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Abstract 

Spatially resolved transcriptomics (SRT) techniques have revolutionized the characterization of 

molecular profiles while preserving spatial and morphological context. However, most next-

generation sequencing-based SRT techniques are limited to measuring gene expression in a 

confined array of spots, capturing only a fraction of the spatial domain. Typically, these spots 

encompass gene expression from a few to hundreds of cells, underscoring a critical need for more 

detailed, single-cell resolution SRT data to enhance our understanding of biological functions 

within the tissue context. Addressing this challenge, we introduce BayesDeep, a novel Bayesian 

hierarchical model that leverages cellular morphological data from histology images, commonly 

paired with SRT data, to reconstruct SRT data at the single-cell resolution. BayesDeep effectively 

model count data from SRT studies via a negative binomial regression model. This model 

incorporates explanatory variables such as cell types and nuclei-shape information for each cell 

extracted from the paired histology image. A feature selection scheme is integrated to examine the 

association between the morphological and molecular profiles, thereby improving the model 

robustness. We applied BayesDeep to two real SRT datasets, successfully demonstrating its 

capability to reconstruct SRT data at the single-cell resolution. This advancement not only yields 

new biological insights but also significantly enhances various downstream analyses, such as 

pseudotime and cell-cell communication. 

Keywords 

Spatially resolved transcriptomics; Cellular morphological features; Single-cell resolution; 

Bayesian hierarchical model.  
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INTRODUCTION 

Understanding the spatial distribution of transcript expression provides valuable insights into 

biological function and histopathology1. The advent of single-cell RNA sequencing (scRNA-seq) 

techniques has profoundly transformed our understanding of gene expression regulation in 

different cell lineages or types. However, tissue dissociation in scRNA-seq leads to the loss of the 

spatial context of gene expression, which is essential for comprehending the cell-cell and cell-

environment interaction mechanism2. Recent advancements in spatially resolved transcriptomics 

(SRT) have enabled the exploration of cellular transcription in conjunction with the spatial 

organization and morphological features of cells. Next-generation sequencing (NGS)-based spatial 

molecular profiling platforms, such as Spatial Transcriptomics3 (ST) and 10x Visium4 (i.e., an 

improved platform by 10x Genomics), utilize spatial barcodes to capture RNA molecules, 

synthesize their complementary DNA molecules, and subsequently perform sequencing. These 

techniques facilitate the measurement of whole-genome expression across thousands of spatial 

locations, referred to as ‘spots’, on the tissue section. The development of SRT technology has 

provided valuable clinical and biological insights into various areas, including tumor heterogeneity, 

brain function, and sepsis pathophysiology5-7. 

One of the primary constraints inherent to NGS-based SRT techniques is their spatial resolution. 

Gene expression in these platforms is measured on an array of spots, with a typical diameter of 

100 𝜇𝑚 for ST and 55 𝜇𝑚 for 10x Visium8. Consequently, depending on the platform and the type 

of biological tissue being analyzed, each spot’s area may encompass a heterogeneous population 

of cells, ranging from a few to as many as 200 cells. Furthermore, SRT techniques solely measure 

gene expression within the area of the confined array spots, thus covering part of the total cells 

observed within the entire tissue section. To illustrate, the area covered by measured spots accounts 
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for approximately 1/3 of the total tissue region for the 10x Visium platform and around 20% for 

ST platforms (see Supplementary Figure S1 for a detailed explanation). The inherent limitation in 

spatial resolution and the scope of regions could lead to substantial information loss when 

analyzing SRT data. Such limitations may, in turn, impact the applicability of these techniques in 

facilitating the discovery of deeper insights in various biomedical studies, specifically in 

investigating gene expression patterns at the cellular level. 

Several computational methods have been developed to enhance the spatial resolution of SRT data, 

addressing these limitations. For instance, BayesSpace8 employs a Bayesian approach to improve 

gene expression at the sub-spot resolution. However, despite this advancement, sub-spots 

generated by BayesSpace may still encompass multiple cells, yielding only a modest improvement 

in spatial resolution. Furthermore, BayesSpace cannot predict gene expression outside the spotted 

regions. In parallel, a series of approaches, such as TESLA9, XFuse10, ST-Net11, and HisToGene12, 

have been developed to reconstruct gene expression at super-resolution. These deep-learning-

based techniques utilize molecular information from SRT data and morphological information 

from the paired histology image. Notably, while these methods enhance gene expression prediction 

at the pixel level, which may complicate interpretation, none directly account for cellular spatial 

organization in their analyses.  

In response, we introduce a novel Bayesian methodology, BayesDeep, for deeply resolving gene 

expression for all “real” cells by integrating the molecular profile from SRT data and the 

morphological information extracted from the paired histology image. Specifically, BayesDeep 

builds upon a regularized negative binomial regression model with grouped observations. The 

response variable is the spot-resolution gene expression measurements in terms of counts; and the 

explanatory variables are a range of cellular features extracted from the paired histology image, 
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including cell type and nuclei-shape descriptors. Following the estimation of regression 

coefficients, BayesDeep predicts the gene expression of all cells based on their cellular features, 

regardless of whether they are within or beyond spot regions. The model robustness is achieved 

by regularization using a spike-and-slab prior distribution to each regression coefficient. We 

validated the accuracy of gene expression prediction at both spot and single-cell resolution using 

simulated and real SRT datasets. Additionally, we demonstrated that the single-cell-resolution 

spatial molecular profiles characterized by BayesDeep enable in-depth investigations on cell-type 

specific differential expression analysis, cell-cell communication analysis, and pseudo-time 

analysis. Overall, our findings highlight the effectiveness of BayesDeep in reconstructing 

molecular profiles at the single-cell resolution from NGS-based SRT data, which is typically 

limited to spot resolution, paving the way for advanced research in pseudotime and cell-cell 

communication analysis. 

 

RESULTS 

Overview of BayesDeep 

BayesDeep builds upon a Bayesian negative binomial regression model to recover gene expression 

at the single-cell resolution from NGS-based SRT data. The schematic diagram is depicted in 

Figure 1. 

BayesDeep integrates three distinct modalities from a standard NGS-based SRT experiment: the 

molecular, image, and geospatial profiles (see Figure 1A). The molecular profile refers to the spot-

resolution gene expression data denoted by an 𝑁-by-𝑃 count matrix 𝒀, where 𝑁 is the number of 

spots and 𝑃 is the number of genes. The image profile corresponds to the detailed morphological 
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context of the paired histology image in terms of a set of cellular features. We use an 𝑀-by-𝐿 

design matrix 𝑿 to denote the image profile, where 𝑀 is the number of all observed cells and 𝐿 is 

the number of cellular features, which may include cell types, nuclei-shape characteristics, and any 

other relevant explanatory features that can be quantified at large scale. The geospatial profile 

reveals the spatial relationship between the 𝑁 spots and 𝑀 cells, which can be defined by an 𝑁-

by-𝑀 binary matrix 𝑮, with one signifying that a cell is within the barcoded area of a spot. 

The spot-resolution gene expression matrix 𝒀  and the single-cell-resolution morphological 

features of those cells within spot regions serve as a reference for recovering the single-cell-

resolution gene expression of all 𝑀 cells, whether within or beyond spot regions. The model is 

specified in Figure 1B. We first modeled the observed read count for a specific gene within a spot 

using a negative binomial (NB) distribution. Then, the underlying spot-resolution relative gene 

expression in the NB mean is assumed to be the average of single-cell-resolution relative 

expression across all cells within the spot. Next, we considered the logarithm of each cell’s relative 

expression as a linear combination of covariates that includes a scalar of one for the intercept and 

𝐿 measurable explanatory variables that pertain to that cell. A spike-and-slab prior model is applied 

for each covariate coefficient. On one hand, this feature selection scheme improves the robustness 

of our model. On the other hand, the corresponding coefficient matrix 𝑩 uncovers significant 

associations between gene expression and cellular characteristics, illustrated in Figure 1C, thereby 

potentially offering valuable biological insights. With the reconstructed single-cell-resolution 

spatial molecular profile 𝜣, we can undertake several pivotal downstream analyses, as depicted in 

Figure 1D. These analyses allow for the differentiation of cell populations, the exploration of 

tumorigenesis through pseudotime analysis, and the dissection of ligand-receptor signaling 

pathways vital for cell-cell communication. 
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Model Validation 

Model validation on simulated data. We designed a simulation study to validate the accuracy of 

BayesDeep. We selected a connected region of 𝑁 = 500 spots from the human breast cancer 10x 

Visium data (displayed as green circles in Figure 2A) to generate the spot-resolution molecular 

profile. The single-cell-resolution image profile 𝑿, including cell types and nuclei-shape features 

and the locations of cells, were from the nuclei identification results by HD-staining13 for the paired 

histology image of the SRT data. As introduced in the Method section and observed in real SRT 

data analysis, the covariate coefficient matrix 𝑩 is highly sparse, indicating that many explanatory 

variables do not contribute to gene expression for most genes. To replicate this condition, we 

generated the coefficients, ensuring nearly half were zeros, reflecting the observed zero-inflation. 

Based on the model assumption of BayesDeep, we first generated single-cell-resolution relative 

gene expression matrix 𝜣 on the selected region, and then the spot-resolution gene expression 

matrix 𝒀  on all spots within. The data-generating procedure is detailed in section S1 in 

Supplementary Materials.  

We evaluated the performance of BayesDeep in recovering the single-cell-resolution molecular 

profile 𝜣, against two other methods, TESLA9 and Gaussian process (GP)14, by measuring the 

Pearson correlation coefficient 𝜌 ∈ [−1,1]  between the logged estimated and actual gene 

expression at the single-cell resolution, 𝜃;!"’s and 𝜃!"’s. Using relative gene expression allows us 

to discern which cells exhibit high gene expression and which demonstrate lower expression. A 

high positive ρ value signifies the successful model outcome and robust overall performance. As 

depicted in Figure 2A, the results demonstrate that BayesDeep, when employing regularization, 

significantly surpasses the comparative methods, with a median 𝜌 of 0.928. In contrast, TESLA 

and GP failed to reconstruct the single-cell-resolution molecular profile 𝜣, as indicated by their 
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respective 𝜌  values approaching zero. To further examine the efficacy of the regularization 

approach, we computed the root mean square error (RMSE) between the estimated and actual 

covariate coefficients, 𝛽@#"’s and 𝛽#"’s, with lower RMSE values denoting more precise estimations. 

Specifically, in scenarios where regularization was omitted, a standard normal prior was applied 

in place of the spike-and-slab prior to each covariate coefficient 𝛽#". These results demonstrate that 

the incorporation of regularization significantly refines the precision of estimations for non-zero 

coefficients and substantially improves accuracy for truly zero coefficients (Supplementary Figure 

S2). These findings support the implementation of a regularized prior within our BayesDeep 

framework. 

Model validation on real SRT data at the spot resolution. In this study, we utilized the human breast 

cancer15 and human prostate cancer 10x Visium data16 in the real data analysis to demonstrate the 

efficacy of BayesDeep in restoring gene expression within manually masked spots. For each SRT 

data, we randomly selected 𝑃 = 100 genes with non-zero read counts in at least 50% spots. We 

assessed BayesDeep against TESLA and GP, through two distinct masking scenarios for spot-

resolution gene expression imputation. In scenario 1, 40% of spots were randomly masked, while 

in scenario 2, we divided the domain into two halves and masked all spots on one side (refer to 

Figure 2B, with masked spots marked in orange and unmasked spots marked in green). The second 

scenario aimed to challenge the model’s predictive power over a separate region that does not 

overlap with those masked spots. The gene expression of those remaining unmasked spots 𝒀 

served as the main input of each method. For BayesDeep, we also incorporated the morphological 

information 𝑿, detailed in the Method section, from the corresponding histology image. 

Figure 2B shows the correlation coefficient 𝜌 for comparing observed and imputed spot-resolution 

gene expression in the masked spots within the human breast cancer 10x Visium data. BayesDeep 
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achieved a median correlation of 0.585  in scenario 1, significantly higher than that of the 

competing methods (TESLA: 𝜌 = 0.358; GP: 𝜌 = 0.391). In scenario 2, the performance of 

BayesDeep is comparable to scenario 1, whereas TESLA and GP failed to impute gene expression 

for the entirely masked half, as evidenced by negligible correlation values. This failure is attributed 

to their spatial dependence assumption in reconstructing gene expression, resulting in inadequate 

performance when the masked and observed regions do not intersect. Supplementary Figure S3 

shows similar results through the analysis on human prostate cancer 10x Visium data. These results 

show the capability of BayesDeep to predict gene expression at the spot resolution, both in the 

same and new regions, by leveraging single-cell-resolution morphological features.   

Model validation on real SRT data at the single-cell resolution. We extended our study to assess 

the performance of BayesDeep on the prediction of single-cell-resolution gene expression when 

ground truth is available at the single-cell resolution. We validated the model using the mouse 

visual cortex STARmap data17, which was collected by an imaging-based SRT platform. It 

comprises measurements of 1,020  genes across 𝑀 = 1,207  cells, categorized into 𝑄 = 15 

distinct cell types distributed across seven layers labeled in the original study. In our analysis, we 

filtered out genes that are expressed in less than 30% cells or the highest read count is less than 

ten. With these filtering criteria, we kept 𝑃 = 77  genes for the following analysis. We then 

constructed the spot-resolution molecular profile 𝒀 by overlaying a square lattice grid across the 

entire domain, with each square unit representing a “spot” of 750 × 750 pixels, as illustrated in 

Figure 2C. This yielded 𝑁 = 105 spots, each containing more than one cell, covering the entire 

domain without inter-spot gaps. The read count 𝑦$"  of gene 𝑗  for spot 𝑖  was calculated by 

aggregating the read counts from all cells within that spot. Owing to the absence of a corresponding 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570715doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570715
http://creativecommons.org/licenses/by/4.0/


 

 

histology image for the data, we utilized the cell type and layer information provided along with 

the SRT data in the original study as explanatory variables 𝑿 to inform BayesDeep. 

Figure 2C visualizes the correlation coefficient 𝜌 between the imputed and true relative expression 

across all cells for all genes. BayesDeep achieved a median correlation of approximately 0.336, 

similar to TESLA (median 𝜌 = 0.331) but significantly outperforming GP (median 𝜌 = 0.065). 

Additionally, Figure 2C illustrates the actual versus predicted relative expression for four 

representative genes, demonstrating a notable agreement between the actual and predicted gene 

expression patterns. These findings affirm the capability of BayesDeep to reconstruct the 

expression patterns of the underlying cells from spot-resolution gene expression accurately.  

Application to Human Breast Cancer 10x Visium Data 

We applied BayesDeep to reconstruct the single-cell-resolution molecular profiles for the SRT data 

from a human breast cancer study15. The data includes 𝑁 = 2,518 spots and 17,651 genes. The 

gene expression was measured on a section of the human breast with invasive ductal carcinoma 

via the 10x Visium platform, along with annotation from pathologists as a reference (H&E-stained 

image with five annotated tissue regions in Figure 3A). After applying HD-Staining13 to the 

histology image of breast cancer tissue, we identified 𝑀 = 156,235 cells within seven categories: 

macrophage, ductal epithelium, karyorrhexis, tumor cell, lymphocyte, red blood cell, and stromal 

cell. Supplementary Table S1 provided ten shape features used in this study. We applied 

BayesDeep to reconstruct the single-cell-resolution molecular profiles on the top 𝑃 = 2,000 

highly variable genes, compared its performance to a competing method, TESLA, and further 

utilized the generated higher-resolution molecular profiles on several downstream analyses to 

reveal biological insights. 
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The gene expression at the single-cell resolution generated by BayesDeep offers a more detailed 

view of the spatial transcriptome landscape within the cellular environment. We chose both a tumor 

and an immune-related region as illustrative examples to demonstrate BayesDeep's capacity to 

enhance our understanding of gene expression in regions with high cell type heterogeneity (Figure 

3A). For the example tumor region, we observed two distinct small areas densely populated with 

tumor cells. We further examined and presented the original spot-resolution expression from SRT 

data and reconstructed expression using BayesDeep and TESLA of three breast cancer-related 

genes (Figure 3B): First of all, AZGP1, which is primarily expressed in breast epithelial cells, plays 

a multifaceted role associated with cancer cachexia, carcinogenesis, and tumor differentiation18. 

Secondly, MUCL1, a breast-specific gene predominantly expressed in breast cancer, serves as a 

vital biomarker for tumor progression and metastasis19,20. Last but not least, TOP2A serves as a 

notable proliferation marker, demonstrating high expression in various subtypes of breast cancers21. 

The detailed expression pattern is relatively difficult to observe at the spot resolution (spot-

resolution relative expression levels in Figure 3B) due to the low resolution. However, the 

expression reconstructed by BayesDeep for these three example genes distinctly exhibits the 

expression pattern consistent with the distribution of tumor cells, i.e., high expression on tumor 

cells and low expression on other cells. Conversely, for the gene expression reconstructed by 

TESLA, no similar expression pattern is observed in the two tumor areas for all three genes, 

indicating its limitation in recovering the comprehensive cellular expression. Violin plots in Figure 

3B show the higher expression on tumor cells and ductal epithelium for BayesDeep, which aligns 

with the gene functions and their association with breast cancer. In contrast, the predicted 

expression from TESLA shows no difference among different cell types. Another observed region 

in Figure 3A is an immune region predominantly comprised of lymphocytes, which covers around 
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56 spots in ST data. In this region, many lymphocytes encircle a small tumor area. We selected 

three example genes related to immune functions for validation purposes. CORO1A is an identified 

immunity gene signature in breast cancer cohort studies22. IGHG2 encodes the constant region of 

the immunoglobulin gamma-2 heavy chain, which enables antigen binding activity and 

immunoglobulin receptor binding activity and is involved in several processes, such as activating 

immune response23. TRBC1 encodes T cell receptor 𝛽 chain constant region 1, which is partially 

expressed in subsets of T cells24,25. No obvious expression patterns can be observed at the spot 

resolution due to the limited resolution (Figure 3C). However, through single-cell-resolution 

reconstruction via BayesDeep, we observed that these three genes exhibited high expression in the 

surrounding immune area. Again, gene expression recovered by TESLA shows no difference 

among various cell types and spatial regions. In summary, BayesDeep-predicted single-cell-

resolution gene expression exhibits significantly stronger associations with the cell type 

information, unveiling detailed gene expression patterns not captured by the ST data alone. 

In addition, BayesDeep quantifies the association between gene expression and the cellular 

features extracted from the histology image by estimating the covariate coefficient matrix 𝑩. In 

Figure 4A, the heatmap displays the coefficients of seven distinct cell types and ten nuclei-shape 

descriptors for the top 2,000 highly variable genes. It is noticed that a substantial number of the 

estimated covariate coefficients 𝛽#"’s are non-zero and vary across cell types for most genes, which 

highlights unique expression patterns for different cell types. On the other hand, certain genes are 

characterized by all 𝛽#" ’s being zero, implying homogenous expression across cell types. In 

contrast, the covariate coefficients of those shape descriptors excluding solidity are notably sparse, 

with approximately 87.0% of those coefficients being zero. There exists an association between 

gene expression and the solidity of the cell nucleus for around 50.1% of genes. It is important to 
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note that the orientation covariate (i.e., the third column from the right of the heatmap shown in 

Figure 4A) is a negative control. This covariate is expected to be independent of gene expression, 

given that the measurement of nuclear orientation relies on the tissue's placement on the slide. We 

observed that the estimated coefficients for the orientation covariate are exactly zero for all genes, 

indicating the validity of BayesDeep results.  

To demonstrate that BayesDeep-reconstructed single-cell-resolution gene expression data can 

improve downstream analysis, we conducted a comparative analysis between BayesDeep and 

TESLA across three tasks: (i) distinguishing different cell populations, (ii) explicating 

tumorigenesis through pseudotime analysis and (iii) elucidating cell-cell communication patterns. 

First, we employed Seurat for clustering and dimensional reduction analysis on the BayesDeep-

generated single-cell-resolution gene expression. The results demonstrated that cells of the same 

cell type co-localized well on the UMAP plot and exhibited clear separation among distinct cell 

types (Figure 4B left panel). In contrast, we performed a similar analysis on the gene expression 

generated by TESLA. However, the results showed that TESLA could not effectively separate 

many cell types (Figure 4B right panel). These findings underscore the capability of BayesDeep 

to distinguish different cell populations. Second, we employed Moncle326,27 to perform a 

pseudotime analysis on tumor cells extracted from BayesDeep and TESLA results. In such analysis, 

we incorporated CD44 and CD24 as breast cancer stem cell markers, as previously reported28-30. 

We designated the cells with the highest CD44 and CD24 expression as the root of the trajectory 

to assess cancer progression over pseudotime (Supplementary Figure S4). Predicted results based 

on BayesDeep indicated that cancer cells from earlier pseudotime are predominantly enriched in 

the conventional tumor region. In contrast, those from later pseudotime are primarily concentrated 

within the necrotic tumor regions31 (Fig. 4C, left panel). This trajectory pattern is consistent with 
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the timing order of tumor evolution. In contrast, the pseudotime derived from TESLA-generated 

predictive results did not show a biologically meaningful trend (Figure 4C, right panel). Overall, 

our results demonstrate the consistent superiority of BayesDeep in explicating tumorigenesis 

through the pseudotime analysis. Third, because BayesDeep can identify various cell types more 

accurately than TESLA, we hypothesized that BayesDeep could offer more details of cell-cell 

communications among these cell types than TESLA. To corroborate this hypothesis, we applied 

CellChat32 to define the cell-cell communication landscape based on the cell clusters identified by 

pathologist annotations. Both BayesDeep and TESLA can achieve abundant cell-cell interactions, 

but BayesDeep can reveal more cellular communications than TESLA (Figure 4D). Interestingly, 

the majority (1,001/1,486	 = 	67.3% ) of cell-cell communications revealed by BayesDeep 

overlapped with those identified by TESLA (Figure 4D). However, some detailed cell-cell 

interactions revealed by BayesDeep and TESLA are different (Figure 4E): for example, 

BayesDeep could identify more immune-related, especially macrophage-related cellular 

communications than TESLA. In general, consistent with our expectations, BayesDeep can reveal 

more cell-cell communications than TESLA. 

Application to Human Prostate Cancer 10x Visium Data 

To assess the adaptability of BayesDeep across diverse tissue types, we conducted analysis 

utilizing another SRT data derived from human prostate cancer tissue16. The data includes 𝑁 =

4,371 distinct spots for 17,651 genes. The gene expression measurement was obtained from a 

section of invasive carcinoma within the human prostate (H&E-stained image with six annotated 

tissue regions in Figure 4A), utilizing the 10x Visium platform. Subsequently, we applied the HD-

Staining technique to identify nuclei on the histology image of this tissue. This image analysis 

process led to the segmentation of 𝑀 = 259,257  individual cells, which were systematically 
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categorized into six classes: macrophage, karyorrhexis, tumor cell, lymphocyte, red blood cell, and 

stromal cell. We utilized BayesDeep to reconstruct high-resolution molecular profiles for the top 

2,000 highly variable genes at the single-cell resolution. We then assessed its performance against 

the TESLA method and leveraged the resulting detailed molecular profiles in several downstream 

analyses. 

To examine the gene expression reconstructed at the single-cell resolution by BayesDeep and 

TESLA, we selected two example regions with a high cell-type mixture - a tumor and an immune-

related region (in Figure 5A). For the example tumor region depicted in Figure 5A, we observe 

that tumor cells have circular patterns around each empty region. We examined the expression of 

three prostate cancer-related genes (Figure 5B). ADGRF1 is an adhesion-G protein-coupled 

receptor and has an essential function in cancer33. Aberrant expression and mutation of G protein-

coupled receptors and their signaling partners, G proteins, have been well documented in many 

cancer34. SPON2 (tumor cell-derived spondin 2) is an extracellular matrix glycoprotein, and 

overexpression of SPON2 has been shown to promote tumor cell migration35. TMEFF2 encodes a 

transmembrane protein containing an epidermal growth factor-like motif and two follistatin 

domains, highly expressed in prostate cancer samples 36. At the spot resolution in Figure 5B, the 

expression patterns of these genes remain obscure. However, the gene expression reconstructed by 

BayesDeep shows strong expression patterns. These three example genes have higher expression 

in tumor cells. In contrast, the gene expression reconstructed by TESLA does not display 

differential expression on tumor cells. The violin plots in Figure 5B provide evidence of the 

differential expression among cell types for BayesDeep, in line with the three example genes' 

cancer-related functions. For another selected region, as depicted in Figure 5A, we find an immune 

region in the center primarily composed of lymphocytes. For our analysis, we selected three 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.12.07.570715doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.07.570715
http://creativecommons.org/licenses/by/4.0/


 

 

immune-related genes. CD24 is a cell surface glycosyl-phosphatidylinositol–anchored protein 

expressed on various cell types, including developing T and most B lymphocytes37. CD47 is an 

immunoglobulin superfamily pentatransmembrane protein ubiquitously expressed in 

hematopoietic cells, including lymphocytes38. CXCR4 is the receptor for the CXC chemokine 

stromal-derived-factor-1, which has essential functions on immunological functions and T 

lymphocyte trafficking39. At the spot resolution, differential expression in the small immune region 

is not readily observable since the region is only covered by around five spots. However, through 

single-cell-resolution reconstruction with BayesDeep, we can clearly see that these three genes 

exhibit high expression within the immune area. And violin plots show their high expression within 

immune cells, such as lymphocytes or macrophage. In contrast, TESLA fails to detect gene 

expression changes that occur only in a small region. 

The inference of covariate coefficients in BayesDeep reflects the correlation between single-cell-

resolution molecular profiles and extracted cell characteristics from histology images. Figure 6A 

shows a heatmap of coefficients for six cell types and ten nuclei-shape covariates among the top 

2,000 highly variable genes. Most genes exhibit non-zero coefficients for at least one cell type, 

indicating the differential expression of these cell types. For nuclei-shape features, the estimated 

coefficients are highly sparse, with around 90.4% being zero. The estimated coefficients on the 

covariate for negative control and orientation are exactly zero for all genes, further validating the 

efficiency of BayesDeep. 

Furthermore, we compared BayesDeep and TESLA on their impact on downstream analysis. First, 

through clustering and dimensional reduction analysis of the prostate cancer single-cell-resolution 

results generated by BayesDeep and TESLA, we found that the BayesDeep UMAP plot, but not 

the TESLA UMAP plot, revealed clear clustering results for various cell types (Figure 6B). Second, 
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in the pseudotime analysis of prostate cancer, we used ITGA6 and ALCAM as prostate cancer stem 

cell markers, as previously reported28-30 (Supplementary Figure S5). Trajectory analysis of the 

prostate cancer cells, extracted from BayesDeep results, revealed an even distribution of cancer 

cells with varying pseudotime throughout the prostate tumor. In contrast, TESLA results indicated 

a preference for prostate cancer cells with earlier pseudotime to be enriched at the tumor periphery 

(Figure 6C). Third, we assessed BayesDeep's ability to identify cell-cell communication in prostate 

cancer tissue compared to TESLA. BayesDeep identified 281 ligand-receptor interacting pairs, 

more than twice the number identified by TESLA (Figure 6D). In summary, these findings 

demonstrated that BayesDeep could outperform TESLA in multiple downstream analysis tasks 

and, therefore, might provide deeper insights into the underlying molecular mechanisms that 

regulate tumor microenvironment and tumorigenesis. 

 

DISCUSSION 

Here, we introduced BayesDeep, a Bayesian hierarchical model for the reconstruction of gene 

expression at the single-cell resolution for NGS-based SRT data. BayesDeep links the cellular 

morphological information extracted from histology images and the spot-resolution molecular 

profiles derived from SRT data, enabling the inference of single-cell-resolution molecular profiles. 

Specifically, BayesDeep employs a negative binomial distribution to model spot-resolution gene 

expression and considers the latent normalized gene expression as an average of single-cell-

resolution gene expression across all cells within a given spot. Our findings demonstrated the 

superior performance of BayesDeep compared to other competing methods for gene expression 

reconstruction in both simulation study and real SRT data.  
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Furthermore, by applying BayesDeep to two real SRT data, we unveiled detailed expression 

patterns that cannot be captured at the spot resolution, which offers invaluable insights for further 

exploration of the subsequent biomedical research. Firstly, cell populations can be separated to 

characterize different cell types or subpopulations based on the predicted single-cell-resolution 

molecular profiles, which can be further applied to marker gene identification and automated 

annotation40. Secondly, pseudotime analysis on the reconstructed high-resolution molecular 

profiles helps to understand the temporal progression of cellular states or trajectories within the 

tumor microenvironment, which further aids in unraveling the dynamic nature of tumors, 

providing valuable information on how cells change and evolve over time41. Last but not least, 

reconstructed molecular profiles at the single-cell resolution enable the examination of cell-cell 

communication patterns, which further contributes to a deeper understanding of cellular behavior, 

intercellular signaling dynamics, and their implications in clinical studies32. In summary, the 

downstream analysis indicates the significance of BayesDeep in exploring the tumor 

microenvironment and advancing the study of molecular biology.  

There are several important future extensions for BayesDeep. First, the performance of BayesDeep 

highly relies on the selection of cellular features included in the model. On the simulated data 

where the actual gene expression is artificially generated and thus totally determined by the 

included covariates, BayesDeep can reconstruct single-cell-resolution gene expressions highly 

consistent with the actual expression. However, for the model validation on mouse visual cortex 

STARmap data, the limited cellular characteristic data available may constrain a comprehensive 

reconstruction of gene expression, thus resulting in relatively low consistency with the actual gene 

expression. Therefore, improving nuclei segmentation and classification methods offers more 

accurate cell biological and morphological characteristics and, in turn, further promotes the 
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performance of BayesDeep. Second, it is necessary to optimize the computational efficiency of 

BayesDeep for large-scale studies, especially for larger data that are becoming increasingly 

common with the advancement of SRT technologies. In addition, there is potential for the 

BayesDeep model to integrate external data or other types of omics data, such as scRNA-seq data, 

to enhance gene expression inference. Integrating other data types could provide a more 

comprehensive understanding of the cellular environment and the complex interactions within 

cells. Lastly, we anticipate that BayesDeep could be extended to generate molecular profiles for 

three-dimensional tissue regions. We have demonstrated BayesDeep's ability to extrapolate gene 

expression in a region with a similar cellular environment but without SRT data. With the available 

three-dimensional image profiles, BayesDeep can be adjusted to build molecular profiles at the 

single-cell resolution on three-dimensional tissue sections and provide more detail and context to 

cellular interactions and tissue architecture. These future directions could further boost the 

performance and generalizability of BayesDeep. 
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METHODS 
 

In this section, we define the spot-resolution molecular profile of NGS-based SRT data generated 

from ST or the improved 10x Visium platform and the single-cell-resolution image profile derived 

from the AI-reconstructed histology image paired with the SRT data. Then, we describe the 

geospatial profile that captures the spatial relationship between spots and cells. Following this, we 

detail the Bayesian statistical model, BayesDeep, employed for the reconstruction of expression 

for each gene of interest at the single-cell resolution. For quick reference, all data and parameter 

notations introduced in this paper are summarized in Supplementary Table S2. 

Data Preparation 

The spot-resolution molecular profile. We denote the SRT molecular profile (i.e., gene expression 

measurements in terms of counts) as an 𝑁-by-𝑃 matrix 𝒀 = 	 J𝑦$"K%×', where each entry 𝑦$" ∈ ℕ 

represents the read count for gene 𝑗 (𝑗 = 1,⋯ , 𝑃, with 𝑃 being the total number of genes) observed 

at spot 𝑖 (𝑖 = 1,⋯ ,𝑁, with 𝑁 being the total number of spots). These 𝑁 spots are regularly arrayed 

on a two-dimensional square or triangle lattice, with their spatial coordinates given by an 𝑁-by-2 

matrix 𝑻( = [𝑡$)( ]%×* , where each row 𝒕$( = (𝑡$+( ,  𝑡$*( ) ∈ ℝ*  records the x and y-coordinates of 

spot 𝑖 in the designated domain. 

The single-cell-resolution image profile. We denote the image profile, derived from the histology 

image paired with the SRT data, as an 𝑀-by-𝐿 matrix	𝑿 = [𝑥!#],×-, where each entry 𝑥!# ∈ ℝ 

represents a measurement for explanatory variable 𝑙 (𝑙 = 1,⋯ , 𝐿, with 𝐿 being the total number of 

explanatory variables) observed for cell 𝑚 (𝑚 = 1,⋯ ,𝑀, with 𝑀 being the total number of cells). 

Our study utilizes 𝐿 single-cell-resolution morphological features as the explanatory variables, 

extracted using the histology-based digital (HD)-staining model13. Specifically, the HD-staining 
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model is a deep-learning model based on the mask regional convolutional neural network (Mask 

R-CNN) architecture42, which is trained to segment the nucleus of various cell types, such as 

immune, tumor, and stromal cells. HD-staining then computes ten geometric shape features for 

each identified cell nucleus, including filled area, net area, convex area, extent, perimeter, solidity, 

eccentricity, major axis length, minor axis length, and orientation. The definitions of these shape 

features can be found in Table S3 of a recent study43. Supposing there are 𝑄 different types of cells 

coded in 𝑄 dummy variables, the total number of explanatory variables is 𝐿 = 𝑄 + 10. The HD-

staining model was initially trained using histology images from lung adenocarcinoma patients in 

the National Lung Screening Trial (NLST) study (https://biometry.nci.nih.gov/cdas/nlst/), wherein 

nuclei of six different cell types were manually annotated by well-experienced pathologists. 

Although the original model was trained by using data specific to lung cancer, it has been improved 

and validated to adapt to histology images from various cancer types, including breast cancer, 

prostate cancer, and other carcinomas. To represent cell nuclei locations, we use an 𝑀-by-2 matrix 

𝑻. = [𝑡!). ],×*, where each row 𝒕!. = (𝑡!+. ,  𝑡!*. ) ∈ ℝ* records the x and y-coordinates of cell 𝑚 

in the designated domain. 

The spot-cell geospatial profile. In the context of NGS-based SRT technologies, spots are defined 

as circular regions comprising barcoded mRNA capture probes, where gene expression is 

quantified within a given tissue section3. The SRT data provides both the physical spot diameter 𝑑 

and its corresponding length in pixels. Assuming that the x and y-coordinates in spot-resolution 

geospatial profile 𝑇( represent the locations of spot centers, then we can identify whether cell 𝑚 

is located within spot 𝑖 by a direct evaluation of the condition Z(𝑡!+. − 𝑡$+( )* + (𝑡!*. − 𝑡$*( )* ≤

𝑑/2. This allows us to construct the spot-cell geospatial profile, denoted by an 𝑁-by-𝑀 binary 

matrix 𝑮 = [𝑔$!]%×,, which reflects whether a given cell 𝑚 is within the barcoded area of a given 
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spot 𝑖 (i.e., 𝑔$! = 1) or not (i.e., 𝑔$! = 0). Notably, the coverage of measured areas in NGS-based 

SRT techniques is relatively limited, encompassing approximately 38% of the overall tissue 

section. As a result, most cells do not fall within the boundaries of any of the defined spots. In our 

real data analysis, for instance, 97,135 out of 𝑀 = 156,115	cells for the human breast cancer 10x 

Visium data, and 252,765 out of 𝑀 = 352,818 cells for the human prostate cancer 10x Visium 

data, are not covered by the measured area of any spots. This limitation in the scope of measured 

regions can lead to substantial information loss when analyzing SRT data. This motivates us to 

develop BayesDeep to address this challenge and enhance the analysis of SRT data. 

Model Description 

BayesDeep is essentially a negative binomial regression model with regularization for handling 

grouped observations under the Bayesian framework. Its primary objective is to utilize the spot-

level molecular profile, single-cell-resolution image profile, and spot-cell geospatial profile to 

reconstruct the single-cell-resolution molecular profile, which can be represented by an 𝑀-by-𝑃 

matrix 𝜣 = J𝜃!"K,×', where each entry 𝜃!" ∈ ℝ/ is the predictive relative expression for gene 𝑗 

within cell 𝑚. It is worth noting that BayesDeep focuses on reconstructing relative gene expression 

at the single-cell resolution for one gene at a time (i.e., a specific column vector in 𝜣), which 

allows for efficient parallel processing of multiple genes. 

Modeling the spot-resolution molecular profile. We start by modeling the over-dispersed spot-

resolution gene expression matrix 𝒀  using a negative binomial (NB) distribution. NB-based 

models are widely used for analyzing sequence count data44-47 due to their ability to accommodate 

inherent over-dispersion. Specifically, we postulate that each observed read count follows an NB 

distribution: 
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𝑦$" 	|𝜆$" , 𝜙" ∼ NBc𝑠$𝜆$" , 𝜙"e. 

Here the NB(𝜈, 𝜙) distribution is parameterized in terms of its mean 𝜈 ∈ ℝ/ and dispersion 1/𝜙 ∈

ℝ/ , with the probability mass function given by 𝑓(𝑦|𝜈, 𝜙) = 0(2/3)
2!0(3)

h 3
6/3

i
3
h 6
6/3

i
2

. This 

parameterization provides the flexibility to characterize an unknown mean-variance structure, with 

the variance calculated 𝜈 + 𝜈*/𝜙. A small value of 𝜙 indicates a high variance to mean ratio (i.e., 

6/6!/3
6

= 1 + 𝜈 𝜙⁄ ), while a large value approaching infinity reduces the NB distribution to a 

Poisson distribution with the same mean and variance. The NB mean is further decomposed of two 

multiplicative components, 1) the size factor, denoted as 𝑠$, and 2) the spot-resolution relative 

expression for gene 𝑗 observed at spot 𝑖, denoted as 𝜆$". Such a multiplicative characterization of 

the NB or Poisson mean is typical in both the frequentist48-50 and the Bayesian51,52 literature when 

modeling sequence count data. The set of 𝑛 size factors is represented as 𝒔 = [𝑠$]%×+, capturing a 

range of biological and technical variabilities across samples, such as reverse transcription 

efficiency, amplification/dilution efficiency, and sequencing depth53. To ensure identifiability 

between these two parameters, we set 𝑠$ proportional to the summation of the total read counts 

across all genes at spot 𝑖	 54. With a constraint of ∏ 𝑠$%
$8+ = 1 , we compute 𝑠$ = ∑ 𝑦$"'

"8+ /

∏ ∑ 𝑦$"'
"8+

9
$8+  44. It is noteworthy that alternative methods for estimating 𝒔 are available, such as 

setting each 𝑠$ to be proportional to the upper quartiles of non-zero read counts across all genes at 

spot 𝑖 55, or even modeling 𝒔 through a Dirichlet process mixture model with mean constraint56. 

To complete the prior model specification, we place a common gamma prior on all dispersion 

parameters, denoted as 𝝓 = J𝜙"K'×+ , that is, 𝜙"   ∼  Gac𝑎3 , 𝑏3e , where 𝑎3  and 𝑏3  are fixed 
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hyperparameters. We recommend choosing small values, such as 𝑎3 = 𝑏3 = 0.1, to maintain a 

weakly informative setting. 

Linking the spot-resolution and single-cell-resolution molecular profiles. We posit that the spot-

resolution relative expression for gene 𝑗 (i.e., 𝜆$") can be derived as an average of single-cell-

resolution relative expression (i.e., 𝜃!"’s) across all cells within the given spot 𝑖. This relationship 

can be formally expressed as: 

𝜆$" = t 𝑔$!𝜃!"

,

!8+

t 𝑔$!

,

!8+

u , 

where the indicator variable 𝑔$! in the spot-cell geospatial profile 𝑮 takes the value one if cell 𝑚 

is located within the barcoded area of spot 𝑖, and zero otherwise. The denominator in the above 

formulae, ∑ 𝑔$!,
!8+ , represents the total number of cells within spot 𝑖  observed in the paired 

histology images. From an alternative perspective, this assumption can be interpreted as the spot-

resolution gene expression being an average of cell-type-specific gene expression within the same 

spot, weighted by the respective cell-type proportions. Notably, this foundational assumption finds 

validations in various cell-type deconvolution algorithms designed for SRT data57-59. From a 

statistical viewpoint, this assumption enables the application of a regression model tailored to 

accommodate grouped observations60,61.  

Linking the single-cell-resolution molecular and image profiles. In our pursuit of predicting the 

single-cell-resolution gene expression 𝜃!" ’s, we leverage morphological information 

encompassing cell type and nuclei-shape features of each cell 𝑚. Specifically, we adopt a linear 

model to capture the relative expression for gene 𝑗 within cell 𝑚: 
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log 𝜃!" = 𝛽:" +t𝛽#"

-

#8+

𝑥!# . 

The choice of a log-link function is driven by the necessity for maintaining 𝜃!"  values in the 

positive domain, thereby ensuring a positive NB mean. In this formulation, 𝛽:" is the baseline 

expression for gene 𝑗 shared by all cells. Note that exp(𝛽:") can also be interpreted as a scaling 

factor that adjusts for gene-specific effects. As previously introduced, we use the 𝑀-by-𝐿 matrix 

𝑿  to present observations from 𝐿  explanatory variables extracted from the histology image, 

including cell type information, cell nuclei-shape descriptors, and other important single-cell-

resolution measurements relevant to the analysis. Given the coding of 𝑄 cell types into 𝑄 dummy 

variables, we added a constraint ∑ 𝛽;" = 0<
;8+  to avoid identifiability issues arising from the sum 

of the components. Consequently, exp(𝛽#"), corresponding to cell type 𝑄, represents the mean 

relative expression for gene 𝑗 across all cells. Each column in the 𝐿-by-𝑃 coefficient matrix 𝑩 =

J𝛽#"K-×' , denoted as 𝜷" = J𝛽#"K-×+  with 𝛽#" ∈ ℝ , describes the effect of the 𝐿  explanatory 

variables on the logarithm of the relative expression across cells for gene 𝑗. Hence, we can use the 

coefficient matrix 𝑩 to explore the association between the image and molecular profiles at the 

single-cell resolution. In practice, for a specific gene 𝑗, it is likely that only a limited number of 

explanatory variables account for its expression. For instance, the expression of some 

housekeeping genes exhibits small variability among different tissues, cell types, or samples62. 

Under such circumstances, their corresponding coefficients 𝛽#"’s tend to be zeros. On the other 

hand, some pairs of explanatory variables might be highly correlated, leading to an inflation of 

regression coefficients and potentially harming prediction performance. We employ a 
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regularization mechanism to prevent over-fitting and reduce the potential multicollinearity by 

specifying a spike-and-slab prior63 on each	𝛽#" . This prior is a mixture of distributions:  

𝛽#"| 𝛾#" ∼ c1 − 𝛾#"e𝛿:c𝛽#"e + 𝛾#"Normc0, 𝜎=*e. 

The spike component 𝛿:c𝛽#"e is a point mass distribution at 𝛽#" = 0, while the slab component is 

a normal distribution centered at zero. If the auxiliary binary variable 𝛾#" = 1, then the probability 

of 𝛽#" = 0 is zero, indicating that explanatory variable 𝑙 is relevant for explaining the relative 

expression for gene 𝑗 . Conversely, 𝛾#" = 0  restricts that 𝛽#" = 0 , indicating that explanatory 

variable 𝑙 has no contribution to the gene 𝑗’s expression. This prior setting enables us to identify 

significant associations between gene expression and explanatory variables, which, in our case, 

are the morphological features. The variance of the slab component 𝜎=* ∈ ℝ/  is a fixed 

hyperparameter set to one. We complete the model specification by placing an independent 

Bernoulli distribution on 𝛾#" , i.e., 𝛾#" ∼ Bernc𝜋>e, where 𝜋> ∈ (0,1) is a fixed hyperparameter 

that indicates the percentage of explanatory variables included in the final model a priori. We set 

𝜋> = 0.5 to incorporate relatively weak information. 

Full data likelihood and posterior. The model parameter space consists of 1) the dispersion 

parameter 𝝓 that accounts for the over-dispersion commonly observed in gene expression data, 2) 

the coefficient matrix 𝑩 that quantifies the relationship between gene expression as measured in 

SRT data and the morphological features extracted from the paired histology image, and 3) the 𝐿-

by-𝑃  selection matrix 𝜞 = J𝛾#"K-×'  that indicates the significant association in the coefficient 

matrix 𝑩. The complete data likelihood can be written as: 
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𝑓(𝒀|𝝓,𝑩, 𝜞) =��NB�𝑠$
∑ 𝑔$! expc∑ 𝛽#"-

#8+ 𝑥!#e,
!8+

∑ 𝑔$!,
!8+

, 𝜙"�
%

$8+

'

"8+

. 

With the prior specifications detailed above, the full posterior distribution can be written as: 

𝜋(𝝓,𝑩, 𝜞|𝒀) = 𝑓(𝒀|𝝓,𝑩, 𝜞) × 𝜋(𝑩|𝜞)𝜋(𝜞)𝜋(𝝓)

=--NB0𝑠!
∑ 𝑔!" exp7∑ 𝛽#$%

#&' 𝑥"#:(
"&'

∑ 𝑔!"(
"&'

, 𝜙$<
)

!&'

*

$&'

×--=>71 − 𝛾#$:𝛿+7𝛽#$: + 𝛾#$Norm7𝛽#$; 0, 𝜎,
-:JBern7𝛾#$; 𝜋.:L

%

#&'

*

$&'

-Ga7𝜙$; 𝑎/ , 𝑏/:
*

$&'

	

Model Fitting 

Posterior sampling via MCMC algorithms. We explore the posterior distribution via a Markov 

chain Monte Carlo (MCMC) algorithm based on stochastic search variable selection64,65. 

Specifically, we iteratively update each parameter using a Metropolis-Hasting (MH) algorithm. 

We note that this algorithm is sufficient to guarantee ergodicity for our model. Full details 

regarding the implementation of the MCMC algorithm are available in Section S2 in 

Supplementary Materials. 

Posterior inference. We obtain posterior inference by post-processing the MCMC samples 

following the burn-in phase. Let  𝜙"
(?) , 𝛽#"

(?) and 𝛾#"
(?) denote the posterior samples in the 𝑢-th 

iteration after burn-in, where 𝑢	 = 	1, … , 𝑈. Our primary focus is on the selection of the important 

explanatory variables for each gene 𝑗 , via the selection matrix 𝜞 . An effective approach to 

summarize the posterior distributions of these binary parameters is by computing the marginal 

posterior probability of inclusion (PPI): 
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PPIc𝛾#"e =
1
𝑈t𝛾#"

(?)
@

?8+

. 

Then, we set γ�#" = 1 if its corresponding PPI exceeds a pre-specified threshold. When choosing 

the threshold, we recommend either opting for a threshold of 0.5, leading to a median model, or 

following a procedure that controls the expected Bayesian false discovery rate 66. For each 

dispersion parameter 𝜙" and each coefficient 𝛽#$, we estimate them by calculating their posterior 

means by averaging over all their respective MCMC samples after burn-in, 

𝜙;" =
+
@
∑ 𝜙"

(?)@
?8+  and 𝛽@#" =

+
@
∑ 𝛽#"

(?)@
?8+ . 

Additionally, a quantile estimation or credible interval for each parameter of interest can be 

obtained from MCMC samples. 

Predictive inference. Our primary goal is to reconstruct gene expression at the single-cell 

resolution by estimating the matrix 𝜣 = J𝜃!"K,×'. On the basis of the MCMC samples on the 

coefficient matrix 𝑩 = J𝛽#"K-×', we predict each 𝜃!" by Monte Carlo simulation. Specifically, at 

each iteration 𝑢 after burn-in, we compute the relative gene expression for gene 𝑗 within cell 𝑚 as 

follows: 

𝜃!"
(?) = exp�t𝛽#"

(?)
-

#8+

𝑥!#�. 

Subsequently, we sample the gene expression for gene 𝑗 within spot 𝑖 using an NB distribution, 

𝑦$"
(?)~NB�𝑠$

∑ 𝑔$!𝜃!"
(?),

!8+

∑ 𝑔$!,
!8+

, 𝜙"
(?)�. 
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Consequently, both single-cell-resolution relative gene expression 𝜃;!" and spot-resolution gene 

expression 𝑦�$"  can be estimated by summarizing their corresponding MCMC samples. For 

instance, their predictive means can be approximated as follows:  

𝜃;!" =
+
@
∑ 𝜃!"

(?)@
?8+  and 𝑦�$" = �+

@
∑ 𝑦$"

(?)@
?8+ �, 

where ⌈∙⌉ denotes the ceiling function. 
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Data availability 

The authors analyzed two publicly available SRT data. Raw count matrices, images, and spatial 

information for two SRT data from 10x Visium are accessible on the 10x Genomics website at 

https://support.10xgenomics.com/spatial-gene-expression/datasets.  

Code availability 

An open-source implementation of the BayesDeep algorithm in R/C++ is available at 

https://github.com/Xijiang1997/BayesDeep. 
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Figure 1. Flowchart of the proposed BayesDeep: A. BayesDeep integrates the spot-resolution 

molecular profile 𝒀 from NGS-based SRT data, the single-cell-resolution image profile 𝑿 from the 

paired AI-reconstructed histology image, and the spot-cell geospatial profile 𝑮 to recover gene 
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expression at the single-cell resolution 𝜣. B. The hierarchical formulation of the BayesDeep model 

is based on a Bayesian regularized negative binomial regression model with grouped observations. 

C. BayesDeep estimates the association between the single-cell-resolution molecular and image 

profiles 𝑩 and predicts the single-cell-resolution molecular profile 𝜣. D. Several downstream 

analyses can be enhanced based on the availability of the single-cell-resolution molecular profile 

𝜣, including identifying distinct cell populations, elucidating the process of tumorigenesis via 

pseudotime analysis, and exploring the mechanisms of cell-cell communication. 



 

 

 

Figure 2. Overview of model validation, including the validation settings and evaluation results 

in terms of the Pearson correlation coefficients 𝜌 between the actual and predicted gene expression 
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for BayesDeep, TESLA, and Gaussian Process (GP), respectively. The validation is stratified into 

three distinct data: A. Simulated data at the spot resolution; B. Human breast cancer 10x Visium 

data at the spot resolution; C. Mouse visual cortex STARmap data at the single-cell resolution. 
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Figure 3. Real data analysis on the human breast cancer 10x Visium data: A. Manual annotation 

and nuclei identification results by applying HD-staining to the paired histology image; and the 

two selected tumor and immune regions for an illustrative comparison between BayesDeep and 

TESLA. B. The actual expression at the spot resolution and the predicted expression at the single-

cell resolution by BayesDeep and TESLA on the selected tumor region for genes AZGP1, MUCL1, 

and TOP2A. Violin plots display gene expression on the selected tumor region across different cell 

types. C. The actual expression at the spot resolution and the predicted expression at the single-

cell resolution by BayesDeep and TESLA on the selected immune region for genes CORO1A, 

IGHG2, and TRBC1. Violin plots display gene expression on the selected tumor region across 

different cell types. 

 



 

 

Figure 4. Real data analysis (continued) and downstream analysis on the human breast cancer 10x 

Visium data: A. Heatmap of the covariate coefficient matrix 𝑩 estimated by BayesDeep, indicating 

the association between gene expression and morphological features extracted from the paired 

histology image. B. Cell population analysis on the BayesDeep- and TESLA-generated single-

cell-resolution gene expression. C. Pseudotime analysis on tumor cells extracted from the cell 

759 329491

BayesDeep
TESLA

A
Covariate coefficient matrix !

C

B

BayesDeepD

BayesDeep TESLA

BayesDeep TESLA

UMAP1

UM
AP

2
E TESLA

To
p 
20
00

hi
gh

ly
 va

ria
bl

e 
ge

ne
s

UMAP1

UM
AP

2

Cell type
Blood

Ductal epithelium
Lymphocyte

Macrophage

Necrosis
Stroma

Tumor

Cell type
Blood

Ductal epithelium
Lymphocyte

Macrophage

Necrosis
Stroma

Tumor



 

 

population analysis. D and E. Cell-cell interactions inferred from the BayesDeep- and TESLA-

generated single-cell-resolution gene expression, and their overlap.  
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Figure 5. Real data analysis on the human prostate cancer 10x Visium data: A. Manual annotation 

and nuclei identification results by applying HD-staining to the paired histology image and the two 

selected tumor and immune regions for an illustrative comparison between BayesDeep and 

TESLA. B. The actual expression at the spot resolution and the predicted expression at the single-

cell resolution by BayesDeep and TESLA on the selected tumor region for genes ADGRF1, SPON2, 

and TMEFF2. Violin plots display gene expression on the selected tumor region across different 

cell types. C. The actual expression at the spot resolution and the predicted expression at the single-

cell resolution by BayesDeep and TESLA on the selected immune region for genes CD24, CD47, 

and CXCR4. Violin plots display gene expression on the selected tumor region across different cell 

types. 

 



 

 

Figure 6. Real data analysis (continued) and downstream analysis on the human prostate cancer 

10x Visium data: A. Heatmap of the covariate coefficient matrix 𝑩 estimated by BayesDeep, 

indicating the association between gene expression and morphological features extracted from the 

paired histology image. B. Cell population analysis on the BayesDeep- and TESLA-generated 

single-cell-resolution gene expression. C. Pseudotime analysis on tumor cells extracted from the 
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cell population analysis. D and E. Cell-cell interactions inferred from the BayesDeep- and TESLA-

generated single-cell-resolution gene expression and their overlap. 
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