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Key points 1 

Question: Could DNAm be a mechanism by which adversity becomes embodied? 2 

Findings: Traffic-related air pollution exposure may induce epigenetic changes related to 3 

inflammatory processes; and there are suggestive associations with measures of structural racism. 4 

Meaning: DNAm may be a biological mechanism through which structural racism and air pollution 5 

become biologically embodied. 6 

Abstract 7 

Importance: DNA methylation (DNAm) provides a plausible mechanism by which adverse exposures 8 

become embodied and contribute to health inequities, due to its role in genome regulation and 9 

responsiveness to social and biophysical exposures tied to societal context. However, scant 10 

epigenome-wide association studies (EWAS) have included structural and lifecourse measures of 11 

exposure, especially in relation to structural discrimination. 12 

Objective: Our study tests the hypothesis that DNAm is a mechanism by which racial discrimination, 13 

economic adversity, and air pollution become biologically embodied.  14 

Design: A series of cross-sectional EWAS, conducted in My Body My Story (MBMS, biological 15 

specimens collected 2008-2010, DNAm assayed in 2021); and the Multi Ethnic Study of 16 

Atherosclerosis (MESA; biological specimens collected 2010-2012, DNAm assayed in 2012-2013); 17 

using new georeferenced social exposure data for both studies (generated in 2022). 18 

Setting: MBMS was recruited from four community health centers in Boston; MESA was recruited 19 

from four field sites in: Baltimore, MD; Forsyth County, NC; New York City, NY; and St. Paul, MN. 20 

Participants: Two population-based samples of US-born Black non-Hispanic (Black NH), white non-21 

Hispanic (white NH), and Hispanic individuals (MBMS; n=224 Black NH and 69 white NH) and (MESA; 22 

n=229 Black NH, n=555 white NH and n=191 Hispanic).  23 
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Exposures: Eight social exposures encompassing racial discrimination, economic adversity, and air 24 

pollution. 25 

Main outcome: Genome-wide changes in DNAm, as measured using the Illumina EPIC BeadChip 26 

(MBMS; using frozen blood spots) and Illumina 450k BeadChip (MESA; using purified monocytes). 27 

Our hypothesis was formulated after data collection. 28 

Results: We observed the strongest associations with traffic-related air pollution (measured via 29 

black carbon and nitrogen oxides exposure), with evidence from both studies suggesting that air 30 

pollution exposure may induce epigenetic changes related to inflammatory processes. We also 31 

found suggestive associations of DNAm variation with measures of structural racial discrimination 32 

(e.g., for Black NH participants, born in a Jim Crow state; adult exposure to racialized economic 33 

residential segregation) situated in genes with plausible links to effects on health.  34 

Conclusions and Relevance: Overall, this work suggests that DNAm is a biological mechanism 35 

through which structural racism and air pollution become embodied and may lead to health 36 

inequities.   37 
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Introduction 38 

Recent advances enabling large population-based epigenetic studies are permitting researchers to 39 

test hypotheses linking socially-patterned exposures, gene regulation, and health inequities 1-3. DNA 40 

methylation (DNAm) is a plausible biological mechanism by which adverse social exposures may 41 

become embodied 4,5, because 1) it plays an active role in genome regulation 6-8, 2) it changes in 42 

response to environmental exposures 1,9 and internal human physiology like ageing 2 and 43 

inflammation 10, and 3) induced changes can be long-lasting 11-14. There is a growing literature 44 

reporting associations between DNAm and environmental factors to which social groups are 45 

unequally exposed; a recent review 
15

 found associations between DNAm and measures of socio-46 

economic position (SEP), including income, education, occupation, and neighbourhood measures; 47 

and illustrated timing and duration of exposure is important. Exposure to toxins, including air 48 

pollution, is often inequitable between social groups 
16,17

. A number of EWAS have identified 49 

associations with particulate matter 
18-21

 and oxides of nitrogen (NOx) 
21,22

; although there is little 50 

replication between studies, and some studies have failed to find effects of particulate matter 
22,23

, 51 

NOx 23, and residential proximity to roadways 24. Two EWAS have each found two (non-overlapping) 52 

DNAm sites associated with experience of racial discrimination, one in first generation Ghanaian 53 

migrants living in Europe 3, and one in African American women 25; given population and migration 54 

differences the lack of replication is perhaps not surprising.  55 

However, no EWAS has yet examined associations between DNAm and exposure to racial 56 

discrimination and economic adversity, both at individual and structural levels, and measured at 57 

different points in the lifecourse, in the same group of people. This is important because it is not 58 

clear if the different timing, duration, and levels of these adverse exposures are embodied in 59 

different ways involving differing biological pathways. Supporting attention to these issues is a 60 

growing body of research documenting how exposure to health-affecting factors such as toxins, 61 

quality healthcare, education, fresh food, and green spaces are determined by the way dominant 62 
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social groups have structured society, which in turn results in health inequities between dominant 63 

social groups and groups they have minoritized 
4,26

. Structural racism (the totality of ways in which 64 

society discriminates against racialized groups 
27

), for example, results in people of colour often 65 

disproportionately bearing the burden of adverse exposures and economic hardship 
4,28

, thus driving 66 

racialized health inequities 
29

. Associations between structural racism and cardiovascular health have 67 

been shown for discriminatory housing policies and continuing neighbourhood racial segregation 
30,31

; 68 

with the historical legacy of slavery 
32

; and with state-level institutional domains 
33

. Associations 69 

have also been shown for diabetes outcomes in the US 34 and globally 35. 70 

Guided by the ecosocial theory of disease distribution 4,5, we tested the hypothesis that DNAm is a 71 

biological mechanism by which embodiment of structural racial discrimination, economic hardship, 72 

and air pollution may occur. We tested our study hypothesis using data from US-born participants in 73 

two US population based studies with similar exposure data: our primary study, the My Body My 74 

Story study (MBMS), and the Multi-Ethnic Study of Atherosclerosis study (MESA), which we use for 75 

evidence triangulation 36 due to differences between the two study populations.   76 
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Methods 77 

Participants 78 

This study utilises biological specimens obtained in 2010-2012 from MBMS and MESA, two US 79 

population-based studies that contain similar data on the study exposures. In 2021-2022, the study 80 

team newly conducted epigenetic assays for MBMS and added new georeferenced social exposure 81 

data. Full study descriptions are in the supplementary materials. Our analyses comprised 293 82 

participants (224 Black and 69 white) from MBMS; and 975 participants from MESA who were US-83 

born (229 Black, 555 white NH, additionally including 191 Hispanic). 84 

Social exposures 85 

We tested the relationship between DNAm and eight variables relating to exposure to racial 86 

discrimination (both structural and self-reported), economic hardship, and air pollution; these are 87 

described in detail in Supplementary Table 2. 88 

DNA methylation  89 

For detailed description of DNA extraction and DNAm data generation, please see the 90 

Supplementary materials. Briefly, for MBMS DNA was extracted from frozen blood spots in 2021, 91 

and data were generated using the Illumina Infinium MethylationEPIC Beadchip. For MESA, DNA was 92 

extracted from purified monocytes in 2012-2013 and data were generated using the Illumina 93 

Infinium HumanMethylation450 BeadChip. We used DNAm beta values for both studies, which 94 

measure DNAm on a scale of 0 (0% methylation) to 1 (100% methylation). 95 

 Participant stratification 96 

EWAS were stratified by self-reported membership of racialized groups, for two reasons. Firstly, for 97 

most of our exposures, different constructs are represented between the racialized groups; for 98 

example, being born in a Jim Crow state means something very different for individuals who identify 99 

as Black versus white. Secondly, stratification prevents potential confounding by racialized group 100 
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due to exposure and a degree of genetic differences between groups. Racialized groups are social 101 

constructs that are changeable and dependent on local context 
37

; they are important to our 102 

research question because group membership is pertinent to the experience of social inequities 103 

perpetuated by structural racial discrimination. 104 

EWAS 105 

All EWAS were conducted using linear regression models implemented using the R package meffil 38. 106 

Many exposures had low levels of missing data, complete case numbers for each EWAS can be found 107 

in Table 3. EWAS details can be found in the Supplementary materials; briefly, we adjusted for age, 108 

reported gender (MBMS)/sex (MESA), smoking status, blood cell count proportions, and batch 109 

effects. 110 

Sensitivity analysis 111 

In MESA we conducted a sensitivity analysis to test whether our results were influenced by 112 

population stratification; details are in the Supplementary materials. Additional sensitivity analysis 113 

restricted the MESA analysis to participants recruited from the Baltimore and New York sites, 114 

because these cities bear the greatest similarity to the Boston area in terms of geographical location, 115 

city environment, and social histories. 116 

Meta-analysis 117 

We meta-analysed associations with air pollution within MBMS and within MESA because air 118 

pollution is the only exposure we tested that we would hypothesize to have the same meaning, and 119 

therefore biological effect, for all individuals. We used METAL 39 to meta-analyse effect sizes and 120 

standard errors of the EWAS summary statistics of each racialized group, for black carbon/LAC and 121 

NOx.  122 
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Functional relevance of sites passing the genome-wide threshold 123 

For DNAm sites associated with an exposure, we used the UCSC genome browser to identify 124 

genomic regions. For sites within known genes, we used GeneCards (https://www.genecards.org/) 125 

and literature searches to identify putative gene functions. We used the EWAS Catalog to determine 126 

if associations between DNAm sites and other traits had been reported in previous studies. Where 127 

multiple DNAm sites were associated with an exposure we performed gene set enrichment analysis 128 

using the missMethyl R package 
40

. 129 

Biological enrichments of top sites 130 

Following each EWAS we performed analyses to ascertain whether DNAm sites associated with our 131 

exposures indicate effects on particular biological pathways, processes or functions. Details are in 132 

the Supplementary materials; briefly, we conducted gene set enrichment analyses, and for 133 

enrichments of tissue-specific chromatin states, genomic regions and transcription factor binding 134 

sites (TFBS). 135 

Lookup of associations in a priori specified genomic locations 136 

We hypothesised a priori that our EWAS would detect DNAm sites that have been robustly 137 

associated with our study exposures, or factors that might relate to our exposures, in previous 138 

studies. See Supplementary materials for details.  139 

Results 140 

Participant characteristics 141 

Both cohorts include racialized groups that are underrepresented in epigenetic studies. Beyond this, 142 

substantial differences existed between the racialized groups within and across MBMS and MESA. 143 

Overall, MBMS participants were on average 21 years younger than MESA participants, had less 144 

variability in exposure to air pollution, and far more were current smokers. In both studies, Black NH 145 

compared to white NH participants had higher BMI, rates of smoking, impoverishment, lower 146 
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education, rates of self-reported exposure to racial discrimination, and were more likely to be born 147 

in a Jim Crow state and live in a neighbourhood with extreme concentrations of low-income persons 148 

of colour. In MESA, Hispanic participants reported the lowest levels of personal and parental 149 

education.  150 
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Variable 
MBMS: 

Black NH 

MBMS: 

white NH 

MESA: 

Black NH 

MESA: 

white NH 

MESA: 

Hispanic 

Total N 224 69 229 555 191 

Sociodemographic characteristics 

Age: mean (SD) 49.02 (7.8) 48.7 (8.3) 71 (8.9) 70.1 (9.5) 68.5 (8.9) 

Gender: N (%) women 135 

(60.3%) 
49 (71%) 

133 

(58.1%) 

264 

(47.6%) 
86 (45%) 

BMI: mean (SD) 32.1 (7.7) 29.7 (7.2) 30.6 (5.7) 28.7 (5.3) 30.8 (5.5) 

Smoking: N 

(%) 

Current 115 

(51.3%) 
24 (34.8%) 31 (13.7%) 44 (8%) 16 (8.6%) 

Former 
31 (13.8%) 23 (33.3%) 

101 

(44.9%) 

262 

(47.7%) 
80 (43%) 

Never 
78 (34.8%) 22 (31.9%) 93 (41.5%) 

243 

(44.3%) 
90 (48.4%) 

Missing 0 0 4 (1.7%) 6 (1.1%) 5 (2.6%) 

Childhood exposure to racialized and economic adversity: 

Born in a Jim Crow state1: N 

(%) yes 
71 (31.7%) 2 (3%) 

165 

(72.1%) 

166 

(29.9%) 
19 (9.9%) 

Parent’s 

highest 

education: 

N (%) 

<High school 
29 (18.4%) 8 (14%) 95 (42.2%) 

161 

(29.3%) 
129 (69.7%) 

>= High 

school and 

<4yr college 

94 (59.5%) 24 (42.1%) 
106 

(47.3%) 
258 (47%) 51 (27.6%) 

4+ years 

college 
35 (22.2%) 25 (43.9%) 24 (10.7%) 

130 

(23.7%) 
5 (2.7%) 

Missing 66 (29.5%) 12 (17.4%) 4 (1.7%) 6 (1.1%) 6 (3.1%) 

Participant’s 

education: 

N (%) 

<High school  34 (15.2%) 8 (11.6%) 23 (10%) 21 (3.8%) 35 (18.3%) 

>= High 

school and 

<4yr college 

161 

(71.9%) 
33 (47.8%) 

175 

(76.4%) 

413 

(74.4%) 
140 (73.3%) 

4+ years 

college 
29 (12.9%) 28 (40.6%) 31 (13.5%) 

121 

(21.8%) 
16 (8.4%) 

Missing: 0 0 0 0 0 

Adult exposure to racialized and economic adversity: 

Household income to 

poverty ratio2: mean (SD) 
2.2 (2.2) 2.9 (2.3) 3.9 (2.3) 4.8 (2.9) 3.3 (2.1) 

Missing  34 (15.2%) 3 (4.3%) 9 (3.9%) 24 (4.3%) 7 (3.7%) 

Index of Concentration at 

the Extremes for racialized 

economic segregation3: 

mean(SD) 

-0.07 (0.2) 0.19 (0.2) -0.11 (0.2) 0.16 (0.2) 0.09 (0.2) 

Missing  0 0 2 (0.9%) 4 (0.7%) 12 (6.3%) 

Black carbon (μg/m3): 

mean (SD) 
0.64 (0.1)  0.63 (0.17)     

Missing 0 0    

Light absorption coefficient 

(10–5/m): mean (SD) 
  0.89 (0.35)  0.6 (0.3)  0.7 (0.4)  

Missing   14 (6.1%) 23 (4.1%) 11 (5.6%) 

Pollution Proximity Index
4
 

(scale of 0-5): mean (SD) 
4.3 (1.1) 3.9 (1.4)    
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Missing 5 (2.2%) 0    

Oxides of nitrogen (NOx, 

parts per billion): mean (SD) 
  31.9 (16.2) 

21.55 

(12.2) 
27 (16.4) 

Missing   14 (6.1%) 23 (4.1%) 11 (5.6%) 

Experiences of 

Discrimination 

(EOD, N of 

domains)
5
:  

N (%) 

0 30 (13.4%) 35 (50.7%)    

1-2 52 (23.2%) 24 (34.8%)    

3+ 140 

(62.5%) 
10 (14.5%)    

Missing 2 (0.9%) 0    

Major 

Discrimination 

Scale (MDS, N 

of domains)6: 

N (%) 

0 
  

129 

(56.6%) 

534 

(96.4%) 
131 (68.6%) 

1-2   79 (34.6%) 20 (3.6%) 53 (27.7%) 

3+   20 (8.8%) 0  7 (3.7%) 

Missing   1 (0.4%) 1 (0.2%) 0  

Predicted cell count proportions 

B Cell 0.08 (0.02) 0.06 (0.01) 0.04 (0.03) 0.03 (0.02) 0.03 (0.02) 

CD4+T cells 0.17 (0.05) 0.15 (0.04) 0.04 (0.02) 0.03 (0.03) 0.03 (0.01) 

CD8+T cells 0.005 

(0.02) 

0.002 

(0.01) 

0.002 

(0.006) 

0.0007 

(0.003) 

0.0006 

(0.003) 

Monocytes 0.124 

(0.02) 

0.116 

(0.02) 
0.9 (0.05) 0.91 (0.04) 0.92 (0.04) 

Neutrophils 
0.55 (0.1) 0.62 (0.08) 

0.0003 

(0.002) 

0.0008 

(0.005) 

0.0009 

(0.007) 

Natural Killer 
0.1 (0.04) 0.09 (0.04) 

0.015 

(0.01) 

0.012 

(0.01) 
0.01 (0.01) 

Eosinophils 0.007 

(0.02) 

0.003 

(0.009) 
0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 

Table 1: Characteristics of MBMS and MESA participants.  151 

1
 Jim Crow states are the 21 US states (plus the District of Columbia) which permitted legal racial discrimination prior to the 152 

1964 US Civil Rights Act. 153 

2
 Participants' ratio of household income in 2010 dollars to the US 2010 poverty line given household composition. 154 

3
 Census tract measure of economic and racialized segregation, scored from -1 to 1 155 

4
 NOx measurements were used to construct a weighted score of roadway pollution 156 

5
 Validated self-report questionnaire measuring the number of domains of exposure to racial discrimination. Score range 0-157 

9, categorised into 0, 1-2, 3 158 

6
 Validated self-report questionnaire measuring the number of domains of exposure to racial discrimination; combined with 159 

the attribution aspect from EDS (everyday discrimination scale) to enable comparability between EOD and MDS. Score 160 
range 0-5, categorised into 0, 1-2, 3+ 161 

 162 
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EWAS results and biological interpretation 163 

In MBMS, among the Black NH participants one DNAm site, in ZNF286B, was associated with being 164 

born in a Jim Crow state. Another DNAm site, PLXND1, was associated with participants having less 165 

than high school education. Among white NH participants, no associations passed the genome-wide 166 

threshold. See Table 2 for details of gene functions; Table 3 for numbers of associated EWAS sites; 167 

and Supplementary figures 1 and 2 for Miami plots. In MESA, two DNAm sites were associated with 168 

racialized economic segregation – one in Black NH participants (in FUT6) and one in white NH 169 

participants (a CpG previously associated with BMI); and in Black NH participants one DNAm site (in 170 

PDE4D) was associated with an MDS score of 0. The majority of associations in MESA were related to 171 

air pollution exposure – among Black NH participants, 12 sites with LAC and 22 sites with NOx. 172 

Notably, many of these sites are clustered in genes with putative roles in immune responses and are 173 

known to interact with one another, including KLF6, MIR23A, FOS, FOSB, ZFP36 and DUSP1. Among 174 

the MESA white NH participants, four DNAm sites were associated with both LAC and NOx, and an 175 

additional 3 uniquely associated with LAC. Associations of 53 DNAm sites with birth in a Jim Crow 176 

state were the result of confounding by air pollution (see Supplementary Materials). Among Hispanic 177 

participants, one site was associated with LAC (NPNT) and one with NOx (ADPRHL1). See Table 3 for 178 

numbers of associations for all EWAS performed and Supplementary Figures 3-5 for corresponding 179 

Miami plots. 180 
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Gene Chr Functional relevance 
MBMS MESA 

Black NH White NH Black NH White NH Hispanic 

ZNF286B 17 

A pseudogene, which is predicted to be involved in regulation of RNA 

polymerase 2 (Pol II)-mediated transcription (Pol II transcribes protein-

coding genes into mRNA 
41

). 

Born in a 

Jim Crow 

state: 1 

 

   

PLXND1 3 

Encodes a cell receptor involved in axonal guidance, migration of 

endothelial cells, and regulates atherosclerotic plaque deposition 
42

. 

<HS 

education: 

1 

 

   

FUT6 19 

A Golgi stack membrane protein that is involved in basophil-mediated 

allergic inflammation 
43

. 

  residential 

racialized 

economic 

segregation: 

1 

  

KLF6 10 
A transcriptional activator and tumour suppressor, which regulates 

macrophage inflammatory responses 
44

. 

  LAC: 2 

NOx: 3 

LAC: 1 

NOx: 1 
 

FOS 14 

FOS is an early-response gene, and is a subunit of the AP-1 transcription 

factor complex, which regulates gene expression involved in lung injury, 

repair and transformation 
45

, as well as regulating many cytokine genes 

and T-cell differentiation 
46,47

. 

  

LAC: 1 

NOx: 7 
  

FOSB 19 
FOSB is another subunit of AP-1.   LAC: 1 

NOx: 1 
  

ZFP36 19 

ZFP36 encodes a protein (TTP) that is a key regulator of post-

transcriptional regulation, which has roles in immune and inflammatory 

responses 
48

. 

  

NOx: 2   

DUSP1 5 

DUSP1 is a gene that regulates airway inflammation; DUSP1’s key 

mechanism of inflammation modulation may be via modulating the 

actions of the protein TTP encoded by the ZFP36 gene 
49

. 

  
LAC: 1 

NOx: 1 
  

VIM 10 

Encodes a filament protein responsible for integrity of cell shape and 

cytoplasm. Pathogens can attach to this protein on the cell surface. 

Putative involvement regulating innate immune response to lung injury 

and irritation 
50

 

  

NOx: 1   

PDE4D 5 PDE4s, including PDE4D, have roles in cell signalling, as well as   MDS: 1   

.
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regulating inflammatory responses 
51

. 

MALAT1 11 

Metastasis associated lung adenocarcinoma transcript 1, lncRNA that 

acts as transcriptional regulator; upregulation linked to cancerous 

tissues and proliferation and metastasis of tumour cells 

  

 LAC: 1  

CYTIP 2 

Modulates activation of ARF (ADP-ribosylation factor) genes, which 

regulate vesicle budding, tethering and cytoskeleton organization. 

Dysregulation of ARFs may be involved in cancer cell migration and 

invasion. 

  

 
LAC: 1 

NOx: 1 
 

ZEB2 2 

DNA-binding transcriptional repressor involved in the transforming 

growth factor-β (TGF-β) signalling pathway that interacts with activated 

SMADs. May be related to small cell lung cancer 
52

. 

  

 
LAC: 1 

NOx: 1 
 

PTPRC 1 
A receptor-type PTP that is an essential regulator of T- and B-cell antigen 

receptor signalling. 

  
 

LAC: 1 

NOx: 1 
 

NPNT 4 
An extracellular matrix protein that has roles in kidney development and 

carcinogenesis 
53

. 

  
  LAC: 1 

ADPRHL1 13 a protein encoding a pseudoenzyme involved in cardiogenesis 
54

.     NOx: 1 
Table 2: Putative functions of genes in which the top exposure-associated DNAm sites sit; with details of how many sites within that gene were identified, and in which main analysis EWAS 181 
they were identified.182 
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 MBMS MESA 

Black NH white NH Black NH white NH Hispanic 

N N sites N N sites N N sites N N sites N N sites 

Birth in a Jim Crow state 224 1 NA
1
 NA

1
 225 0 549 53

2
 186 0 

Parent’s highest education 

(high vs low) 
64 0 33 0 117 0 288 0 NA

3
 NA

3
 

Parent’s highest education 

(high vs mid) 
129 0 49 0 128 0 384 0 NA

3
 NA

3
 

Participant’s education 

(high vs low) 
63 1 36 0 54 0 142 0 51 0 

Participant’s education 

(high vs mid) 
190 0 61 0 202 0 534 0 156 0 

Household poverty to 

income ratio 
190 0 66 0 218 0 528 0 180 0 

Racialized economic 

segregation 
224 0 69 0 223 1 545 1 174 0 

Black carbon 224 0 69 0 211 12 526 7 175 1 

Nitrogen oxides 219 0 69 0 211 22 526 4 175 1 

EOD
5
 (1-2 vs 0) 82 0 59 0       

EOD
5
 (1-2 vs 3+) 192 0 34 0       

MDS
6
 (1-2 vs 0)     204 1 554 0 184 0 

MDS
6
 (1-2 vs 3+)     97 0 NA

4
 NA

4
 60 0 

Table 3: Summary of the number of DNAm sites passing the genome-wide threshold in each individual EWAS in MBMS (threshold 2.4e-7) and MESA (threshold 9e-8). The list of specific DNAm 183 
sites passing the genome-wide threshold can be found in supplementary table 4.  

1
 The EWAS was not run for Jim Crow birth state for white NH participants in MBMS, due to small cell numbers. 184 

2 
See text; these 53 sites were driven by air pollution differences between individuals born and not born in a Jim Crow state. 

3
 The two EWAS for parental education were not run for Hispanic 185 

participants in MESA, due to small cell numbers.
4
 The EWAS was not run for MDS (score of 1-2 vs 3+) for white NH participants in MESA, as no participants had a score of 3 or more. 

5
 EOD – 186 

Experiences of Discrimination scale. 
6
 MDS – Major Discrimination Scale187 
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MESA subgroup analysis 188 

The main impact of removing the Minnesota and Forsyth County sites (which both had very low 189 

levels of air pollution) was to remove the confounding structure between air pollution and Jim Crow 190 

birth state among white NH participants. It also increased the similarity of air pollution associations 191 

between the Black NH and white NH participants; for example, of the 19 DNAm sites associated with 192 

NOx among white NH participants, 12 passed the genome-wide threshold in the Black NH participant 193 

EWAS. Numbers of associated sites are in Table 4. Miami plots for this MESA subgroup can be found 194 

in Supplementary figures 6, 7 and 8. 195 

 Black NH white NH Hispanic 

N N sites N N sites N N sites 

Birth in a Jim Crow state 221 0 237 0 NA1 NA1 

Parent’s highest education (high vs low) 115 0 134 0 NA2 NA2 

Parent’s highest education (high vs mid) 125 0 164 0 NA2 NA2 

Participant’s education (high vs low) 54 0 55 0 NA2 NA2 

Participant’s education (high vs mid) 198 0 227 0 NA
2
 NA

2
 

Household poverty:income ratio 214 0 227 1 67 0 

Racialized economic segregation 219 1 233 0 59 0 

Light Absorption Coefficient 208 10 231 6 57 0 

Nitrogen oxides 208 20 231 19 57 0 

Major Discrimination Scale (1-2 vs 0) 200 1 236 0 67 0 

Major Discrimination Scale (1-2 vs 3+) 94 0 NA
3
 NA

3
 NA

3
 NA

3
 

Table 4: Summary of EWAS results for MESA subgroup analysis. 
1
 The EWAS for Jim Crow birth state was not run for 196 

Hispanic participants due to small cell numbers. 
2
 The EWAS for parental and participant education were not run for 197 

Hispanic participants, due to small cell numbers. 
3
 The EWAS was not run for MDS (score of 1-2 vs 3+) for white NH and 198 

Hispanic participants in MESA, as no participants had a score of 3 or more. 199 

Meta-analysis 200 

Meta-analysis in MBMS did not yield any sites passing the genome-wide threshold. In MESA we see 201 

approximately similar numbers of associations as with the Black NH subgroup (17 for LAC and 18 for 202 

NOx); see Supplementary Table 3. When we restricted to participants recruited at the Baltimore and 203 

New York sites, a much larger number of DNAm sites passed the genome-wide threshold (51 for LAC 204 

and 79 for NOx); this may be because Minnesota and Forsyth County sites had very low variance in 205 

pollution levels. The MESA sensitivity meta-analysis identified multiple associations linked to DUSP1, 206 

FOS, KLF6, MCL1, and VIM; genes that have putative roles in inflammation and immunity. 207 
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 208 

Figure 1: MESA air pollution meta-analysis miami plots. A: MESA full cohort LAC meta-analysis. B: MESA full cohort NOx 209 
meta-analysis. C: MESA subgroup LAC meta-analysis. D: MESA subgroup NOx meta-analysis. 210 

Biological enrichments of exposure associations 211 

Gene ontology 212 

We observed no evidence for gene set enrichments for any Gene Ontology terms among the top 100 213 

sites of the main EWAS we conducted. However, we did observe that the 22 sites associated with 214 

NOx above the genome-wide threshold among MESA Black NH participants were enriched for the 215 

gene ontology terms ‘response to glucocorticoid’ and ‘response to corticosteroid’ (FDR>0.05). We 216 

also observed that the MESA meta-analysis of NOx among all participants was associated with 13 217 

Gene Ontology terms (FDR>0.05) related to blood-based immune response. 218 

EWAS catalog 219 

We observed a number of relevant enrichments among sites identified in our EWAS. Details of the 220 

associations (p < 0.05, Fisher’s exact test) can be found in the Supplementary Materials and 221 

Supplementary figures 6-16. Briefly, in MBMS, we see enrichment for inflammation for both NOx 222 

and LAC EWAS among Black NH participants, and in the NOx meta-analysis. In MESA, we observed 223 
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consistent enrichment for infection and cancer among Black NH and white NH participants, and also 224 

in the meta-analyses. We observed enrichment for inflammation among Hispanic participants. We 225 

also found among both MESA Black NH and Hispanic participants, the racialized economic 226 

segregation EWAS was enriched for neurological traits. Among both the white NH and Hispanic 227 

participants, household poverty to income ratio EWAS was enriched for SEP and education. In the 228 

MESA subgroup analysis, enrichment for prenatal exposures was observed for the Jim Crow birth 229 

state EWAS among the Black NH and Hispanic participants.  230 

Enrichment for genomic features 231 

When we looked at enrichment of genomic locations of the top 100 sites (p < 0.05, Fisher's exact 232 

test), we found that among MBMS Black NH participants, NOx was the only exposure with 233 

associated CpGs being located in active genomic regions (please see Supplementary materials for 234 

details). In the MBMS meta-analyses, NOx was enriched for regions related to gene promoters. 235 

Among MESA Black NH participants, we observe enrichment for regions related to transcription and 236 

genome regulation in the LAC and NOx EWAS. We also observed enrichment relating to transcription 237 

regulation for the birth in a Jim Crow state EWAS. Among MESA white NH participants, we observed 238 

enrichment for transcription regulation for both measures of air pollution. Among MESA Hispanic 239 

participants, LAC exposure shows some associations with active genomic regions. When we restrict 240 

MESA to the New York and Baltimore sites, we see a similar set of enrichments; and in the MESA 241 

meta-analyses we see consistent enrichment related to transcription regulation and promotors. 242 

Notably, genomic feature enrichments for NOx among both MBMS and MESA Black NH participants 243 

involved similar genomic locations (CpG islands and shores) and chromatin states (related to 244 

promotors), as well as 6 of a possible 9 TFBS.  245 

Lookup of associations in a priori specified genomic locations 246 

We did not observe any associations in our EWAS results for sites identified in previous EWAS of 247 

related exposures. 248 
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Discussion 249 

The series of EWAS we conducted on a range of adverse exposures at different levels and at 250 

different points in the lifecourse, drawing on two different population-based studies with similar 251 

exposure data, provide evidence that DNAm may be a biological pathway by which societal context 252 

shapes health inequities. This work has shown for the first time associations between DNAm and 253 

multiple levels of structural discrimination, in genes that are biologically plausible routes of 254 

embodiment involving gene regulation, including inflammation. Additionally, our EWAS and meta-255 

analyses of air pollution showed clear association between two road traffic-related measures of air 256 

pollution, and DNAm of multiple CpGs in multiple genes that have been consistently associated with 257 

inflammation and infection, suggesting that the material environment people live may induce 258 

inflammatory changes. Our study has added to the existing literature on air pollution; there are few 259 

EWAS studies looking at NOx (n=3), and none so far looking at black carbon. In total, this work 260 

highlights the need for researchers to consider multiple levels of discrimination and adversity across 261 

the lifecourse, especially structural inequities in the material world in which people live, to fully 262 

elucidate drivers and biological mechanisms of inequitable health.  263 

Associations detected at the genome-wide level in MBMS related more closely to early-life 264 

exposures (being born in a Jim Crow state, and low educational attainment); in MESA they related 265 

more to current experiences and exposures (air pollution, racialized economic segregation, and 266 

experiences of discrimination), possibly reflecting the relatively older age of the MESA participants. 267 

The much stronger associations with air pollution in MESA compared to MBMS could potentially be 268 

due to: (1) the use of purified monocytes in MESA, with a single cell type making associations easier 269 

to detect; (2) less variation in exposure to air pollution in MBMS compared MESA; (3) longer 270 

duration of air pollution exposure in MESA (due to older age of the participants); or (4) reduced 271 

statistical power in MBMS, due to lower quantities of DNA. 272 
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Notably, inflammation was the predominant pathway indicated in the air pollution analyses, both via 273 

putative gene functions and enrichment analyses. These findings underscore that while there is a 274 

large psychosocial literature on inflammation being a mechanism by which discrimination harms 275 

health 
28,55,56

, it is also critical to consider inequities in biophysical exposures in the material world as 276 

an important driver of this inflammation. Overall, air pollution sites tend to be enriched for 277 

inflammation in MBMS and infection in MESA; this could represent different mechanisms of the 278 

same process due to the different blood cell types sampled in the two cohorts; with monocytes 279 

being specialised in infection prevention, and neutrophils (the highest proportion cell in whole blood) 280 

being specialised in inflammatory responses. 281 

Our study identified a greater number of associations with air pollution measures than previous 282 

work in MESA 20,57; this is likely due to the fact that we do not adjust for recruitment site (which 283 

would reduce variation in the exposure because exposure is location-dependent); and previous 284 

analyses have adjusted for racialized group membership, which is also associated with air pollution 285 

exposure; this may have masked the effects that we have detected. This joins other research that 286 

has demonstrated the importance of considering spatial effects of air pollution 
58

. 287 

A limitation of our study is that we cannot infer causality. Although it would be possible to conduct 288 

Mendelian randomization instrumenting cis-mQTLs, we did not conduct this analysis because we 289 

think the results would be highly speculative. Additionally, the MESA sample we used may have been 290 

subject to selection bias, because (1) individuals who had experienced prior cardiovascular events 291 

were excluded from recruitment, and (2) a number of participants died between Exam 1 and Exam 5. 292 

If adversity and discrimination are associated with these cardiovascular events and mortality, 293 

associations could be biased in MESA. 294 

Conclusions 295 

We think this work provides direction for future epigenetic studies to consider the role of 296 

inequitable adverse social and biophysical exposures across the lifecourse, including but not limited 297 
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to structural discrimination. Our results suggest inflammation may be a key biological pathway by 298 

which inequities become embodied, in our case driven primarily by exposure to air pollution, and 299 

not self-reported racial discrimination. These findings accordingly suggest that attention to how 300 

social inequities shape biophysical as well as social exposures is crucial for understanding how 301 

societal inequities can become embodied, via pathways involving DNAm.  302 
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