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Abstract 

Pediatric brain and spinal cancers remain the leading cause of cancer-related death in children. 

Advancements in clinical decision-support in pediatric neuro-oncology utilizing the wealth of 

radiology imaging data collected through standard care, however, has significantly lagged other 

domains. Such data is ripe for use with predictive analytics such as artificial intelligence (AI) 

methods, which require large datasets. To address this unmet need, we provide a multi-

institutional, large-scale pediatric dataset of 23,101 multi-parametric MRI exams acquired 

through routine care for 1,526 brain tumor patients, as part of the Children’s Brain Tumor 

Network. This includes longitudinal MRIs across various cancer diagnoses, with associated 

patient-level clinical information, digital pathology slides, as well as tissue genotype and omics 

data. To facilitate downstream analysis, treatment-naïve images for 370 subjects were processed 

and released through the NCI Childhood Cancer Data Initiative via the Cancer Data Service. 

Through ongoing efforts to continuously build these imaging repositories, our aim is to 

accelerate discovery and translational AI models with real-world data, to ultimately empower 

precision medicine for children. 
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Background & Summary 

For brain cancer patients, radiology images are routinely collected and used to inform 

decision making across a variety of applications including surgical planning, longitudinal tumor 

monitoring, and assessment of treatment response. Consequently, a significant amount of 

imaging data (primarily MRIs) is generated through clinical standard of care. Over the past 

decade there have been several large-scale, multi-institutional initiatives to collect and curate 

such data for adult populations and make them publicly available for research purposes. For 

example, The Cancer Imaging Archive (TCIA) provides several collections focused on adult 

glioblastoma multiform (GBM)1,2,3,4. These efforts have contributed to the empowerment of 

predictive artificial intelligence (AI) and machine learning (ML) methods in cancer research, 

which require ample amounts of representative data that capture variance in image acquisition 

protocols and hardware at different institutions. In the context of adult brain cancer research, 

there have been a significant number of studies that examine “radiomic” features -- the high-

throughput image-derived properties of a tumor-affected region -- and have used ML and deep 

learning based approaches to use radiomic features to predict other patient-level factors such as 

molecular genotype (radiogenomics) or clinical outcome measures such as survival prognosis or 

response to therapy5,6. The translation of trained AI models into clinical practice workflows has 

also started to become a reality7,8, and although continued work is required to validate and 

generalize existing models, this indicates a crucial step towards harnessing the predictive power 

of AI for precision medicine in neuro-oncology9,10.   

On the other hand, the availability of clinical MRIs that longitudinally and 

comprehensively capture a patient’s treatment journey, beyond just treatment-naïve timepoints, 

remains elusive. The lack of publicly accessible longitudinal scans has limited the development 
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of radiomic models that can account for post-treatment imaging changes (such as areas of 

necrosis, post-resection gliosis, and edema), which are crucial for assessment of treatment 

response. Additionally, many public datasets focus on a single cancer type (such as GBM), and 

do not include other less frequent types of brain tumors that would be essential for building 

diagnostic tools that can perform optimally for different tumor histologies. Recently, in 2023, the 

Brain Tumor Segmentation challenge (BraTS) has expanded its scope to include not only 

primary brain tumors but also brain metastases, meningiomas, and other related conditions. This 

expansion reflects the growing recognition of the importance of comprehensive analysis and 

segmentation in various types of brain tumors. In the context of pediatric brain tumors (PBTs), 

there is a dearth of AI models that are able to generalize beyond the context of a single study, 

largely due to a lack of data availability11. PBTs are relatively rare compared to adult populations 

but remain one of the leading causes of cancer-related mortality in children. Moreover, brain 

cancers in adults often have differing radiological, molecular, and clinical characteristics 

compared to pediatric cases; as a result, existing models that have been trained on adult data do 

not typically perform well on pediatric data. Aggregating MRIs across institutions can accelerate 

translational research on PBTs, particularly for less common cancer histologies, although cross-

site collection is made difficult by data privacy regulations and technical infrastructure 

requirements to ensure secure data transfer. To date, only one pediatric radiology dataset has 

been made available via the TCIA12, which was from a Children’s Oncology Group clinical trial 

(NCT00392327) that focused on high-risk medulloblastoma, supratentorial primitive neuro-

ectodermal tumor of the CNS (CNS-PNET), and pineoblastoma (PBL)13. This includes pre- and 

post-operative MRIs of the brain and spine, with and without contrast, for 85 subjects. 
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To address the aforementioned challenges, we made available a centralized large dataset 

of clinical MRIs as part of the Children’s Brain Tumor Network (CBTN)14. The CBTN is an 

international consortium of 34 healthcare institutions that contribute to a multi-modal data 

repository as well as collaborative research efforts focused on pediatric neuro-oncology funded 

in large part by philanthropic organizations. As of March 2023, CBTN has enrolled over 4,900 

subjects under a shared regulatory protocol that allows centralization of patient-level data and 

release to the wider community through NIH-supported software platforms such as the Gabriella 

Miller Kids First Data Resource and the National Cancer Institute (NCI) Childhood Cancer Data 

Initiative (CCDI). This has allowed the creation of CBTN’s Pediatric Brain Tumor Atlas 

(PBTA)15 for which over 3,000 surgically collected tumor specimens have been released with 

paired clinical data (demographic, treatment, outcome). Many PBTA samples have associated 

whole genome sequencing (WGS), tumor RNA-seq, and digital histopathology images, and some 

have methylation and/or proteomic data. Recent grant funding from the Kids First Pediatric 

Research Program (X01) has initiated the molecular sequencing of an additional 4,594 tissue 

samples, including germline and somatic variants. This initiative has established an 

unprecedented multiomic dataset to support advancements in the study and treatment of PBTs. 

Through joint CBTN efforts, we have collected 23,101 imaging exams for over 1,500 subjects, 

which is freely available via secure access mechanisms in alignment with FAIR principles 

(Findable, Accessible, Interoperable, and Reusable) for data stewardship16. Images were acquired 

through institution-specific clinical imaging protocols as part of routine standard of care, and 

acquisition protocols across institutions were not uniform. Crucially, as opposed to images 

collected as part of research protocols, this radiological dataset captures real-world heterogeneity 

in image types and acquisition parameters that vary across scanners and sites and as such, it can 
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facilitate the generalizability of downstream radiomic and integrated multiomic AI models, 

which has been a challenge across both adult and pediatric contexts to-date. The CBTN dataset is 

comprised of longitudinal MRIs across treatment-naïve, post-surgical, systemic treatment, and 

follow-up timepoints, as well as at events of progression or relapse, and includes subjects across 

a variety of cancer histologies. All subjects with MRIs have associated clinical data, including 

demographics, treatment information, and survival outcomes, as well as digital pathology slides 

(whole slide images, WSIs). Many subjects also have genomic and other -omic data, making the 

dataset is suitable for use in radiomic, radiogenomic, radiopathomic, and other integrative multi-

omic analyses. Notably, we will continue to collect MRIs for CBTN subjects to iteratively grow 

the dataset and will freely provide all centralized data to the broader research community.  

To further prepare the imaging data for research contexts and enable its rapid use, we 

selected a subset of subjects with available treatment-naïve timepoints that had four main multi-

parametric scans (T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and T2-FLAIR) 

and processed them using standard methods. We provide the pre-processed images and brain 

masks (with removed face features, “defaced”) as a secure access CCDI collection through the 

NCI Cancer Research Data Commons (CRDC) via the Cancer Data Service (CDS; 

https://datacommons.cancer.gov/repository/cancer-data-service), with direct association to 

clinical and genomic CBTN data stored in the CDS. These four particular image sequences are 

relevant across many applications, including: (1) tumor region delineation, as in existing BraTS 

datasets17,18; (2) response assessment, such as defined by the Response Assessment in Pediatric 

Neuro-Oncology working group19–22; and (3) are commonly used in radiomic studies23. The 

motivation for this effort is to reduce the time-consuming, manual burden and the technical and 

domain-expertise required to prepare images for downstream analysis, and thus allow maximum 



 8 

utility of the data in research settings. By providing these resources, we aim to accelerate the 

development of predictive analytics with radiology imaging in pediatric neuro-oncology and 

advance the application of resultant models into clinical decision-support workflows. 

The CBTN imaging data described in this paper is released in two separate locations, 

each with their own set of access procedures and data organization standards (Table 1; both are 

provided in NIfTI file format and are de-identified of protected health information). Where 

appropriate, we outline separately the “CBTN-Flywheel” dataset, which contains the entirety of 

the collected imaging exams that are provided in their “raw” or unprocessed format (i.e., without 

any image-based processing following retrieval from clinical radiology systems), and the “NCI-

CDS” dataset, which contains the selected set of pre-processed, treatment-naïve images that are 

additionally “de-faced” (facial regions removed).  

 

Methods 

Data collection and de-identification 

A CBTN master agreement allows the Center for Data-Driven Discovery in Biomedicine 

(D3b) at the Children’s Hospital of Philadelphia (CHOP, Philadelphia, PA; Figure 1) to act as 

the Operations and Data Coordinating Center for the CBTN. This includes oversight of the 

sample and data management (including files containing protected health information; PHI) and 

sharing of de-identified samples/data by CHOP with CBTN members and CBTN-approved 

researchers following approval by the CBTN Scientific Committee (see Usage Notes for more 

details on the request process). For controlled access data, such as imaging data, the master 

agreement states that the release of data to researchers is allowed under a signed Data Use 

Agreement (DUA). The CBTN DUA terms were drafted in compliance with NIH guidelines and 
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applicable laws, and its purpose is to facilitate the release of data collected across healthcare sites 

while also protecting all involved parties, including patients, patient families, and member 

institutions. During onboarding of a site to the CBTN consortium, the master agreement is 

reviewed, approved, and signed by each site, including review by their site-specific legal team. 

The master agreement states that individual sites are responsible for properly consenting each 

subject prior to sharing their data with CHOP and the CBTN. In addition, each of the 34 CBTN 

sites has their own site-specific regulatory documents, which are approved by their Institutional 

Review Board (IRB) and are reviewed by the CHOP Operations team to ensure key language is 

included that agrees with the terms in the master agreement. Sites are also able to utilize a CBTN 

template IRB protocol and consent documentation for such purposes. CHOP maintains records 

of all sites’ regulatory documents and updates them as they expire each year. 

MRIs were collected across 7 contributing sites: CHOP, Seattle Children’s Hospital 

(Seattle, WA), Lurie Children’s Hospital of Chicago (Chicago, IL), Dayton Children’s Hospital 

(Dayton, OH), Orlando Health Arnold Palmer Hospital (Orlando, FL), Children's National 

Hospital (Washington, DC), and UPMC Children’s Hospital of Pittsburgh (Pittsburgh, PA). The 

selection criteria included MRI exams of the brain and/or spine but could include additional 

examined body parts if feasible for collection. Corresponding DICOM files were retrieved from 

each site’s Radiology Department PACS (Picture Archiving and Communication System) system 

using site-specific request processes and sent to CHOP via available imaging transfer platforms 

(Ambra, Powershare). The majority of transferred MRIs were identified (containing PHI) as 

permitted by the CBTN master agreement. 

 There were no selection criteria based on clinical factors. MRIs were collected across a 

variety of PBT histological diagnoses (confirmed via pathology free text reports and electronic 
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health record (EHR) review by trained clinical coordinators and research assistants). These 

included low-grade glioma/astrocytoma (LGG), high-grade glioma/astrocytoma (HGG), 

medulloblastoma, ependymoma, atypical teratoid/rhabdoid tumors (ATRT), craniopharyngioma, 

diffuse intrinsic pontine glioma (DIPG), dysembryoplastic neuroepithelial tumors (DNET), 

neurofibroma, schwannoma, and other histologies (Fig. 2; see full list in Table 1). 

 DICOM files were obtained and de-identified (stripped of PHI) using processes 

developed in-house (described below) that have been made publicly open source (see Code 

Availability for information on shared resources). First, “Structured Report document” (SR) and 

“Other” (OT) modality acquisitions were removed (based on the DICOM Modality tag 

(0008,0060)). Acquisitions with a Series Description tag (0008,103E) that included any of the 

following text (case-insensitive) were removed: screensave/screen save/screen_save, cover 

image/cover_image, dose_report/dose report/dosereport, documents, protocol, capture. Studies 

with a Study Description tag (0008,1030) including the following text were removed: script, 

bone scan. DICOMs were then converted into NIfTI format (dcm2niix24). A BIDS25 option (flag 

“-b”) with anonymization was used to output a paired JSON file to be released with each NIfTI 

file that included a set of DICOM metadata fields not retained in NIfTI file headers. Additional 

fields were removed from the JSON to comply with DICOM-NEMA standards for PHI 

anonymization (Full list in NEMA guidelines Table E.1-1: 

https://dicom.nema.org/medical/dicom/current/output/html/part15.html#table_E.1-1), which 

included: Device Serial Number, Image Comments, Institution Address, Institutional Department 

Name, Institution Name, Procedure Step Description, Protocol Name, Station Name. Diffusion 

derivative files (gradient b-values/BVAL and directional b-vectors/BVEC) were retained. Lastly, 

acquisitions were removed if they did not have sufficient image acquisition DICOM tags in their 

https://dicom.nema.org/medical/dicom/current/output/html/part15.html#table_E.1-1
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JSON files, which removed any remaining files with “burned-in” PHI such as screenshots and 

scanned paperwork forms, as well as derivative files generated at the scanner such as region-of-

interest images and images of physiological measurements, which were considered as non-

interest. The resulting metadata and images of a subset of the exams were manually inspected to 

ensure comprehensive PHI removal. The temporal relationships between longitudinal 

acquisitions were retained by labelling each timepoint by a subject’s age at the time of imaging 

(in days; see Data Records). 

Cohort selection and image pre-processing for the NCI-CDS dataset 

A subset of 370 subjects/sessions were selected for further processing based on 

availability of treatment-naïve imaging and four main sequences: T1-weighted (T1w), T1w with 

contrast enhancement (T1w-CE), T2-weighted (T2w), and T2-Fluid attenuated inversion 

recovery (FLAIR) scans. This included: 208 LGG, 99 medulloblastoma, 29 HGG, 18 DIPG, 8 

ependymoma, 2 ETMR, 2 germinoma, 1 craniopharyngioma, 1 neurocytoma, 1 supratentorial 

PNET, and 1 teratoma (Table 1). 

The four selected scans (T1w/T1w-CE/T2w/FLAIR) from a given treatment-naïve exam 

were pre-processed using the BraTS pre-processing pipeline toolkit released through the CaPTk 

software28,29. In brief, images were oriented to LPS/RAI coordinates (Left, Posterior, Superior / 

Right, Anterior, Inferior), and rigid registration was used to spatially register T1w/T2w/FLAIR 

to T1w-CE and all 4 scans to the SRI-24 atlas30. Images were resampled to a common resolution 

of 1 x 1 x 1 mm3. Skull-stripped brain masks were generated using a pre-trained, pediatric-

specific brain extraction deep learning model31.  

The four pre-processed scans were defaced using the FreeSurfer MiDeFace software 

package (“Minimally Invasive DeFacing”)26, which scrubs only surface-level voxels of facial 



 12 

regions in an image, in order to prevent reconstruction of a subject’s face which can be 

identifiable. Each defaced image was visually inspected to ensure accurate and comprehensive 

defacing performance. If an image was not successfully defaced (typically in young children or 

due to low image resolution, and more commonly for T2w and FLAIR sequences as MiDeFace 

was developed based on T1w images), the image was manually defaced using the ITK-Snap 

software platform27 (5% of images). 

 

Data Records 

CBTN-Flywheel (unprocessed data) 

The full, de-identified CBTN dataset (1,526 subjects, 23,101 exams) is made freely 

available to the community with secure access by the CBTN consortium and is managed by the 

CHOP Data Coordinating Center under the CBTN’s master agreement terms. The dataset is 

provided as NIfTI files (with paired JSON DICOM metadata files) on CBTN’s Flywheel 

platform. These data files are unprocessed, or “raw”, in that there is no image-based processing 

of the data after collection from clinical radiology systems. Because image acquisition protocols 

were not uniform across sites, there is heterogeneity in scanner and image acquisition properties 

across exams. To receive access to the full dataset, researchers must complete a CBTN data 

request process (see instructions and details in Usage Notes).  

Data is hosted on the CBTN’s Flywheel website (www.chop.flywheel.io) and is 

organized in a hierarchical manner. CBTN subjects are grouped into unique “project” directories 

according to their diagnosis at the time of imaging (project are labelled by diagnosis, such as 

“Ependymoma”). Within a project, data is organized by subject and session (imaging 

exam/study). Users can download entire projects, or a selected subset of subjects or sessions. 

http://www.chop.flywheel.io/
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Subject labels are unique, anonymized identifiers (CBTN Subject IDs) that are identical across 

data types to allow for multi-modal comparisons. Imaging session labels are generated based on 

DICOM tags and are formatted to include: age in days at imaging, primary body site examined, 

and acquisition time (hhmm); e.g., “100d_B_brain_12h30m”. This enables unique session labels 

at a subject-level, while retaining longitudinal acquisition information without the use of any 

PHI-containing fields. Source images (acquisitions) are provided in compressed NIfTI file 

format. File names are derived from the Series Description (0008,103E) DICOM tag of the given 

acquisition (e.g., “t1_mprage_sag_p2_iso_0.9.nii.gz”). Each NIfTI file has a paired JSON file to 

provide additional DICOM metadata that is not retained in the NIfTI header. 

Additional classification tags describing the image types were associated with each NIfTI 

file using a heuristic-based method. In this step, mappings between DICOM SeriesDescription 

substrings and uniform labels were established based on the entire dataset, and a corresponding 

dictionary was created. The final dictionary was used to classify all images using text-based 

pattern search against their SeriesDescription. This resulted in image-level tags describing the 

type of sequence, which can be used to query and filter the dataset according to specific 

parameters of-interest. This step was critical to ensure useability of the dataset because scans of 

the same type can have various SeriesDescriptions within and between scanners and institutions. 

To operate at-scale, this non-standard variance in clinically acquired images must be captured to 

enable flexible and comprehensive data curation. 

NCI-CDS (processed data)  

 The subset of de-identified, processed treatment-naïve MRIs and brain masks (N=370; 

defaced, pre-processed images) are freely provided as a secure access dataset as part of the 

controlled access CBTN study released via NCI’s data and platform ecosystem of the Cancer 
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Research Data Commons (CRDC) and Childhood Cancer Data Initiative (CCDI). The CBTN 

study is accessible through the NCI’s Cancer Data Service (CDS) via the database of Genotypes 

and Phenotypes (dbGaP32; dbGaP study accession number for CBTN: phs002517; 

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002517.v1.p1 ). To 

obtain access to this dataset, investigators must complete the dbGaP authorized access request 

process (see instructions and details in Usage Notes).  

The NCI-CDS dataset is comprised of processed T1w/T1w-CE/T2w/T2w-FLAIR images 

that have been spatially co-registered and re-sampled, as well as corresponding deep learning-

generated brain mask segmentations (see details in Methods). All files are provided as 

compressed NIfTI format and are organized by subject label (anonymized CBTN Subject IDs) 

and session label (age in days at imaging). Files are named based on the following naming 

convention: [Subject-ID]_[age]_[image type]_to_SRI_defaced.nii.gz ; where image type field 

includes one of “T1”, “T1CE”, “T2”, “FLAIR”, and “pred_brainMask”, according to the image. 

Imaging data can be associated with subject-level genomic and molecular data using a mapping 

manifest of subject IDs and sample IDs (maintained and provided by dbGaP). 

 

Technical Validation 

 Given that the dataset consists of MRIs acquired across scanners and sites, we aimed to 

further assess the quality of the constituent images to verify their use in research settings. For 

assessing general patterns of image acquisition properties in the full dataset, we extracted image 

resolution (voxel size) separately for all T1w (including T1w-CE), T2w, and FLAIR images as 

well as repetition (TR) and echo (TE) times for T1w and T2w images (Fig. 2E). With the 

exception of a few outlier images, the distribution of voxel sizes (T1w: x/y 0.14 – 2.0 mm, 

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002517.v1.p1
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median=0.75; z 0.4 – 34.8, median=3.3; T2w: x/y 0.27 – 4.1, median=3.13; z 0.4 – 30.0, 

median=10; FLAIR: x/y 0.2 – 1.72, median=0.69; z 0.5 – 24.5, median=4.0), TRs (T1w: 0.003 – 

9.39, median=1.9; T2w: 0.004 – 15.5, median=2.5), and TEs (T1w: 7e-05 – 0.55, median=0.003; 

T2w: 0.002 – 0.53, median=0.014) fall within an acceptable range.  

The unprocessed images of a subset of the selected pre-processed cohort (N = 150) were 

analyzed with the MRIQC package33, which provides spatial image quality metrics (IQMs) for 

quality control based on the Quality Assessment Protocol (QAM). The tool was developed based 

on normal brain anatomy and has been tested on the large multi-site ABIDE (Autism Brain 

Imaging Data Exchange) dataset34,35; however, the influence of solid tumor presence on MRIQC 

measures has not been empirically determined. In particular, metrics that are calculated 

separately for white matter (WM), gray matter (GM), and CSF depend on accurate segmentation 

of these regions, which within the tool is performed with the FSL36 (FMRIB Software Library) 

FAST37 (FMRIB's Automated Segmentation Tool) software package after skull-stripping with 

AFNI38 (Analysis of Functional NeuroImages) software packages. These tools are not likely to 

perform well when the brain anatomy has been impacted by tumor growth and mass effect on 

surrounding neural structures, as they were developed primarily for use in healthy individuals. 

Nonetheless, investigating the IQMs for global properties can provide a general characterization 

of image quality and can be used to examine the distribution of measurements across subjects 

within the multi-site dataset. This can be particularly useful for research studies on the 

harmonization of images acquired across different sites and scanners, as it captures real-world 

variance in relevant properties. 

Thirteen standard (defined in Table 2) and four summary IQMs (mean, standard 

deviation, 5th and 95th percentiles and kurtosis) were extracted for T1w, T1w-CE, T2w, and 
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FLAIR sequences separately (Fig. 3). T1w-CE and FLAIR results are included in the visualized 

plots for comparison, however MRIQC was designed for use on structural T1w and T2w images, 

so we only focus on the results for these image types. For T1w and T2w images, the mean of 

intensity values within white matter across subjects is centered around 1000 and within 

background is near 0 with little spread. The mean within gray matter is just under 1000 on T1 

and 2000 on T2. Overall, the T1w results are consistent with prior literature39, but the T2w 

values are higher than would be expected. This could be due to the bright appearance of tumor 

lesions on T2w (hypointense signal value) but the more moderate intensity values of the same 

lesion on T1w compared to normal white or gray matter, which would influence the summary 

statistics if tumor regions were included in the gray and/or white matter segmentations. The 

mean within CSF on T2w shows a wide range across subjects centered around 3500, and a 

smaller range on T1w centered around 500. Kurtosis and standard deviation are low on both T1w 

and T2w within white matter, gray matter, and CSF. In sum, these results show relatively small 

differences across subjects indicating comparable image intensity values within the dataset. 

Several IQMs relate to noise and artifact measurements and can be used to identify image 

distortions caused by factors such as head motion or hardware-related magnetic field 

inhomogeneities. Across these measures, values across subjects indicate low presence of such 

artifacts (Table 2; Fig. 3; low average CJV, EFC, INU, QI1, QI2). Estimated blur across the 

image (FHWM) was also low (T1w in mm: M= 3.77, SEM=0.06; T2w: M= 4.06, SEM=0.1). It is 

important to note that the pre-processed cohort consists of subjects whose images were selected 

because they were free of obvious artifact, so the MRIQC metrics for this subset will not be 

representative of the presence of such image degradation in the full dataset. On the other hand, 

the metrics can be useful for assessment of variance based on images that were determined to be 
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suitable for research-use, which can nonetheless capture batch effects caused by inter-site 

variability. 

General IQMs reflecting signal intensities within the head compared to background (air 

surrounding the head; BG) showed acceptable results. Signal-to-noise (SNR) and contrast-to-

noise (CNR) ratios were within the range of values of the 5th - 95th percentiles derived from 

51,113 T1w samples and 767 T2w samples in an MRIQC crowdsourced database (Table 2; 

calculated based on data from “T1w_curated.csv” and “T2w_curated.csv” provided in prior 

study).40 

IQMs comparing the volume of predicted WM, GM, and CSF indicate low agreement 

with standard measurements based on normal brain anatomy. For both T1w and T2w, estimated 

intracranial volume (ICV) of CSF (18% based on T1w) was comparable to the MRIQC 

benchmark (20%), but WM ICV was lower (36% vs. 45%) and GM ICV was higher (47% vs. 

35%). This could either be due to incorrect segmentation maps in the brain tumor subjects (i.e., 

inaccurate tissue segmentation by the tool), or the comparison of pediatric and adult GM and 

WM volumes which are known to differ (GM decrease and WM increase in late childhood and 

adolescence9/29/23 12:54:00 PM). The tissue probability maps (TPMs) showed low overlap 

between WM, GM, and CSF maps of the images in the dataset and those derived from a common 

template based on a population atlas which could also be due to developmental age differences 

(the template is based on adult anatomy) and/or structural effects caused by the solid tumor on 

surrounding structures. 

 

Usage Notes 

Public exploration portals and tools 
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Users are able to explore the CBTN-Flywheel dataset properties, including imaging 

properties, clinical factors, and molecular data availability, without any approval necessary at the 

public website: https://d3b-rstudio-connect-public-prd.d3b.io/d3b-imaging-data-metrics/ . 

Detailed clinical and molecular data generated by CBTN can be explored on the public data 

portal website pedCBioPortal (https://pedcbioportal.kidsfirstdrc.org/ ; “PBTA” and 

“OpenPBTA” projects) and can be accessed with the same the CBTN research project request in 

the below-described request process. Patient IDs associated with each exam in the radiology 

dataset are identical to the Patient ID of the same subject with demographic, clinical, 

histopathological, and/or genomic data. 

Accessing the CBTN-Flywheel dataset 

A research project request form must be submitted (https://cbtn.org/research-resources; 

https://redcap.chop.edu/surveys/?s=A7M873HMN8) and a CBTN Data Use Agreement (DUA) 

must be signed. The request form includes details on who is requesting access to the data 

including project collaborators, what data types are being requested, and a Research Use 

Statement with a non-technical summary of the objective of the research project and how the 

data will be used and analyzed. Clinical report documents (including redacted pathologist, 

surgical, and radiologist notes), raw or processed genomic data, and/or access to digital 

pathology slides can also be requested through the same process. Requests will be reviewed to 

ensure consistency with scientific data use limitations, failure to include sufficient detail to 

determine this will result in rejection of a data request. 

After approval, users are granted accessed to the dataset on the Flywheel platform 

(www.chop.flywheel.io; accessible in any standard web browser). Additionally, after project 

approval the CBTN Operations Team will provide requesters with all corresponding clinical data 

https://d3b-rstudio-connect-public-prd.d3b.io/d3b-imaging-data-metrics/
https://pedcbioportal.kidsfirstdrc.org/
https://cbtn.org/research-resources
http://www.chop.flywheel.io/
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(e.g., demographics, medical history, diagnosis, treatment, survival outcomes) for the associated 

data. Requesters are also asked to provide project updates, and are suggested to return any 

derived results for further integration with the source dataset so as to reduce siloed research 

efforts and promote FAIR16 practices. Moreover, researchers are requested to include the 

following acknowledgement statement to reference the data: "This research was conducted using 

data and/or samples made available by The Children’s Brain Tumor Network (formerly the 

Children’s Brain Tumor Tissue Consortium)". 

Accessing the NCI-CDS dataset 

Researchers must create an NIH eRA Commons account (https://public.era.nih.gov) and 

be classified as a Principal Investigator (or be listed as a collaborating investigator on a PI’s 

application). Using their eRA account, users can log into the dbGaP Authorized Access page 

(https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) and submit an online Data Access 

Request (DAR) for the specific dataset with a signed Data Use Certification Agreement. The 

DAR includes providing basic institutional and contact information including for collaborating 

users, as well as a research use statement including the objectives of the proposed research, study 

design, and data use and analysis plan. The NCI Data Access Committee (DAC) will review to 

confirm that the proposed research is consistent with data use limitations, with data requests to 

be rejected if there is insufficient detail to make this determination (see tips for DAR preparation 

here: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/GetPdf.cgi?document_name=GeneralAAInstructions.pdf ). Once approved by the NCIDAC, 

investigators will then be able to download the data from dbGaP with the Aspera Connect 

software. Researchers are requested to give annual project updates and include the following 

acknowledgement statement to reference the usage: “The data from this study phs002517 was 

https://public.era.nih.gov/
https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?document_name=GeneralAAInstructions.pdf
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/GetPdf.cgi?document_name=GeneralAAInstructions.pdf
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made available pre-publication without embargo to support rapid and collaborative research in 

pediatric cancer via the NCI's Cancer Research Data Commons 

(https://datacommons.cancer.gov). This availability is made possible with the support of NCI's 

Childhood Cancer Data Initiative (grant No. 3P30CA082103-21S9) and Gabriella Miller Kids 

First Pediatric Research Program (X01 CA267587). Initial data generation efforts and 

coordination costs were supported by a number of philanthropic and industry partners with 

further details at cbtn.org.” 

 

Code availability 

 All tools and software packages used in this project are publicly available, including: 

dcm2niix (version v1.0.20220720)24, MiDeface (FreeSurfer 7.3.2)26, CaPTk (1.8.1)28,29, MRIQC 

(0.16.1)33. The code developed in-house for image de-identification and preparation has been 

made open source and can be freely accessed at: https://github.com/d3b-center/image-deid-etl.  
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Figure Legends 

 

Figure 1. Diagram of overall workflow. Clinical imaging exams are received from various 

institutions and centralized. Exams are de-identified of PHI and metadata is warehoused using 

cloud services and in-house software packages. Images (NIfTIs with JSON sidecar) are uploaded 

to the Flywheel platform where they are stored and shared with the broader research community 

(CBTN-Flywheel data). Standard tools are utilized to prepare selected images for research use. 

Existing standardized pipelines and pediatric-specific AI-powered brain extraction processes are 

used to generate analysis-ready data files. Processed images and brain mask segmentations are 

stored and shared as part of a CBTN study in the NCI’s Cancer Data Service via the database of 

Genotypes and Phenotypes (dbGaP; NCI-CDS data). 

 

Figure 2. CBTN radiology dataset characteristics. Distributions of CBTN imaging data by 

cancer diagnosis: (A) histogram of the number of subjects with imaging data by subject age 

(years) at first diagnosis; (B) histogram of the number of imaging exams by the age (years) at the 

time of imaging; (D) number of exams per subject. (C) Patient-level demographics of sex and 

race. (E) Number of subjects with associated tumor specimen collection with available whole 

genome sequencing (WGS), RNA sequencing (RNAseq), and digital histopathology slides 

(whole slide imaging, WSI). Exam-level distributions, including: (F) percentage of exams by 

each body part examined; (G) number of exams for most frequent image types (T1w, T2w, 

diffusion, perfusion, spectroscopy, susceptibility) categorized by acquisition time relative to 

treatment status (acquired before, during, or after treatment); (H) percentage of exams by scanner 

manufacturer and magnetic field strength. (I) Image-level distributions of voxel width along 
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sagittal/coronal (x/y; x-axis) and transverse (z; y-axis) planes for T1w, T2w, and FLAIR images; 

and repetition time (TR; x-axis) and echo time (TE; y-axis) for all T1w and T2w images. Each 

point represents one image. 

 

Figure 3. MRIQC results for selected cohort. Distributions of Image Quality Metrics (IQMs) 

for T1w, T2w, T1w-CE, and FLAIR images based on the unprocessed images of the subset 

cohort (N=150). Summary statistics shown in bottom rows for background (BG), CSF, white 

matter (WM), and gray matter (GM) regions. Error bars represent 95% confidence interval. See 

Table 2 for IQM definitions. 
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Tables 

 

 CBTN-Flywheel 
(unprocessed data) 

NCI-CDS  
(processed data) 

Release information   
Managing organization & hosting 
platform 

CBTN Flywheel NCI CDS via dbGaP 

Access – requirements CBTN research project 
approval; Signed CBTN 
DUA 

NCI dbGaP Data Access 
Request approval; eRA with 
Primary Investigator status; 
Signed NCI DUA 

Access – getting started resources https://redcap.chop.edu/surve
ys/?s=A7M873HMN8  

https://www.ncbi.nlm.nih.go
v/projects/gap/cgi-
bin/study.cgi?study_id=phs0
02517.v1.p1 

File format Compressed NIfTI (.nii.gz) 
with paired JSON (additional 
DICOM metadata) 

Compressed NIfTI (.nii.gz) 

File names DICOM Series Description 
tag 

[subID]_[age]_[T1/T1CE/T2/
FL/pred_brainMask]_to_SRI
_defaced.nii.gz 

De-faced (face regions removed) No Yes 

Patient and Scan Characteristics   

Total Patients 1,526 370 
Total Sessions (number of exams) 
      Treatment-naïve 
      During treatment 
      After treatment 
      Treatment information unknown 

23,101 
4,083 
9,941 
9,051 
26 

370 
370 
 
 
 

Age at diagnosis, range (years) 0.003 – 20.96 0.24 – 20.73 
Age at diagnosis, median (years) 8.81 8.43 

Legal Sex 
      Male 
      Female 
      Unknown 

 
826 
698 
2 

 
182 
188 
 

Overall Survival 
      Range (years) 
      Median (years) 
      Unknown (N) 

 
0.003 to 118.45 
3.53 
131 

 
0.06 to 21.21 
3.66 
8 

Event Free Survival 
      Range (years) 
      Median (years) 
      Unknown (N) 

 
0.003 to 116.8 
1.94 
133 

 
0.04 to 13.29 
2.08 
8 

https://redcap.chop.edu/surveys/?s=A7M873HMN8
https://redcap.chop.edu/surveys/?s=A7M873HMN8
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002517.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002517.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002517.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002517.v1.p1
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Race (N) 
      White 
      Black or African American 
      Asian 
      Native Hawaiian or Other Pacific 
Islander 
      American Indian or Alaska Native 
      More than one race 
      Information unavailable 

 
1,021 
186 
44 
3 
6 
5 
261 

 
269 
40 
7 
2 
3 
1 
48 

Associated subject-level data availability 
(N) 
      Whole Genome Sequencing 
      RNAseq 
      Digital pathology slides 

 
892 
826 
1,526 

 
261 
255 
370 

Histology (N subjects) 
Low Grade Glioma / astrocytoma  
Medulloblastoma 
High Grade Glioma / astrocytoma  

Other 
Ependymoma 
Craniopharyngioma 
Atypical Teratoid Rhabdoid (ATRT)  
Meningioma 
Germinoma 
Neurofibroma 
DIPG 
DNET 
Schwannoma 
Glial_NOS 
Choroid_plexus_papilloma 
Cavernoma 
Ewings_Sarcoma 
Neuroblastoma 
Teratoma 
PNET 
Sarcoma 
Pineoblastoma 
Adenoma 
Langerhans_cell_histiocytosis 
Metastatic_secondary 
NGGCT 
Hemangioblastoma 
ETMR 
MPNST 

 
519 
159 
138 
116 
89 
71 
46 
38 
36 
36 
29 
29 
28 
27 
23 
20 
19 
14 
13 
13 
11 
11 
10 
10 
10 
9 
9 
7 
7 

 
208 
99 
29 

 
8 
1 

 
 

2 

 
18 

 
 
 
 
 
 
 

1 
1 

 
 
 
 
 
 
 

2 

 



 29 

Chordoma 
Neurocytoma 
Choroid_plexus_carcinoma 
Oligodendroglioma 
Brainstem_glioma_tectal 
Rhabdomyosarcoma 
Lymphoma 
Gliomatosis_Cerebri 
Ganglioneuroblastoma 
Multiple 

 

6 
6 
4 
3 
2 
2 
2 
2 
1 

47 
 

 
1 

 
 
 
 
 
 
 
  

Scanner Magnetic Field Strength (T) 
       3 
       1.5 
       1.2 
       1.0 
       0.7 
       0.3 
       Unknown 
Scanner Manufacturer 
       Siemens 
       GE 
       Phillips 
       Toshiba 
       Hitachi 
       Canon 

 
12,415 
10,127 
7 
3 
2 
3 
543 
 
20,256 
2,257 
208 
34 
12 
1 

 
224 
144 
 
 
1 
 
1 
 
308 
49 
11 
2 
 

       Unknown 333  
Table 1. Release information, patient, and exam characteristics for the CBTN-Flywheel full 

dataset (center column) and NCI-CDS selected pre-processed cohort (right column). 

 
 

 Benchmark 
T1w 
Median 
(SEM) 

T2w  
Median 
(SEM) 

Measure 

Coefficient of 
joint variation 
(CJV)  

T1w: 0.26 – 1.01* 
T2w: 0.2 – 4.27* 
 
Lower values are 
better. 

0.48 (.04) 0.53 (.05) Gray-to-white matter 
contrasts; can detect heavy 
head motion and large 
INU artifacts 

Entropy focus 
criterion (EFC) 

T1w: 0.44 – 0.73* 
T2w: 0.45 – 0.95* 
 
Lower values are 
better. 
 

0.59 (.004) 0.53 (.007) Entropy of voxel 
intensities (EFC=0 is all 
energy concentrated in one 
voxel41); can detect 
ghosting and blurring 
induced by head motion 
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Intensity non-
uniformity (INU) 

Small spreads around 
1.0 

1.5 (.02) 1.21 (.01) Location and spread of 
bias field estimated by 
INU correction42 

Mortamet’s 
quality index 1 
(QI1) 

<.01 (lower values 
are better) 

0 (.003) 0 (.003) Percent of voxels in 
background with 
intensities corrupted by 
artifact43 

Mortamet’s 
quality index 2 
(QI2) 

<.05 (lower values 
are better) 

0.006 
(.001) 

0.003 (.003) Noise intensity distribution 
after correction of QI143 

Foreground-to-
background 
energy ratio 
(FBER) 

T1w: 152 – 2042*  
T2w: 536 – 3668* 
 
Higher values better. 

1968 (754) 882 (697) Mean energy of image 
values within head relative 
to background 

Voxel smoothness 
(FWHM) 

T1w: 1.27 – 5.51*  
T2w: 2.11 – 4.31* 
 
Lower values better. 

3.62 (.06) 3.79 (.11) Global image blur (in mm) 

Signal-to-noise 
ratio (SNR) 

T1w: 5.2 – 16.3* 
T2w: 3.4 – 14.6* 
 
Higher values better. 

11.3 (.17) 7.6 (.15) Signal intensity in tissue 
compared to background 

Contrast-to-noise 
ratio (CNR) 

T1w: 1.18 – 4.67* 
T2w: 0.3 – 4.13* 
 
Higher values better. 

2.7 (.07) 2.5 (.08) Separation of gray and 
white matter distributions  

White matter to 
maximum 
intensity ratio 
(WM2MAX) 

Around 0.6-0.8 
 
T1w: 0.28 – 0.8* 
T2w: 0.14 – 0.88* 

0.45 (.01) 0.22 (.01) Median intensity within 
WM mask compared to 
full intensity distribution; 
can detect long tails due to 
hyper-intensity 

Intracranial 
volume estimation 
(ICVs) 

CSF: 0.2 
WM: 0.45 
GM: 0.35 
 
T1w: 
   CSF: 0.13 – 0.28* 
   GM: 0.35 – 0.52* 
   WM: 0.33 – 0.43* 
T2w: 
   CSF: 0.11 – 0.51* 
   GM: 0.04 – 0.66* 
   WM: 0.05 – 0.69* 

CSF: 0.17 
(.003) 

WM: 0.35 
(.004) 

GM: 0.48 
(.01) 

CSF: 0.15 
(.008) 

WM: 0.35 
(.007) 

GM: 0.50 
(.01) 

Percent volume of each 
tissue type 
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Residual partial 
volume effect 
(rPVE) 

T1w: 
   CSF: 7.9 – 62.8* 
   GM: 5.4 – 26.7* 
   WM: 7.1 – 35.1* 
T2w: 
   CSF: 12.4 – 52.2* 
   GM: 5.9 – 164.6* 
   WM: 5.4 – 112.1* 
 
Lower values better. 

CSF: 21.1 
(.5) 

WM: 11.1 
(.3) 

GM: 8 (.2) 

CSF: 22.5 
(1) 

WM: 10.9 
(.8) 

GM: 7.9 (.5) 

Tissue-wise sum of partial 
volumes (proportion of 
tissues present in a voxel), 
indicating separation of the 
tissue classes 

Tissue probability 
maps (TPMs) 

T1w: 
   CSF: 0.09 – 0.25* 
   GM: 0.3 – 0.55* 
   WM: 0.28 – 0.59* 
T2w: 
   CSF: 0.05 – 0.21* 
   GM: 0.03 – 0.53* 
   WM: 0.04 – 0.55* 
 
Higher values 
indicate greater 
overlap. 

CSF: 0.17 
(.003) 

WM: 0.46 
(.01) 

GM: 0.48 
(.01) 

CSF: 0.14 
(.003) 

WM: 0.41 
(.01) 

GM: 0.47 
(.01) 

Overlap between maps 
estimated from the image 
and maps based on 
population atlas (ICBM 
2009c template) 

Table 2. MRIQC results for T1w and T2w images in the pre-processed cohort (N = 150). 

Image Quality Metrics (IQMs) provided generated by MRIQC for the unprocessed images of 

150 pediatric brain tumor subjects. Benchmark value ranges marked with an asterix (*) are the 

5th - 95th percentiles from the MRIQC crowdsourced database with 51,113 T1w samples and 767 

T2w samples (calculated based on data from “T1w_curated.csv” and “T2w_curated.csv” 

provided in prior study).40 Otherwise the benchmarks reflect those provided in MRIQC 

documentation and/or original methodology papers.  
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