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Abstract

Accurate labeling of specific layers in the human cerebral cortex is crucial for advanc-

ing our understanding of neurodevelopmental and neurodegenerative disorders. Lever-

aging recent advancements in ultra-high resolution ex vivo MRI, we present a novel

semi-supervised segmentation model capable of identifying supragranular and infra-

granular layers in ex vivo MRI with unprecedented precision. On a dataset consisting

of 17 whole-hemisphere ex vivo scans at 120 µm, we propose a multi-resolution U-Nets

framework (MUS) that integrates global and local structural information, achieving re-

liable segmentation maps of the entire hemisphere, with Dice scores over 0.8 for supra-

and infragranular layers. This enables surface modeling, atlas construction, anomaly

detection in disease states, and cross-modality validation, while also paving the way

for finer layer segmentation. Our approach offers a powerful tool for comprehensive

neuroanatomical investigations and holds promise for advancing our mechanistic un-

derstanding of progression of neurodegenerative diseases.

Keywords: Ex vivo MRI; Cortical Layers; Segmentation; and High Resolution

1 Introduction

The human neocortex is a complex structure organized into a number of distinct layers,

characterized by variations in the size and packing density of their constituent neurons.

These layers form during cortical development as a result of radial and tangential neuronal

migration [1]. During embryonic development, newly generated neocortical projection neu-

rons migrate along radial glia in successive waves, leading to the formation of cortical layers

in an inside-out pattern [2]. This means that the deepest layers are populated first, while

the most superficial layers are occupied by the last-generated neurons. In addition to their

unique organization, cortical layers also exhibit distinct patterns of connectivity. For exam-

ple, pyramidal neurons in layers II and III predominantly project to other cortical regions,

while those in layer V project mainly to the striatum and brainstem, and those in layer VI

project to the thalamus [3].

When it comes to diseases affecting the human neocortex, specific layers or cell types

often show particular pathologies. For instance, in schizophrenia, large pyramidal cells in

layer III display reduced cell size [4]. Deficits in reelin expression are primarily found in the

most superficial layers, also known as supragranular layers, among schizophrenia [5], bipolar

disorder [6] and autism spectrum disorder [7] patients. Another example is the development

of Alzheimer’s disease pathology, which includes the neuronal loss within the neocortex,

and initially manifests in the superficial cortical layers (II–IV) during its early stages. As
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the disease progresses, it extends to affect the deeper layers (V–VI) [8]. These examples

highlight the importance of correctly annotating specific layers in the human neocortex.

This identification is essential for advancing our understanding of these disorders and may

provide valuable insights for potential therapeutic approaches.

A natural approach to identifying cortical layers is microscopic examination of tissue his-

tology. While histology offers definitive insights into microscopic tissue morphology, it suffers

from limitations such as sampling bias due to a restricted field of view – and therefore has

difficulties in exploring the interrelationships between different and potentially dysfunctional

regions [9]. Moreover, histology is labor-intensive and invasive, which may decrease the mea-

sured cortical thickness by factors like dehydration and increase by factors like the slicing

direction [10, 11]. In general, any 2D technique for measuring cortical properties suffers

inaccuracies that arise due to the effects of through-plane folding. In the context of cortical

thickness, any 2D measure will inevitably overestimate it except in locations where the cut

is perfectly orthogonal to the cortex.

In contrast, conventional in vivo MRI can provide isotropic whole-brain images rapidly

and non-invasively, but lacks the resolution and specificity of histology [12]. Unlike in vivo

MRI, ex vivo MRI is not affected by motion artifacts and has much less limiting time con-

straints [13]. Extended scanning time enables increased spatial resolution, which in turn en-

ables visualization of mesoscale neuroanatomy. The resulting increase in spatial resolution is

crucial for visualizing mesoscale neuroanatomy, such as cortical layers and subcortical nuclei,

which are challenging to visualize in even the highest-resolution in vivo MRI datasets [14]. Ex

vivo MRI also circumvents the spatial distortions (tearing or folding) associated with histo-

logical methods during brain tissue fixation, embedding, sectioning, and slide-mounting [15].

This makes it well-suited for characterizing neuroanatomy at high resolution and providing

finer macroscopic morphometric measures, such as cortical thickness, of the underlying cy-

toarchitecture. Although imaging the intact human brain ex vivo at high magnetic fields is

challenging due to the need for specialized hardware [13], recent progress in high-field scan-

ner and coil technology, and imaging protocols [16], has enabled full-brain scanning with

voxel sizes as small as 100 µm [13, 17], helping bridge the gap between histology and MRI.

Equipped with these imaging advances [18], we now have the means to acquire data sets

consisting of high-resolution, whole-hemisphere scans from multiple post-mortem subjects.

Previous high-resolution data sets, such as BigBrain [19] and the Allen Brain Atlas [20],

include only a single human brain with whole-brain MRI and histology, which prevents us

from reliably quantifying the inter-subject variability of human neuroanatomy. However,

manually labeling large multi-subject data sets is not feasible in practice and existing au-

tomated tools for segmenting the supra- and infragranular layers require a large amount of
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manually prepared training data [21]. In general, automated segmentation of ex vivo data

is hindered by limited training data, and the few existing data sets that include multiple

subjects only cover specific sub-structures [22, 23].

Convolutional Neural Networks (CNNs) are becoming increasingly popular in medical

image analysis [24]. When training data were available, processing large 3D volumes us-

ing CNNs is challenging due to limitations in Graphics Processing Unit (GPU) memory.

Downsampling the volumes to reduce the memory load will inevitably lead to a loss of fine

structural details, resulting in decreased segmentation accuracy. Similarly, using subvolume

patches can result in reduced accuracy due to the lack of global context information. To

address these issues, researchers have proposed 2.5D segmentation approaches that operate

on orthogonal planes and subsequently merge their information [25]; CNNs with separate

high- and low-resolution paths [26]; and light-weight models using dilated convolution [27] or

group normalization [28]. Isensee et al. [29] have developed the nnU-Net (”no-new-Unet”)

framework as a robust and self-adjusting extension of the U-Net. This framework involves

minor modifications to both the 2D and 3D U-Net designs, wherein 2D and 3D connections

are integrated to collaboratively establish a network pool. Nevertheless, there are no existing

methods with end-to-end training that can effectively incorporate important 3D global con-

text information with local high-resolution details needed for accurate labeling of the supra-

and infragranular layers.

In this paper, we present a dataset [12] consisting of 17 whole-hemisphere ex vivo scans

at 120 µm with partial manual annotations and propose a semi-supervised model, Multi-

resolution UNets Semi-supervised (MUS), that require a minimal amount of annotated train-

ing data to segment supra- and infragranular layers in ultra-high resolution ex vivo brain

MRI. A variant of the U-Net [30], the multi-resolution U-Nets is designed to incorporate both

global and local structural information for high-resolution segmentation accuracy. With this

segmentation model, we obtained, for the first time, reliable segmentation maps (Dice score:

>0.8) of supra- and infragranular layers over the whole hemisphere. The combination of the

unique dataset and novel automated segmentation approach, paves the way for an in-depth

examination of cortical layer organizations and will allow us to (1) place surface models and

build atlases; (2) infer laminar anomalies between disease stages and healthy controls using

the atlases; (3) benchmark and validate cortical layer segmentation results in other imaging

modalities; and (4) progress to finer segmentation of more cortical layers in the future. The

dataset and segmentations can be downloaded from the DANDI data archive1, and the code

will be distributed with the FreeSurfer2 software suite.

1https://www.dandiarchive.org
2https://surfer.nmr.mgh.harvard.edu
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2 Materials and methods

2.1 Datasets

MRI scans of 17 whole hemispheres (see demographics in Table 1) were acquired on a Siemens

7 Tesla scanner using a custom built 32-channel receive array as detailed in [13]. The

scans were acquired at 120 µm isotropic resolution (Figure 1), which allows reliable visual

identification of the supra- and infragranular boundary throughout the neocortex. This was

achieved by using a multi-echo spoiled gradient echo sequence (ME-GRE) and acquired a

series of images at different flip angles [31]. The k -space acquisition was segmented to fit

data from a single segment into scanner memory, then streamed to a dedicated computer for

offline reconstruction. Adjacent k-space segments were modified to contain a small number

of overlapping lines enabling us to correct for phase discontinuities due to field drift during

the extremely long scans (14 hours per volume). The scans are also sensitive to various

distortions and intensity inhomogeneities due to variations in B0 and B1-/+ fields, which

we mapped and corrected following the procedures in [12]. Briefly, the alternating reversing-

polarity reads of the multi-echo fast low angle shot (MEF) scans provide a mechanism for

mapping and correcting B0 field inhomogeneities at the intrinsic resolution of the scans when

combined with a low-resolution field map [32, 33]. For transmit (B1+) inhomogeneities, we

acquired several low-resolution scans with varying transmit voltage to map the flip angle

field, then used these maps and the B0-corrected MEF scans as inputs to the steady-state

MEF equations [31], yielding a set of synthesized scans that are of higher SNR than the

individual input scans. Finally, we used the SAMSEG algorithm from Freesurfer [34] to

correct for receive inhomogeneities (B1-).

Table 1: Demographic information of donor cohorts in the ex vivo MRI dataset. Interval

denotes post-mortem interval in hours.

Donor cohort 17 (Right: 6, Left: 10, whole-brain: 1)

Sex Male: 11 Female: 6

Age 64.5 ± 11.2 66.3 ± 6.7

Interval 19.4 ± 5.9 15.8 ± 8.6

An relevant question is what does the visible contrast boundary in the cortical gray mat-

ter represent (Figure 2(B)). Previously, we have performed confocal light-sheet fluorescence

microscopy (LSFM) [12] on tissue slabs from BA 44/45 treated with the SHORT clearing

technique [35]. Supra- and infragranular labels can be derived from LSFM as neuron sub-

types are specifically labeled. Using LSFM registered into the MRI space, we demonstrate
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that the MR contrast boundary in cortical gray matter corresponds to the cytoarchitectural

boundary between layers III and V, visible on the NeuN stain (Figure 2(A)). Based on the

myelin density differences [36, 37] and their resulting contrast in MRI, we group layer I, II,

and III together as the supragranular layer, and layer IV (absent in some regions), V, and

VI together as the infragranular layer.

a

b

c

A

B a b c

11

12

17

1 cm

Figure 1: A. Sagittal (left), coronal (center), and axial (left) slices of case 11, 12, and 17.

Bias correction was applied for all scans. Comprehensive visualization of all cases can be

found in the supplementary material. B. Zoomed views of selected regions in the whole

brain case 17.
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2.2 Data preprocessing

Manual annotation was performed through Freeview tool in FreeSurfer [38] to label the

visible supra-/infra-laminar boundary. The supragranular layers appear as a bright band

in the neocortex, while the infragranular layers appear as a slightly darker band. The

white matter appears as the dark area interior to the neocortex. Using these intensity

characteristics, we manually segmented these three structures and the background from 100

slices in the Brodmann area (BA) 44/45 of each hemisphere specimen using the coronal

view on Freeview. We maintained this single plane for manual labeling to limit bias in the

labeling process, while inspecting other planes to avoid jagged reconstruction. In addition,

we labeled two samples across the whole-hemisphere, one slice every 40. In total, about 3%

voxels of supra- and infragranular layers are manually labeled. Figure 2(B) shows examples

of manual annotation on selected samples.

An additional background (not cerebral gray or white matter) labeling for training the

MUS segmentation model was created using a combination of the segmentation outputs from

SynthSeg [39] and SAMSEG [34]. Specifically, the ex vivo scans were first downsampled to

500 µm isotropic resolution, then processed with both SynthSeg and SAMSEG to produce

probabilistic structure maps with values ranging from 0 to 1, and finally these maps were

combined to produce a single background probability map consisting of all structures except

the cortical gray matter. These maps were then upsampled back to the original resolution

and thresholded at a value of 1.0 to get the final background labeling.
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Figure 2: A. LSFM derived supra- and infragranular layer labels co-registered with MRI [12].

B. 2D slices of case 11, 12, 17 at sagittal, coronal, and axial view with manual annotation

overlaid (red: supragranular layer, white: infragranular layer). Comprehensive visualization

of annotations on all samples can be found in the supplement.
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2.3 Semi-supervised segmentation model

The U-Net is a deep learning architecture that has gained significant attention and popularity

within the field of medical imaging. Initially proposed in 2015 by [30], it resembles an

autoencoder, in the sense that it consists of a contracting path that captures semantic

context and a symmetric expansive path that enables precise feature localization. Crucially,

encoder features are concatenated with features at the same resolution level in the decoder

via skip connections, which effectively preserve high-frequency components of the signal that

enable segmentation of convoluted boundaries. This design facilitates the incorporation of

both global and local information, making it particularly effective for tasks where accurate

delineation of structures is crucial, such as in identifying organs [40, 41], tumors [42], and

anatomical features [43, 39, 44]. Beyond image segmentation, the U-Net’s versatility has led

to its adoption in various medical imaging applications, including image denoising [45, 46],

registration [47, 48], and super-resolution [49, 50, 51], showcasing its adaptability and robust

performance across different scenarios.

Multi-resolution U-Nets: To overcome the limitations related to the size of the data

set and sparse annotations described in the introduction, we propose a cascaded resolution

approach, inspired by previous works [29, 52], in combination with semi-supervised learning,

which takes in volumetric inputs downsampled at different resolutions, while ensuring that all

U-Net components receive inputs of the same size. This enables us to simultaneously capture

both a large field of view and fine structural details. Our multi-resolution U-Net architecture

is depicted in Figure 3(A) and employs a series of cascaded U-Net components. At a coarse

resolution, the U-Net input volumes have a larger field of view but lack fine structural

details. Conversely, at a fine resolution, the field of view is smaller, but fine structural

details are preserved. By utilizing features extracted from highly downsampled volumes,

we capture global context information, which is then integrated with features from volumes

of the original resolution. Each component U-Net follows a standard U-Net architecture

(Figure 3(B)). During the forward pass, features from the corresponding volume are extracted

from the penultimate layer of the U-Net and concatenated to the second layer of the next U-

Net. This process ensures the incorporation of spatially matched information from different

scales to improve the overall segmentation accuracy.
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U-Net U-Net U-Net U-Net U-Net

Multi-resolution U-Nets

Patch extraction Input Feature concatenation
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256

256

128

64

32 16

(Conv3D + Elu) x 2

Maxpool3D + (Conv3D + Elu) x 2

Copy + Concatenate

UpConv3D + (Conv3D + Elu) x 2

Conv3D + Softmax

1 32

32

64

128

256

256

128

64

48 c

Upsample and Concatenate

Segmentation 
network 1 One-hot encoding

One-hot encoding

Cross pseudo-supervision

Segmentation 
network 2

C

B

A

16x downsampled 8x downsampled 4x downsampled 2x downsampled Original resolution

……

……

c 16

Figure 3: A. Processing large ex vivo MRI volumes using multi-resolution U-Nets. Inputs are

downsampled at different scales mimicking a zoom-in procedure. Features extracted from

coarser resolutions contain global context information and are integrated into subsequent

U-Nets. B. Model architecture of component U-Nets. Features from the second layers

are extracted, upsampled, and concatenated to the second layer of the next U-Net. All

component U-Nets are trained simultaneously in an end-to-end fashion. C. Cross pseudo

supervision is a semi-supervised learning technique that trains two or more networks at the

same time and uses their outputs to supervise each other.
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For the task of automatically segmenting supra- and infragranular layers in the ex vivo

MRI dataset, we would ideally have a number of hemisphere samples fully labeled manually.

This manual segmentation could then be used to train CNNs in a supervised fashion, in order

to automatically predict labels on other samples by mimicking the manual segmentation

procedure. However, 3D ultra-high resolution ex vivo MRI data is very large and thus

extremely time-consuming and laborious to manually annotate. In semi-supervised training,

the network learns from both labeled and unlabeled data to train a predictive model; the

latter is often relatively easier to obtain in much larger amounts. Semi-supervised training

of CNNs mainly relies on the idea of incorporating knowledge priors [53, 54] or enforcing

consistency between labeled ground truth and predictions from unlabeled data [55, 56].

Here, we propose a semi-supervised training strategy to effectively utilize the large amount of

unlabeled data to improve the segmentation performance. Our semi-supervised segmentation

approach is mainly adapted from the so-called cross pseudo-supervision strategy [57].

Semi-supervised segmentation: from a set of MRI volumes x ∈ X, we aim to predict one-

hot segmentation y ∈ Y . We denote labeled MRI volume as xl ∈ X l with segmentation labels

yl ∈ Y l and unlabeled MRI volumes as xu ∈ Xu. Two segmentation networks with identical

architecture fθ1 and fθ2 are initialized with different random weights. These two CNNs

are trained with two loss functions defined symmetrically. In regions with existing manual

segmentation labels, we directly compare the network prediction using one-hot encodings of

the ground truth:

Ll = Dice(fθ1(x
l), yl), (1)

where Dice(, ) denotes the soft Dice loss function [58]:

Dice(Y, Ŷ ) = 1− 1

K

K∑
k=1

2×
∑

x,y,z Yk(x, y, z)Ŷk(x, y, z)∑
x,y,z Yk(x, y, z)2 + Ŷk(x, y, z)2

. (2)

The vast majority of regions in the training data are unlabeled. In order to utilize the

large amount of unlabeled data for improving the segmentation performance, we adapt a

cross pseudo-supervision loss function on unlabeled data [57]:

Lu = Dice(fθ1(x
u), 1c ◦ fθ2(xu)), (3)

where 1c denotes the one-hot encoding function. The benefits of this approach are twofold.

First, it promotes consistent predictions across differently initialized networks for the same

input image, improving reliability and decision boundary placement. Second, during later

optimization stages, the pseudo labeled data acts as an expansion of the training dataset to
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enhance training as compared to using labeled data alone.

Since the segmentation network operates at multiple resolutions, we also enforce the

prediction to be consistent at different resolutions using a multi-resolution consistency loss:

Lc = Dice(f ↓
θ1
(x↓), 1c ◦ fθ2(x)↓), (4)

where ↓ denotes the downsampling operator.

One potential issue of cross pseudo supervision is error accumulation: In the late training

stage, the predictions from the two networks will converge and may be trapped in local

optima because errors will also be mutually learned and reinforced. One way to address this

issue is to encourage the errors made by the two networks during training to be diverse. We

therefore design an error diversity loss function based on the idea that on the labeled region,

if both networks make incorrect prediction as compared to the ground truth, we encourage

them to make different errors:

Le = 1{yl ̸=1c◦fθ1 (x
l)∩yl ̸=1c◦fθ2 (x

l)} · −Dice(fθ1(x
l), fθ2(x

l)), (5)

where 1{} denotes the indicator function.

2.4 Implementation details

All CNN models are implemented using the PyTorch framework [59]. All scans were cor-

rected for biases. Each input supplied to the multi-resolution U-Nets contains 5 volumes at

different resolutions, and thus has dimensions of 5 × 1283. The image patch cascades un-

dergo successive downsampling, reducing dimensions by 16, 8, 4, 2, and 1-fold along all three

axes. Consequently, the segmentation output maintains the same hierarchical structure with

dimensions of 5× 1283, where each voxel corresponds to a semantic class label.

In the context of labeled input data, a crucial distinction is made based on whether the

fifth input volume (original resolution, no downsampling) contains manually labeled supra-

or infragranular layer class voxels. Inputs meeting this criterion are categorized as labeled,

while others are categorized as unlabeled. During the initial training phase, when model

predictions lack precision to mutually guide one another, a strategic approach is employed

to progressively enhance the influence of unlabeled samples as training advances. To this

end, a parameter ϵ is defined as ϵ = e
−5(M−m)

M , where m denotes the current epoch number

and M represents the total number of epochs. In each epoch, for every labeled input, the

loss is computed as L = λ1Ll + λ2Le. For unlabeled inputs, there exists an ϵ probability

of being chosen for training, with the loss calculated as L = ϵ(λ3Lu + λ4Lc). The choice of
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loss weights is empirical: λ1 = 1, λ2 = 0.1, λ3 = 1, and λ4 = 0.1. Since the range of all

loss functions is between 0 and 1, these values strike a balance between the importance of

different loss functions.

Training spans 1000 epochs, with each epoch involving the loading of inputs from a

randomly chosen scan into the training dataset. The input was augmented with random

bias field, γ transformation, and Gaussian noise. A batch size of 1 is set, and the training

employs the Adam optimizer [60] with a learning rate of 1−4. In contrast to training only two

networks, our modified cross pseudo-supervision approach involves training three networks

to maintain a “backup”, thereby enhancing training stability and overall performance. At

each step, the two networks with the most dissimilar segmentation predictions, as assessed

by the Dice score, are chosen for cross pseudo supervision.

During the prediction stage, an overlapping tile strategy [30] is adopted to ensure smooth-

ness at boundaries.

3 Results

3.1 Evaluation

To assess the performance of automatic supra-/infragranular layer segmentation, we con-

ducted manual segmentation on specific slices. The selection of validation slices followed a

structured procedure: 1. Each hemisphere sample underwent parcellation into 14 cortical

regions using the recon-all tool within FreeSurfer [38]. 2. Within each region, a random

point was chosen on the white matter surface. 3. The orientation (axial, coronal, or sagittal)

most perpendicular to this surface point was determined, and a slice of dimensions 1282 was

extracted centered on this point. 4. Manual segmentation was carried out on the central

region of this slice.

In total, 210 slices were chosen for evaluation. To gauge the reliability of the manual

segmentation procedure, we randomly picked one slice from each cortical region, which was

re-annotated by the same labeler after a 4-week interval. This allowed us to estimate intra-

rater variability.

15-fold cross-validation was used in all experiments. In each fold, the 2 samples with

sparse whole-hemisphere slice labeling and the 14 samples except the particular one for

prediction were used as the training set.

We applied the public implementation of nnU-Net [29] available on GitHub for com-

parison with our method. Since our training data annotations contain unlabeled parts, we

masked out unlabeled parts during the calculation of loss gradient.
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3.2 Segmentation map of supragranular and infragranular layers

As a baseline method, we first applied nnU-Net, a widely recognized implementation of

U-nets that provides state-of-the-art results in an array of medical image segmentation

tasks [29]. Given our ultra-high-resolution dataset, nnU-Net self-configured a pipeline with

two training stages. In the first stage, a U-Net was trained on a downsampled version of the

dataset, enabling the entire 3D volume to be processed by the U-Net. In the second stage,

another U-Net was trained on 3D sub-volumes extracted from the whole volume, maintain-

ing full resolution. The sub-volumes, along with their corresponding coarse segmentation

from the first stage, were concatenated as the input. The predictions from this second stage

were kept as the final results. However, as illustrated in Figure 4(A), this approach yielded

suboptimal results, notably missing portions of the neocortex in the layer segmentation.

This failure is likely due to nnU-Net not being tailored for scenarios with limited labeled

training data. Consequently, conventional supervised U-Net models proved insufficient in

achieving our objective of accurately segmenting supra- and infragranular layers under these

constraints.

In contrast to nnU-Net, which exclusively employs labeled data for training, our model

adopts a semi-supervised approach, utilizing both labeled and the substantial majority of

unlabeled data (∼ 97%) for training. Furthermore, while nnU-Net also employs a multi-

resolution strategy, it is limited to two stages and trained independently. In contrast, our

multi-resolution U-Nets can operate across a larger number of resolutions while being trained

in an end-to-end manner, which effectively leverages information from all resolutions and

scales. This approach led to more accurate segmentation of the supra- and infragranular

layers, as shown in Figure 4(A), while excluding non-targeted regions such as the cerebellum.

Additionally, as shown in Figure 4(B), our method qualitatively yields the highest consistency

with the manual annotations.
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A

B

nnU-Net MUS

Manual nnU-Net MU US MUS (no le) MUS

Figure 4: A. Example result of layer segmentation (red: supragranular layer, white: infra-

granular layer) by nnU-Net and our model (MUS: multi-resolution U-Nets semi-supervised).

Comprehensive visualization of annotations on all samples can be found in the supplementary

document. B. Manual annotation and automatic segmentation on example validation slices

from our method and baselines (US: simple U-Net semi-supervised; MU: multi-resolution

U-Nets supervised; MUS (no le): multi-resolution U-Nets semi-supervised with no error di-

versity loss).
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3.3 Quantitative segmentation performance as a function of

cortical region

We computed the Dice scores for the competing methods and presented them in Table 2.

The intra-rater variability was calculated as 0.856 for the supragranular layer and 0.829 for

the infragranular layer. Among the methods, MUS demonstrated the highest Dice score,

attaining 0.828 for the supragranular layer and 0.818 for the infragranular layer. This latter

outcome approaches intra-rater variability, signifying a segmentation performance close to

that achieved by human experts through manual segmentation.

Table 2: Dice score result of proposed method and baseline methods, the standard deviation

is calculated across samples.
nnU-Net MU US MUS (no le) MUS Intra-rater

Supragranular 0.726 ± 0.042 0.783 ± 0.044 0.796 ± 0.051 0.807 ± 0.039 0.828 ± 0.040 0.856

Infragranular 0.758 ± 0.060 0.769 ± 0.056 0.802 ± 0.048 0.815 ± 0.041 0.818 ± 0.037 0.829

As expected, the segmentation performance excelled in the BA 44/45 region (Figure 5),

which had full labeling in the training dataset. Generally, regions in close anatomical prox-

imity or similar laminar structure to BA 44/45 exhibited good segmentation performance.

Regions distant or anatomically dissimilar to BA 44/45, such as the primary visual cortex

(V1), entorhinal, and perirhinal cortex, exhibited slightly lower segmentation performance.

These findings suggest that incorporating manual segmentations for additional cortical areas

may be necessary to enhance the overall supra- and infragranular layer segmentation across

the entire hemisphere in future efforts.
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Figure 5: A. Box plots of segmentation performance across samples by proposed and base-

line methods. B. Performance specific to each cortical region (BA3a: somatosensory area

(anterior); BA3p: somatosensory area (posterior); MT: visual area (middle temporal); V1:

primary visual area; V2: secondary visual area).
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3.4 Ablation study

We conducted ablation studies to analyze the importance of three key components in our

model design: (1) multi-resolution U-Nets, (2) semi-supervised training, and (3) error di-

versity loss. In the basic U-Net semi-supervised model, instead of employing a cascade of

U-Nets at various resolutions, we utilized a single U-Net operating on patches (size 1283)

at full resolution. In the multi-resolution U-Nets supervised model, we removed the cross

pseudo-supervision for the semi-supervised training, ensuring that only labeled training data

contributed to the loss calculation. In the multi-resolution U-Nets semi-supervised model

without error diversity loss, we excluded the error diversity loss.

Notably, as shown in Table 2, the absence of semi-supervised training led to a reduction

in validation Dice score of approximately 0.04. Similarly, without multi-resolution U-Nets,

there was an approximate 0.02 decrease in the validation Dice score, and without error

diversity loss, the validation Dice score declined by ∼ 0.01.

These results indicate that all three components (multi-resolution U-Nets, semi-supervised

training, and error diversity loss) contributed to the performance of our segmentation model.

Notably, the largest improvement in accuracy was attributed to the implementation of semi-

supervised training.

4 Discussion

Accurate segmentation of cortical layers is essential for a comprehensive understanding of

neocortical structural organization and its relevance to various neurological conditions and

cognitive competencies. The neocortical division into six layers, each characterized by dis-

tinct connectivity patterns, underscores the critical importance of precise laminar identifi-

cation. Leveraging an unprecedented ultra-high-resolution ex vivo whole-hemisphere MRI

dataset and meticulous but sparse manual annotation, we introduce an innovative approach

for the segmentation of supragranular and infragranular layers. For the first time, we obtain

a reliable fine segmentation model covering the entire hemisphere.

Our proposed segmentation model, built on an enhanced version of the U-Net architecture

and incorporating cross pseudo-supervision, demonstrates remarkable success in accurately

delineating supra-and infragranular layers, achieving a Dice score over 0.8. Unlike most

existing MRI segmentation models that heavily rely on fully annotated training data and

operate at a single resolution, our semi-supervised multi-resolution U-Nets offer a valuable

improvement: They reduce the need for large amounts of manually annotated training data

and enhance efficiency when processing large volumes in an end-to-end training fashion.
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Rigorous ablation studies have demonstrated the efficacy of our novel modules.

Research focusing on supra- and infragranular layers has significant clinical implications.

Prior studies have revealed distinct gene expression alterations, pathology accumulations,

and atrophies between these layers in patients with conditions such as schizophrenia [4],

autism spectrum disorder [61], and epilepsy [62], Alzheimer’s disease [63, 64, 65], Parkinson’s

disease [66], and Huntington’s disease [67]. Our high-resolution segmentation maps of these

layers across the entire hemisphere will facilitate multiscale investigations of these diseases

by integrating with other data types like histological and genomic studies.

The introduced semi-supervised segmentation approach and its corresponding results

hold promise for broader applications. It enables benchmarking and validating cortical layer

segmentation outcomes across different imaging modalities, fostering cross-modal integration

and enriching our understanding of cortical organization. In addition, this method sets the

stage for finer segmentation of additional cortical layers and small subcortical nuclei in

the future, allowing for even greater granularity in the analysis of cortical and subcortical

architecture. Finally, our results can be used to construct surface models, providing insights

into alterations in cortical thickness and sulcal depth in diseased states.

While our proposed segmentation model demonstrates promising results, two limitations

should be acknowledged. First, the semi-supervised nature of our approach, utilizing a

substantial majority of unlabeled data, introduces a degree of uncertainty in the training

process. While this approach enhances efficiency, it may also lead to variations in segmenta-

tion performance across different cortical regions, as seen in the quantitative analysis. The

model’s reliance on manual annotations in specific regions may limit its generalizability to

areas with sparse or no labeled training data. Second, the proposed model’s performance

may be influenced by factors such as post-mortem tissue properties, variability in brain

morphology, and MRI imaging condition and parameters. Addressing these limitations and

conducting further validation on diverse datasets will be crucial for ensuring the robustness

and applicability of the presented approach.

In summary, this project presents an advancement in the segmentation of cortical layers

within ultra-high-resolution ex vivo MRI data. We introduce the first whole-hemisphere

segmentation model of sup- and infragranular layers, thereby elevating the delineation of

the human cerebral cortex in MRI from a single layer to a dual-layer representation. The

incorporation of multi-resolution U-Nets and semi-supervised learning in the segmentation

process has demonstrated impressive accuracy and reliability. The potential applications of

this segmentation model are extensive, spanning from basic neuroscience research to clinical

studies investigating various neurological conditions.
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Figure 1: 2D slices of case 1 in sagittal, coronal, and axial views. First row: MRI scan; Second

row: manual annotation (red: supragranular layer, white: infragranular layer) overlaid;

Third row: MUS prediction overlaid.
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Figure 2: 2D slices of case 2 in sagittal, coronal, and axial views.
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Figure 3: 2D slices of case 3 in sagittal, coronal, and axial views.
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Figure 4: 2D slices of case 4 in sagittal, coronal, and axial views.
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Figure 5: 2D slices of case 5 in sagittal, coronal, and axial views.
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Figure 6: 2D slices of case 6 in sagittal, coronal, and axial views.
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Figure 7: 2D slices of case 7 in sagittal, coronal, and axial views.
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Figure 8: 2D slices of case 8 in sagittal, coronal, and axial views.
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Figure 9: 2D slices of case 9 in sagittal, coronal, and axial views.
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Figure 10: 2D slices of case 10 in sagittal, coronal, and axial views.
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Figure 11: 2D slices of case 11 in sagittal, coronal, and axial views.
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Figure 12: 2D slices of case 12 in sagittal, coronal, and axial views.
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Figure 13: 2D slices of case 13 in sagittal, coronal, and axial views.
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Figure 14: 2D slices of case 14 in sagittal, coronal, and axial views. This case has not been

manually segmented.
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Figure 15: 2D slices of case 15 in sagittal, coronal, and axial views. This case has not been

manually segmented.
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Figure 16: 2D slices of case 16 in sagittal, coronal, and axial views. 29 slices were manually

segmented along the coronal view.
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Figure 17: 2D slices of case 17 in sagittal, coronal, and axial views. 21 slices were manually

segmented along the axial view.
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