade inflammation and its role in cardio-respiratory diseases. <i>Nat Commun.</i>
434		2022;13(1):2408.
435	11.	Sugden K, Hannon EJ, Arseneault L, et al. Establishing a generalized polyepigenetic
436		biomarker for tobacco smoking. Transl Psychiatry. 2019;9(1):92.
437	12.	Tsai PC, Glastonbury CA, Eliot MN, et al. Smoking induces coordinated DNA methylation and
438	12.	gene expression changes in adipose tissue with consequences for metabolic health. <i>Clin</i>
439		Epigenetics. 2018;10(1):126.
440	13.	Richmond RC, Suderman M, Langdon R, Relton CL, Davey Smith G. DNA methylation as a
441	13.	marker for prenatal smoke exposure in adults. Int J Epidemiol. 2018;47(4):1120-1130.
442	14.	Watkins SH, Iles-Caven Y, Pembrey M, Golding J, Suderman M. Grandmaternal smoking
442	14.	during pregnancy is associated with differential DNA methylation in peripheral blood of their
443 444		grandchildren. Eur J Hum Genet. 2022;30(12):1373-1379.
	15	
445	15.	Cerutti J, Lussier AA, Zhu Y, Liu J, Dunn EC. Associations between indicators of socioeconomic
446	10	position and DNA methylation: a scoping review. <i>Clin Epigenetics</i> . 2021;13(1):221.
447	16.	Krieger N, Waterman PD, Gryparis A, Coull BA. Black carbon exposure, socioeconomic and
448		racial/ethnic spatial polarization, and the Index of Concentration at the Extremes (ICE).
449	47	Health Place. 2015;34:215-228.
450	17.	Wang Y, Liu P, Schwartz J, et al. Disparities in ambient nitrogen dioxide pollution in the
451		United States. <i>Proc Natl Acad Sci U S A</i> . 2023;120(16):e2208450120.
452	18.	Panni T, Mehta AJ, Schwartz JD, et al. Genome-Wide Analysis of DNA Methylation and Fine
453		Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the
454		Normative Aging Study. Environ Health Perspect. 2016;124(7):983-990.
455	19.	Gruzieva O, Xu CJ, Yousefi P, et al. Prenatal Particulate Air Pollution and DNA Methylation in
456		Newborns: An Epigenome-Wide Meta-Analysis. Environ Health Perspect. 2019;127(5):57012.
457	20.	Chi GC, Liu Y, MacDonald JW, et al. Epigenome-wide analysis of long-term air pollution
458		exposure and DNA methylation in monocytes: results from the Multi-Ethnic Study of
459		Atherosclerosis. <i>Epigenetics</i> . 2022;17(3):297-313.
460	21.	Gondalia R, Baldassari A, Holliday KM, et al. Methylome-wide association study provides
461		evidence of particulate matter air pollution-associated DNA methylation. Environ Int.
462		2019;132:104723.
463	22.	de F. C. Lichtenfels AJ, van der Plaat DA, de Jong K, et al. Long-term Air Pollution Exposure,
464		Genome-wide DNA Methylation and Lung Function in the LifeLines Cohort Study. Environ
465		Health Perspect. 2018;126(2):027004.
466	23.	Eze IC, Jeong A, Schaffner E, et al. Genome-Wide DNA Methylation in Peripheral Blood and
467		Long-Term Exposure to Source-Specific Transportation Noise and Air Pollution: The
468		SAPALDIA Study. Environ Health Perspect. 2020;128(6):67003.
469	24.	Kingsley SL, Eliot MN, Whitsel EA, et al. Maternal residential proximity to major roadways,
470		birth weight, and placental DNA methylation. Environ Int. 2016;92-93:43-49.
471	25.	Barcelona de Mendoza V, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived Racial
472		Discrimination and DNA Methylation Among African American Women in the InterGEN
473		Study. Biol Res Nurs. 2018;20(2):145-152.

474	26.	Havranek EP, Mujahid MS, Barr DA, et al. Social Determinants of Risk and Outcomes for
475		Cardiovascular Disease: A Scientific Statement From the American Heart Association.
476		Circulation. 2015;132(9):873-898.
477	27.	Krieger N. Discrimination and health inequities. Int J Health Serv. 2014;44(4):643-710.
478	28.	Williams DR, Lawrence JA, Davis BA. Racism and Health: Evidence and Needed Research.
479		Annu Rev Public Health. 2019;40:105-125.
480	29.	Bailey ZD, Krieger N, Agenor M, Graves J, Linos N, Bassett MT. Structural racism and health
481		inequities in the USA: evidence and interventions. <i>Lancet.</i> 2017;389(10077):1453-1463.
482	30.	Sistrunk C, Tolbert N, Sanchez-Pino MD, et al. Impact of Federal, State, and Local Housing
483		Policies on Disparities in Cardiovascular Disease in Black/African American Men and Women:
484		From Policy to Pathways to Biology. <i>Front Cardiovasc Med</i> . 2022;9:756734.
485	31.	Kershaw KN, Osypuk TL, Do DP, De Chavez PJ, Diez Roux AV. Neighborhood-level
486		racial/ethnic residential segregation and incident cardiovascular disease: the multi-ethnic
487		study of atherosclerosis. Circulation. 2015;131(2):141-148.
488	32.	Kramer MR, Black NC, Matthews SA, James SA. The legacy of slavery and contemporary
489		declines in heart disease mortality in the U.S. South. SSM Popul Health. 2017;3:609-617.
490	33.	Lukachko A, Hatzenbuehler ML, Keyes KM. Structural racism and myocardial infarction in the
491		United States. <i>Soc Sci Med.</i> 2014;103:42-50.
492	34.	Egede LE, Campbell JA, Walker RJ, Linde S. Structural Racism as an Upstream Social
493		Determinant of Diabetes Outcomes: A Scoping Review. <i>Diabetes Care.</i> 2023;46(4):667-677.
494	35.	Agarwal S, Wade AN, Mbanya JC, et al. The role of structural racism and geographical
495		inequity in diabetes outcomes. <i>Lancet</i> . 2023.
496	36.	Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology. Int J
497		Epidemiol. 2016;45(6):1866-1886.
498	37.	Liebler CA, Porter SR, Fernandez LE, Noon JM, Ennis SR. America's Churning Races: Race and
499		Ethnicity Response Changes Between Census 2000 and the 2010 Census. Demography.
500		2017;54(1):259-284.
501	38.	Min JL, Hemani G, Davey Smith G, Relton C, Suderman M. Meffil: efficient normalization and
502		analysis of very large DNA methylation datasets. <i>Bioinformatics</i> . 2018;34(23):3983-3989.
503	39.	Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide
504		association scans. Bioinformatics. 2010;26(17):2190-2191.
505	40.	Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from
506		Illumina's HumanMethylation450 platform. <i>Bioinformatics</i> . 2016;32(2):286-288.
507	41.	Sainsbury S, Bernecky C, Cramer P. Structural basis of transcription initiation by RNA
508		polymerase II. Nat Rev Mol Cell Biol. 2015;16(3):129-143.
509	42.	Mehta V, Pang KL, Rozbesky D, et al. The guidance receptor plexin D1 is a mechanosensor in
510		endothelial cells. <i>Nature.</i> 2020;578(7794):290-295.
511	43.	Puan KJ, San Luis B, Yusof N, et al. FUT6 deficiency compromises basophil function by
512		selectively abrogating their sialyl-Lewis x expression. Commun Biol. 2021;4(1):832.
513	44.	Kim GD, Das R, Goduni L, McClellan S, Hazlett LD, Mahabeleshwar GH. Kruppel-like Factor 6
514		Promotes Macrophage-mediated Inflammation by Suppressing B Cell Leukemia/Lymphoma
515		6 Expression. <i>J Biol Chem.</i> 2016;291(40):21271-21282.
516	45.	Reddy SP, Mossman BT. Role and regulation of activator protein-1 in toxicant-induced
517		responses of the lung. Am J Physiol Lung Cell Mol Physiol. 2002;283(6):L1161-1178.
518	46.	Zenz R, Eferl R, Scheinecker C, et al. Activator protein 1 (Fos/Jun) functions in inflammatory
519		bone and skin disease. Arthritis Res Ther. 2008;10(1):201.
520	47.	Zhou L, Xue C, Chen Z, Jiang W, He S, Zhang X. c-Fos is a mechanosensor that regulates
521		inflammatory responses and lung barrier dysfunction during ventilator-induced acute lung
522		injury. <i>BMC Pulm Med.</i> 2022;22(1):9.

523 524	48.	Makita S, Takatori H, Nakajima H. Post-Transcriptional Regulation of Immune Responses and Inflammatory Diseases by RNA-Binding ZFP36 Family Proteins. <i>Front Immunol</i> .
525		2021;12:711633.
526	49.	Smallie T, Ross EA, Ammit AJ, et al. Dual-Specificity Phosphatase 1 and Tristetraprolin
527		Cooperate To Regulate Macrophage Responses to Lipopolysaccharide. J Immunol.
528		2015;195(1):277-288.
529	50.	dos Santos G, Rogel MR, Baker MA, et al. Vimentin regulates activation of the NLRP3
530		inflammasome. <i>Nat Commun.</i> 2015;6:6574.
531	51.	Li H, Zuo J, Tang W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory
532		Diseases. Front Pharmacol. 2018;9:1048.
533	52.	Wang T, Chen X, Qiao W, Kong L, Sun D, Li Z. Transcription factor E2F1 promotes EMT by
534		regulating ZEB2 in small cell lung cancer. BMC Cancer. 2017;17(1):719.
535	53.	Magnussen SN, Toraskar J, Hadler-Olsen E, Steigedal TS, Svineng G. Nephronectin as a Matrix
536		Effector in Cancer. <i>Cancers (Basel)</i> . 2021;13(5).
537	54.	Smith SJ, Towers N, Saldanha JW, et al. The cardiac-restricted protein ADP-ribosylhydrolase-
538		like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly.
539		Dev Biol. 2016;416(2):373-388.
540	55.	Simons RL, Lei MK, Klopack E, Beach SRH, Gibbons FX, Philibert RA. The effects of social
541		adversity, discrimination, and health risk behaviors on the accelerated aging of African
542		Americans: Further support for the weathering hypothesis. <i>Soc Sci Med.</i> 2021;282:113169.
543	56.	Cuevas AG, Ong AD, Carvalho K, et al. Discrimination and systemic inflammation: A critical
544		review and synthesis. <i>Brain Behav Immun.</i> 2020;89:465-479.
545	57.	Chi GC, Liu Y, MacDonald JW, et al. Long-term outdoor air pollution and DNA methylation in
546		circulating monocytes: results from the Multi-Ethnic Study of Atherosclerosis (MESA).
547		Environ Health. 2016;15(1):119.
548	58.	Abed Al Ahad M, Demsar U, Sullivan F, Kulu H. The spatial-temporal effect of air pollution on
549		individuals' reported health and its variation by ethnic groups in the United Kingdom: a
550		multilevel longitudinal analysis. BMC Public Health. 2023;23(1):897.
FF4		

551