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Abstract (320 words) 36 

Background: Racial and ethnic minority groups and individuals facing social 37 

disadvantages, which often stem from their social determinants of health (SDoH), bear a 38 

disproportionate burden of type 2 diabetes (T2D) and its complications.  It is crucial to 39 

implement effective social risk management strategies at the point of care.     40 

Objective: To develop an electronic health records (EHR)-based machine learning (ML) 41 

analytical pipeline to address unmet social needs associated with hospitalization risk in 42 

patients with T2D. 43 

Methods: We identified real-world patients with T2D from the EHR data from University 44 

of Florida (UF) Health Integrated Data Repository (IDR), incorporating both contextual 45 

SDoH (e.g., neighborhood deprivation) and individual-level SDoH (e.g., housing 46 

instability). The 2015-2020 data were used for training and validation and 2021-2022 data 47 

for independent testing.  We developed a machine learning analytic pipeline, namely 48 

individualized polysocial risk score (iPsRS), to identify high social risk associated with 49 

hospitalizations in T2D patients, along with explainable AI (XAI) and fairness optimization.   50 

Results:  The study cohort included 10,192 real-world patients with T2D, with a mean 51 

age of 59 years and 58% female.  Of the cohort, 50% were non-Hispanic White, 39% 52 

were non-Hispanic Black, 6% were Hispanic, and 5% were other races/ethnicities.  Our 53 

iPsRS, including both contextual and individual-level SDoH as input factors, achieved a 54 

C statistic of 0.72 in predicting 1-year hospitalization after fairness optimization across 55 

racial and ethnic groups.  The iPsRS showed excellent utility for capturing individuals at 56 

high hospitalization risk because of SDoH, that is, the actual 1-year hospitalization rate in 57 
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the top 5% of iPsRS was 28.1%, ~13 times as high as the bottom decile (2.2% for 1-year 58 

hospitalization rate).   59 

Conclusion: Our ML pipeline iPsRS can fairly and accurately screen for patients who 60 

have increased social risk leading to hospitalization in real word patients with T2D.    61 
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Introduction 62 

Diabetes affects 529 million people worldwide and the number is projected to more than 63 

double in the next three decades, reaching 1.3 billion by 2050.1  Over 90% of diabetes 64 

cases are type 2 diabetes (T2D).2  Existing research has shown that social determinants 65 

of health (SDoH)—"the conditions in the environments where people are born, live, learn, 66 

work, play, worship, and age,”3,4 such as education, income,  and access to healthy food, 67 

play a critical role affecting a wide range of health outcomes, including the development 68 

and prognosis of T2D.5–7  Moreover, health disparities in T2D have been widely 69 

documented over the past decades.8–10  Racial and ethnic minority groups and individuals 70 

experiencing social disadvantages—often rooted in their SDoH—bear a disproportionate 71 

burden of T2D and its complications.11–13  As such, diabetes is a public crisis that must 72 

be managed with sensitivity to patients’ unmet social needs to improve T2D outcomes 73 

and health equity. 74 

 75 

The US health care system has begun embracing the need to address patients’ social 76 

needs, including screening for SDoH at the point of care.  For example, the Centers for 77 

Medicare & Medicaid Services (CMS) have made proposals to require SDoH screening 78 

(e.g., housing stability, food insecurity, and access to transportation) in annual beneficiary 79 

health risk assessments.  Despite this push, only 16%-24% of clinics and hospitals 80 

provide SDoH screening,15 and the actual utilization rate is very low.16  In a national 81 

network of community health centers, only 2% of patients were screened for SDoH, and 82 

most had only one SDoH documented.17  The reasons for the extremely low rate of SDoH 83 

screening are multiple. 18  First, existing screening tools are not automated, making them 84 



 6 

difficult to adapt to clinical workflows. 19,20 In addition, almost all tools were developed for 85 

universal screening but were not validated to predict specific conditions and outcomes 86 

such as diabetes.21–23  Furthermore, screening for individual SDoH items at the point of 87 

care is not only inefficient, increasing the provider documentation burden, but also 88 

inadequate given the known complex interplay among the SDoH.24–27  Figueroa et al. 89 

called for using a Polysocial Risk Score (PsRS) approach,28 yet existing PsRS studies 90 

include only individual-level SDoH examined in small cohort studies with limited 91 

generalizability.29–31  It is essential to consider both contextual (e.g., neighborhood 92 

deprivation) and individual-level SDoH (e.g., if the individual has instable housing) in one 93 

model given their known interactions, especially for T2D, as shown by us and 94 

others.24,25,27,32  95 

 96 

The increasing availability of real-world data (RWD)33,34—such as electronic health 97 

records (EHRs) and administrative claims —and the rapid advancement of artificial 98 

intelligence (AI), especially machine learning (ML) techniques to analyze RWD, provides 99 

an opportunity to develop novel personalized tools and generate real-world evidence for 100 

improving not only health outcomes but also health equity by addressing contextual-level 101 

and individual-level SDoH. However, key data and methodologic barriers exist. For 102 

example, RWD lack integration with contextual or individual-level SDoH data. Moreover, 103 

most studies that used ML models for clinical applications35 did not carefully consider the 104 

inherent biases in observational RWD, such as data bias where patients of low 105 

socioeconomic status may not be well-represented in EHRs due to their limited access to 106 

healthcare.36  A ML model naively trained on such RWD may deliver unfair outputs for 107 
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racial-ethnic minority groups and socioeconomically disadvantaged individuals36, leading 108 

to increased health disparities and inequity.  Moreover, the black box nature of ML models 109 

limits their adoption in clinical and health care applications; and explainable AI (XAI) 110 

techniques play a significant role in bridging the gap between complex ML models and 111 

human understanding.37–39  Shapley Additive exPlanations (SHAP)40 is an increasingly 112 

used, simple tool for teasing out the contribution of individual factors to a predictive model, 113 

nevertheless, it has a limited ability to explain how factors collectively affect an outcome, 114 

given the complex interactions among factors, such as complex interplay among 115 

individual-level and contextual-level SDoH.  Causal structure learning methods such as 116 

the classic PC algorithm41 can learn causal relationships among the factors in the format 117 

of a directed acyclic graph (DAG) from observational data, and reveal how these risk 118 

factors interact to influence outcomes, offering valuable insights into the underlying 119 

processes that drive the predictions.  120 

 121 

Therefore, in this study, we aimed to develop an EHR-based ML pipeline, namely iPsRS, 122 

for determining if increased social risk can predict hospitalization in T2D, with in-depth 123 

consideration of model fairness and explainability.  Specifically, we used RWD from the 124 

University of Florida Health (UF Health) EHRs and incorporated both individual-level and 125 

contextual-level SDoH for the iPsRS development, optimized its fairness across racial-126 

ethnic groups, and identified key causal factors that can be targeted for interventions. 127 

With these algorithms, our long-term goal is to develop an EHR-based individualized 128 

social risk management platform that can integrate social risk management into clinical 129 

care, leading to a necessary paradigm shift in US healthcare delivery.    130 
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 131 

Methods 132 

Study design and population 133 

We conducted a retrospective cohort study using 2015-2021 EHR data from the UF 134 

Health Integrated Data Repository (IDR), an enterprise data warehouse integrating 135 

different patient information systems across the UF Health system.  UF Health provides 136 

care to more than 1 million patients with over 3 million inpatient and outpatient visits each 137 

year with hospitals in Gainesville (Alachua County), Jacksonville (Duval County), and 138 

satellite clinics in other Florida counties.  In the current study, we included patients who 139 

were (1) aged 18 and older, (2) had a T2D diagnosis, identified as having at least one 140 

inpatient or outpatient T2D diagnosis (using ICD-9 codes 250.x0 or 250.x2, or ICD-10 141 

code E11) and ≥ 1 glucose-lowering drug prescription in (a case finding algorithm 142 

previously validated in EHRs with a positive predictive value [PPV] >94%)42, and (3) had 143 

at least one encounter during both baseline period and the follow up year.  The index date 144 

was defined as the first recorded T2D diagnosis in the UF Health IDR data.  We traced 145 

back 3 years prior to the index date as the baseline period to collect predictor information 146 

and followed up for 1 year to collect outcome (i.e., hospitalization) information (Figure 1). 147 

 148 

Study outcome  149 

The study outcome was all-cause hospitalization within 1 year after the index date, 150 

identified using the first occurrence of an inpatient encounter during the follow-up year 151 

(Figure 1).   152 

 153 
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Covariates 154 

Demographics and clinical characteristics 155 

We collected patient demographic (age, sex, and race-ethnicity) and clinical information 156 

(comorbidities, co-medications, lab values and clinical observations) for the baseline 157 

period.  Race-ethnicity included four categories, including non-Hispanic White (NHW), 158 

non-Hispanic Black (NHB), Hispanic, and 5% were other races/ethnicities.  The zip codes 159 

of patient residences were collected during the baseline period for contextual-level SDoH 160 

linkage. 161 

 162 

Individual-level SDoH via natural language processing 163 

We employed a natural language processing 43,44 pipeline that was developed by our 164 

group 45 to extract individual-level SDoH information from clinical notes in the baseline 165 

period, including education level (i.e., college or above, high school or lower, and 166 

unknown), employment (i.e., employed, unemployed, retired or disabled, and unknown), 167 

financial constraints (i.e., has financial constraints and unknown), housing stability (i.e., 168 

homeless or shelter, stable housing, and unknown), food security (i.e., having food 169 

insecurity and unknown), marital status (i.e., single, married or has partner, widow or 170 

divorced, and unknown), smoking status (i.e., ever smokers, never, and unknown), 171 

alcohol use (i.e., yes, no, and unknown), and drug abuse (i.e., yes, no and unknown). We 172 

also obtained insurance information (i.e., private insurance, Medicare, Medicaid, No-pay, 173 

unknown and others) from structured data. 174 

 175 

Contextual-level SDoH through spatiotemporal linkage with the external exposome data 176 
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To obtain the contextual-level SDoH, we extracted the built and social environment 177 

measures (n=114 variables) including information on food access, walkability, vacant land, 178 

neighborhood disadvantage, social capital, and crime and safety, from six well-validated 179 

sources with different spatiotemporal scales (Supplement Table S1) built upon our prior 180 

work.46,47 We spatiotemporally linked these measures to each patient based on their 181 

baseline residential address (i.e., patients’ 9-digit zip codes). Area-weighted averages 182 

were first calculated using a 250-mile buffer around the centroid of each 9-digit ZIP code. 183 

Time-weighted averages were then calculated, accounting for each individual’s 184 

residential address.   185 

 186 

Development of ML pipeline for iPsRS 187 

Figure 2 shows our overall analytics pipeline.  First, we imputed missing data and then 188 

adopted balance processing techniques (Step 1. Preprocessing).  After that, we trained 189 

a set of machine learning models by using grid search cross-validation to identify the best 190 

hyperparameters (Step 2. ML Modeling).  Next, we evaluated the model prediction 191 

performance (Step 3. Performance Assessment) and utilized XAI and causal structure 192 

learning techniques to identify important causal SDoH contributing to the hospitalization 193 

outcome (Step 4. Explanation).  Finally, we assessed the algorithmic fairness (Step 5. 194 

Fairness Assessment) and implemented a range of fairness mitigation algorithms to 195 

address the identified bias (Step 6. Fairness Mitigation). 196 

 197 

Data preprocessing 198 
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We imputed missing values using the “unknown” label for categorical variables and the 199 

mean for continuous variables.  Next, we proceeded to create dummy variables for the 200 

categorical variables and applied min-max normalization to the continuous variables.   201 

 202 

Machine learning model development for iPsRS  203 

We developed the iPsRS model for predicting hospitalizations in patients with T2D using 204 

three sets of input features: (1) individual-level SDoH only, (2) contextual-level SDoH only, 205 

and (3) individual- and contextual-level SDoH combined.  Two classes of commonly used 206 

ML approaches, linear and tree-based models, were employed.  For the linear models, 207 

we included a range of hyperparameters and penalty functions that can be utilized in 208 

constructing different models, including logistic regression48, lasso regression49, ridge 209 

regression50, and ElasticNet51.  For the tree-based models, we selected Extreme Gradient 210 

Boosting (XGBoost), which is widely recognized as one of the best-in-class algorithms for 211 

decision-tree-based models and has shown remarkable prediction performance in a wide 212 

range of studies52–57.  Following ML best practices, the study data set was split into a 213 

modeling set that includes 2015 to 2020 data, and an independent testing set that covers 214 

data in 2021.  In the modeling set, we further split the samples into training, validation, 215 

and testing sets with a ratio of 7:1:2.  A five-fold cross-validation grid search was executed 216 

on the training set to optimize the model parameters, and early stopping was adopted 217 

and performed on the validation set to avoid overfitting.  We employed random over-218 

sampling (ROS), random under-sampling (RUS), and under-sampling by matching on 219 

Charlson Comorbidity Index (CCI) to address data imbalance before model training.  The 220 
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performance of each model was evaluated by area under the receiver operating 221 

characteristic curve (AUROC), F1 score, precision, recall, and specificity.  222 

We acquired and assigned a hospitalization risk score using the iPsRS for each patient.  223 

We then divided the ranked risk scores into 11 risk groups (top 1-5th percentile, top 6-10th 224 

percentile, and following deciles), enabling us to examine the one-year hospitalization 225 

rate by risk group.58 226 

 227 

Explainable AI and causal estimates 228 

We first utilized SHAP40 – a commonly used XAI technique – to identify important SDoH 229 

features contributing to iPsRS predicting hospitalizations in T2D patients.  Further, we 230 

used a causal structure learning model – the Mixed Graphical Models with PC-Stable 231 

(MGM-PC-Stable)41,59–61 – to learn causal structures in directed acyclic graph (DAG) 232 

format explaining the potential causal relationships on how collectively the identified 233 

important SDoH features impact the hospitalization outcome in T2D patients.   234 

 235 

Algorithmic fairness optimization 236 

To assess the model fairness of iPsRS, we adopted seven popular algorithmic fairness 237 

metrics,36,62 including predictive parity, predictive equality (false positive rate [FPR] 238 

balance), equalized odds, conditional use accuracy equality, treatment equality, equality 239 

of opportunity (false negative rate [FNR] balance), and overall accuracy equality, detailed 240 

in Supplement S1.  We primarily focused on balancing the FNR (those whom the model 241 

deemed low risk but indeed are at high risk) across racial-ethnic groups, particularly NHB 242 

and Hispanic vs. NHW, because hospitalization is an adverse health outcome.  In terms 243 
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of fairness, we wanted to ensure iPsRS did not have higher FNR in the disadvantaged 244 

groups (i.e., Hispanic and NHB groups) compared to the reference group (i.e., NHW).  As 245 

there is no universally accepted cut-off value of fairness, we considered the parity 246 

measure of 0.80-1.25 as statistically fair and highlighted values outside this range.63   247 

 248 

Decreasing the FNR of iPsRS means minimizing the false negative errors (i.e., those 249 

whom the model deemed low risk but indeed are at high risk) in the early detection of 250 

social risks that can lead to hospitalization. We then employed different bias mitigation 251 

techniques to optimize the algorithmic fairness of iPsRS, including pre-process (Disparate 252 

Impact Remover64 [DIR]), in-process (Adversarial Debiasing65 [ADB]), and post-process 253 

(Calibrated Equalized Odds Postprocessing66 [CEP]) approaches.  We goal was to 254 

identify the final model with a good balance between prediction utility and fairness. 255 

 256 

Python version 3.7 with the Python libraries Sciki-learn67, Imbalanced-learn68, and 257 

statsmodels69 were used for data processing, modeling, and result analysis tasks, AI 258 

Fairness 36070 for model fairness mitigation tasks, and Tetrad71 for causal structure 259 

learning. 260 

 261 

Results 262 

Descriptive statistics of the study cohort  263 

Our final analysis comprised 10,192 eligible T2D patients in the cohort.  Table 1 highlights 264 

the demographics, individual-level SDoH, and key contextual-level SDoH of the study 265 

population by race-ethnicity.  The mean age was 58 (± 13) years, and 58% were women.  266 
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Of the cohort, 50% were NHW, 39% were NHB, 6% were Hispanic, and 5% were other 267 

races/ethnicities; 41% were enrolled in Medicare, 15% in Medicaid, 31% in private 268 

insurance, and 5.7% were uninsured.  Compared with NHW patients, NHB patients were 269 

younger (54.6 vs. 58.5 years, p < 0.01) and more likely to be covered by Medicaid (41% 270 

vs. 28%, p < 0.01). We identified that 20.8% of patients were single, 58.5% were married 271 

or in a relationship, and 20.1% were widowed or divorced.  Crime rates were lower in 272 

neighborhoods predominantly NHW than neighborhoods with higher diversity. 273 

 274 

iPsRS prediction model of hospitalizations in T2D patients. 275 

The best-performing models generated by XGBoost and ridge regression with three 276 

different sets of SDoH (individual-level SDoH only, contextual-level SDoH only and both 277 

combined) are shown in Figure 3.  The models including individual-level SDoH only had 278 

reasonably good prediction utility (AUC 0.70-0.71) and adding contextual-level SDoH 279 

modestly improved the model performance (AUC 0.72), while contextual-level SDoH by 280 

themselves had suboptimal predicting performance (AUC 0.60-0.62).   281 

 282 

In the independent testing set (the 2021 data), we calculated the one-year hospitalization 283 

rates by decile of the XGBoost-generated iPsRS, showing an excellent utility for capturing 284 

individuals at high hospitalization risk due to SDoH (i.e., one-year hospitalization risk in 285 

the top 5% of iPsRS was 28.1%, ~13 times higher than the bottom decile, Figure 4).  In 286 

a multiple logistic regression model, after adjusting for patients’ demographics and clinical 287 

characteristics, iPsRS explained 33.8% of the risk of 1-year hospitalization, per decile 288 



 15 

increase of the iPsRS, the hospitalization risk increased by 22% (adjusted odds ratio=1.22, 289 

95%CI 1.15-1.29).   290 

 291 

Explainable AI to identify important SDoH contributing to iPsRS predicting 292 

hospitalization in T2D patients 293 

XGBoost (Figure 5) and Ridge model (Supplement S1) identified similar important 294 

features ranked by SHAP values.  Housing stability status emerged as the most predictive 295 

feature in both models, followed by insurance type, share of tract population that are 296 

seniors beyond ½ mile from supermarket (food desert areas), and smoking status.   297 

 298 

Figure 6 displays our exploratory analysis with causal structure learning, applying MGM-299 

PC-Stable method to build the causal DAGs of the key SDoH (i.e., 18 unique SDoH 300 

features by combining the top-15 features from both the XGBoost and ridge regression 301 

models), resulting in a causal graph with 19 nodes (i.e., 18 SDoH and the outcome) and 302 

36 directed edges.  We identified that the aggravated assault rate in the communities 303 

where patients live is closely, causally related to the hospitalization outcome (i.e., with 304 

having a direct causal connection to hospitalization in the DAG).  Furthermore, the 305 

community’s rate of aggravated assault can be viewed as a common cause of both 306 

housing stability and hospitalization, forming a fork structure where housing stability and 307 

hospitalization are dependent and correlated but conditionally independent given the 308 

aggravated assault rate.  This finding aligns with the insights derived from SHAP values 309 

obtained from both XGBoost and rigid leaner models, which suggests that an individual-310 

level SDoH, housing stability, plays a significant role in T2D hospitalization, but this 311 
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influence is conditioned by the contextual-level SDoH, specifically the rate of aggravated 312 

assault in our case.   313 

 314 

Fairness assessment and mitigation 315 

Figure 7 displays the FNR curves across the racial-ethnic groups, where XGBoost 316 

(Figure 7-a) appears to be fairer than the linear model (Figure 7-b).  The linear model 317 

shows a greater NHB and Hispanic groups than NHW (Table 2), suggesting the model is 318 

biased against NHB and Hispanic groups compared to NHW.  The overall assessment of 319 

all seven-fairness metrics can be found in Supplement (Table S4). 320 

Figure 8 shows the improvement status of fairness of the ridge model after employing 321 

the different bias mitigation techniques. Overall, DIR demonstrated an excellent balancing 322 

prediction utility (AUCROC=0.71 vs. 0.72 of the original model) and fairness (FNR ratio 323 

decreased from xx to 1.07) between the NHB vs. NHW. 324 

 325 

Discussion 326 

In this project, we developed a fair, explainable ML pipeline, namely iPsRS, for identifying 327 

how social risk impacts hospitalizations in patients with T2D.  We used UF Health EHR 328 

data, including 10,192 real-world patients with T2D, and incorporated both individual-level 329 

and contextual-level SDoH.  Our results demonstrated that iPSRS is a promising tool for 330 

accurately and fairly detecting patients with a higher social risk for poor outcomes, 331 

providing explainable information on focal targets for future interventions.  332 

 333 
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Addressing patients’ unmet social needs in health care settings is a complex task due to 334 

1) the insufficient SDoH records in EHRs (e.g., lack of use of Z codes for SDoH-335 

associated diagnosis,72 and extremely low utilization of existing SDoH screening surveys 336 

embedded in EHRs17), 2) the concerns about the extra burden on providers11,73,74 and 337 

potential harms on patients20,22,23,75,  3) the potential data bias associated with SDoH that 338 

exists within subpopulations (e.g., racial and ethnic minority groups12), and  4) the 339 

observational natural of real-world EHR data (e.g., confounding and selection bias).76   340 

Our EHR-based iPsRS pipeline was carefully designed to overcome the abovementioned 341 

limitations. For example, our iPsRS considers both contextual SDoH (by spatiotemporally 342 

linking patients’ EHR with the external exposome data using residential histories32) and 343 

individual-level SDoH (via extracting from clinical notes using our established NLP 344 

pipeline45).  Our analyses suggested that adding contextual SDoH improved the 345 

prediction of hospitalization risk in T2D compared to the individual-level SDoH-only 346 

prediction.  In addition, we employed ML approaches in EHR data to develop the iPsRS 347 

that can be embedded in EHR systems and automated for applications to minimize the 348 

extra burden of health care providers.  Moreover, our model is designed to generate an 349 

initial iPsRS based on historical EHR data at the beginning of a medical encounter to 350 

guide targeted, in-person conversations between the patient and provider to collect 351 

additional SDoH information and update the iPsRS as needed,  which has been carefully 352 

considered for its integration into existing clinical workflow to avoid potential harms to 353 

patients imposed by survey-type SDoH screenings and to promote patient-provider 354 

shared decision making on addressing patients’ unmet social needs. 20,22,23,75  355 

 356 
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With applications of multiple XAI and causal learning techniques. e.g., SHAP 40 values to 357 

identify key predictors and causal structure learning 41,59–61 to identify causal pathways, 358 

our iPsRS is able to generate interpretable outputs and has shown its ability to identify 359 

potential focal targets for intervention and policy programs to address patients’ unmet 360 

social needs essential to their health outcomes.  Specifically, our SHAP value and causal 361 

structure learning model consistently identified housing instability as one of the key, 362 

modifiable factors contributing to the increased risk of hospitalization in patients with T2D.  363 

These results demonstrate a real-world use case of our iPsRS that can be used to identify 364 

SDoH-based interventions tailored to individual patients’ needs. 365 

 366 

Another strength of our study is that we assessed the algorithmic fairness of the iPsRS 367 

and mitigated the identified bias to ensure equitable prediction across racial/ethnic groups 368 

and other sensitive attributes (i.e., sex).  After fairness assessment, we identified that the 369 

ridge regression model is biased against racial and ethnic minority groups. Its prediction 370 

produced a higher FNR for both NHB and Hispanic groups compared to the NHW group, 371 

that is, NHB and Hispanic individuals who were truly at high risk of hospitalizations are 372 

more likely to be misclassified as low risk, thus more likely to miss the subsequent 373 

intervention opportunities.  We applied pre-processing (DIR), in-processing (ADB), and 374 

post-processing (CEP) methods to comprehensively evaluate the effect approach to 375 

optimize iPsRS fairness.  In our final model, after applying the DIR approach for bias 376 

mitigation, the iPsRS achieved an excellent prediction utility-fairness balance. That is, the 377 

AUROC was comparable (0.71 vs. 0.72 of the original model), and equal opportunity of 378 
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FNR between the NHB and NHW much improved (e.g., FNR ratio decreased from 1.44 379 

to 1.07).   380 

 381 

We consider our PsRS pipeline has important clinical implications. Our model showed an 382 

excellent utility for capturing individuals at high hospitalization risk due to SDoH (i.e., one-383 

year hospitalization risk in the top 5% of iPsRS was 28.1%, approximately13 times higher 384 

than the bottom decile).  Our iPsRS explained 33.8% of the risk of 1-year hospitalization 385 

after adjusting for patients’ demographics and clinical characteristics, suggesting that 386 

33.8% of increased hospitalization risk in T2D can be attributed to patients’ unmet social 387 

needs, and factors outside patients’ clinical profile.  The current US health care system 388 

faces critical barriers to addressing patients’ social risks essential to health.77  Existing 389 

SDoH screening tools and interventions have limited efficiency and effectiveness for 390 

improving health outcomes and health equity as most of them are not tailored to address 391 

specific conditions and outcomes (e.g., T2D), and there is insufficient evidence on 392 

effective SDoH interventions, leading to a dearth of actionable knowledge (e.g., which 393 

SDoH should be addressed and prioritized among which individuals and their effects on 394 

T2D outcomes and disparities).  RWD and AI/ML offer the opportunity to develop 395 

innovative, digital approaches to integrate social risk management into T2D care and 396 

promote a learning health community. In this project, we addressed critical methodologic 397 

barriers, including shortcomings in existing RWD infrastructure for studying SDoH, and 398 

the need for an iPsRS approach for accurate, efficient, fair, and explainable social risk 399 

screening.  With these algorithms, our next step is to co-design with diverse stakeholders 400 

an EHR-based individualized social risk management platform that can integrate social 401 
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risk management into clinical care, leading to a necessary paradigm shift in US healthcare 402 

delivery.   This tool also provides a method of consolidating multiple components of 403 

assessing SDoH into a single, comparable score which would likely increase the 404 

likelihood of utilization by clinicians at the point of care. 405 

 406 

Our study is subject to several limitations.  First, the analysis conducted in our study was 407 

based on a cohort of patients with T2D in the state of Florida.  This limited geographical 408 

scope may impact the generalizability of our findings to populations from other regions.  409 

However, our real-world T2D patients from Florida were highly diverse (e.g., 39% of Black 410 

individuals) with a mixture of rural and urban populations, reflecting the demographic 411 

changes occurring across the US.  Nevertheless, future research should aim to broaden 412 

the generalizability of our iPsRS through federated learning and data from different 413 

geographic regions.78  Second, to ensure the automated feature, we only integrated 414 

individual-level SDoH variables that were already included in the NLP extracting SDoH 415 

pipeline (SODA45) and thus some of the important diabetes-related factors were missing, 416 

such as stress.  We will continue developing NLP pipelines for expanding the list of SDoH 417 

extraction and updating our iPsRS model.  Third, we based on ML practices to select and 418 

tune the proposed iPsRS, hence the searching space of models and hyperparameters is 419 

constrained.  We plan to utilize AutoML pipelines to enhance model accuracy and 420 

reliability, while simultaneously minimizing the time and resources required to develop the 421 

next-generation model. 422 

 423 
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In this project, we developed an ML-based analytic pipeline, namely iPsRS, for identifying 424 

the increased social risk of hospitalizations in real-world patients with T2D.  Our iPsRS 425 

has been shown as a promising tool to accurately and fairly identify patients’ unmet social 426 

needs essential to adverse health outcomes.  The iPsRS have the great potential to be 427 

integrated into EHR systems and clinical workflow and eventually augment current 428 

screening programs for SDoH to provide physicians with an efficient and effective tool to 429 

address SDoH in clinical settings.    430 



 22 

Author Contributions: conceptualization, JG, JB and WTD; methodology, YH, JG and 431 

JB; formal analysis, YH; data curation, ZF, YL, WHC, and HT; resources, JG and JB; 432 

writing – initial draft, YH and JG; critical review and editing, JG, JB, WTD, ZF, YL, WHC, 433 

HT, LB, AAS, ER, and EAS; supervision: JB. All authors have read and agreed to the 434 

published version of the manuscript. 435 

Funding: NIH/NIDDK (R01DK133465) 436 

Institutional Review Board Statement: Exempt approved by University of Florida IRB 437 

(IRB202201196)  438 

Informed Consent Statement: Not applicable 439 

Data Availability Statement: The data presented in this study are available on request 440 

from the corresponding author. The data are not publicly available due to privacy 441 

restrictions. 442 

Code Availability Statement: The codes presented in this study are available on 443 

request from the corresponding author. 444 

Competing Interests: The authors declare no conflict of interest relevant to the study. 445 

  446 



 23 

Reference 447 

1. Ong KL, Stafford LK, McLaughlin SA, et al. Global, regional, and national burden of 448 

diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic 449 

analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-450 

234. 451 

2. CDC. Type 2 Diabetes. Centers for Disease Control and Prevention. Published 2022. 452 

Accessed February 14, 2023. https://www.cdc.gov/diabetes/basics/type2.html 453 

3. Social Determinants of Health. Accessed March 9, 2023. 454 

https://health.gov/healthypeople/priority-areas/social-determinants-health 455 

4. Marmot M, Friel S, Bell R, Houweling TAJ, Taylor S, Commission on Social 456 

Determinants of Health. Closing the gap in a generation: health equity through action 457 

on the social determinants of health. Lancet. 2008;372(9650):1661-1669. 458 

5. Bryant T, Daiski I, Lines E, Others. Type 2 diabetes: poverty, priorities and policy: the 459 

social determinants of the incidence and management of Type 2 diabetes 460 

[monograph on the Internet]. Toronto, Ontario, Canada: York University School of 461 

Health Policy and Management; 2010 Mar 16 [cited 2011 Sep 20]. 462 

6. Clark ML, Utz SW. Social determinants of type 2 diabetes and health in the United 463 

States. World J Diabetes. 2014;5(3):296-304. 464 

7. Hill J, Nielsen M, Fox MH. Understanding the social factors that contribute to diabetes: 465 

a means to informing health care and social policies for the chronically ill. Perm J. 466 

2013;17(2):67-72. 467 



 24 

8. Spanakis EK, Golden SH. Race/ethnic difference in diabetes and diabetic 468 

complications. Curr Diab Rep. 2013;13(6):814-823. 469 

9. Kyrou I, Tsigos C, Mavrogianni C, et al. Sociodemographic and lifestyle-related risk 470 

factors for identifying vulnerable groups for type 2 diabetes: a narrative review with 471 

emphasis on data from Europe. BMC Endocr Disord. 2020;20(Suppl 1):134. 472 

10. Kelly SJ, Ismail M. Stress and Type 2 Diabetes: A Review of How Stress Contributes 473 

to the Development of Type 2 Diabetes. Annu Rev Public Health. 2015;36(1):441-474 

462. 475 

11. Hill-Briggs F, Adler NE, Berkowitz SA, et al. Social Determinants of Health and 476 

Diabetes: A Scientific Review. Diabetes Care. 2020;44(1):258-279. 477 

12. Hill-Briggs F, Ephraim PL, Vrany EA, et al. Social Determinants of Health, Race, and 478 

Diabetes Population Health Improvement: Black/African Americans as a Population 479 

Exemplar. Curr Diab Rep. 2022;22(3):117-128. 480 

13. Ogunwole SM, Golden SH. Social Determinants of Health and Structural Inequities—481 

Root Causes of Diabetes Disparities. Diabetes Care. 2020;44(1):11-13. 482 

14. Landauer R, McCrady E, Garfield K. Medicare’s Current Strategy For Health-Related 483 

Social Needs Is Necessary But Not Sufficient. Health Affairs Forefront. 484 

doi:10.1377/forefront.20220901.523201 485 

15. Fraze TK, Brewster AL, Lewis VA, Beidler LB, Murray GF, Colla CH. Prevalence of 486 

screening for food insecurity, housing instability, utility needs, transportation needs, 487 



 25 

and interpersonal violence by US physician practices and hospitals. JAMA Netw 488 

Open. 2019;2(9):e1911514. 489 

16. LaForge K, Gold R, Cottrell E, et al. How 6 organizations developed tools and 490 

processes for social determinants of health screening in primary care: An overview. 491 

J Ambul Care Manage. 2018;41(1):2-14. 492 

17. Cottrell EK, Dambrun K, Cowburn S, et al. Variation in electronic health record 493 

documentation of social determinants of health across a national network of 494 

community health centers. Am J Prev Med. 2019;57(6 Suppl 1):S65-S73. 495 

18. Henrikson NB, Blasi PR, Dorsey CN, et al. Psychometric and pragmatic properties of 496 

social risk screening tools: A systematic review. Am J Prev Med. 2019;57(6 Suppl 497 

1):S13-S24. 498 

19. Billioux A, Centers for Medicare and Medicaid Services, Verlander K, et al. 499 

Standardized screening for health-related social needs in clinical settings: The 500 

accountable health communities screening tool. NAM perspect. 2017;7(5). 501 

doi:10.31478/201705b 502 

20. Tong ST, Liaw WR, Kashiri PL, et al. Clinician experiences with screening for social 503 

needs in primary care. J Am Board Fam Med. 2018;31(3):351-363. 504 

21. Cantor MN, Thorpe L. Integrating data on social determinants of health into electronic 505 

health records. Health Aff (Millwood). 2018;37(4):585-590. 506 



 26 

22. Eder M, Henninger M, Durbin S, et al. Screening and interventions for social risk 507 

factors: Technical brief to support the US Preventive Services Task Force. JAMA. 508 

2021;326(14):1416-1428. 509 

23. Theis RP, Blackburn K, Lipori G, et al. Implementation context for addressing social 510 

needs in a learning health system: a qualitative study. J Clin Transl Sci. 511 

2021;5(1):e201. 512 

24. Guo J, Hu H, Zheng Y, et al. Interplay of Contextual- And Personal-level Social 513 

Determinants Of Health And Real-world Adoption Of Novel Treatments For Improving 514 

Cardiovascular Outcomes In Type 2 Diabetes. Circulation. 2022;145(Suppl_1):A003-515 

A003. 516 

25. Mayne SL, Hicken MT, Merkin SS, et al. Neighbourhood racial/ethnic residential 517 

segregation and cardiometabolic risk: the multiethnic study of atherosclerosis. J 518 

Epidemiol Community Health. 2019;73(1):26-33. 519 

26. Singh GK. Area deprivation and widening inequalities in US mortality, 1969-1998. Am 520 

J Public Health. 2003;93(7):1137-1143. 521 

27. Bilal U, Auchincloss AH, Diez-Roux AV. Neighborhood environments and diabetes 522 

risk and control. Curr Diab Rep. 2018;18(9):62. 523 

28. Figueroa JF, Frakt AB, Jha AK. Addressing Social Determinants of Health: Time for 524 

a Polysocial Risk Score. JAMA. 2020;323(16):1553-1554. 525 

29. Ping Y, Oddén MC, Stawski RS, Abdel Magid HS, Wu C. Creation and validation of 526 

a polysocial score for mortality among community-dwelling older adults in the USA: 527 



 27 

the health and retirement study. Age Ageing. Published online August 28, 2021. 528 

doi:10.1093/ageing/afab174 529 

30. Javed Z, Valero-Elizondo J, Dudum R, et al. Development and validation of a 530 

polysocial risk score for atherosclerotic cardiovascular disease. Am J Prev Cardiol. 531 

2021;8:100251. 532 

31. He Y, Lakhani CM, Rasooly D, Manrai AK, Tzoulaki I, Patel CJ. Comparisons of 533 

polyexposure, polygenic, and clinical risk scores in risk prediction of type 2 diabetes. 534 

Diabetes Care. 2021;44(4):935-943. 535 

32. Li Y, Hu H, Zheng Y, et al. Impact of contextual-level social determinants of health on 536 

newer antidiabetic drug adoption in patients with type 2 diabetes. Int J Environ Res 537 

Public Health. 2023;20(5). doi:10.3390/ijerph20054036 538 

33. Concato J, Corrigan-Curay J. Real-world evidence - where are we now? N Engl J 539 

Med. 2022;386(18):1680-1682. 540 

34. Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world evidence - what is it and 541 

what can it tell us? N Engl J Med. 2016;375(23):2293-2297. 542 

35. Huang J, Galal G, Etemadi M, Vaidyanathan M. Evaluation and Mitigation of Racial 543 

Bias in Clinical Machine Learning Models: Scoping Review. JMIR Med Inform. 544 

2022;10(5):e36388. 545 

36. Xu J, Xiao Y, Wang WH, et al. Algorithmic fairness in computational medicine. 546 

eBioMedicine. 2022;84. doi:10.1016/j.ebiom.2022.104250 547 



 28 

37. Saraswat D, Bhattacharya P, Verma A, et al. Explainable AI for Healthcare 5.0: 548 

Opportunities and Challenges. IEEE Access. 2022;10:84486-84517. 549 

38. Loh HW, Ooi CP, Seoni S, Barua PD, Molinari F, Acharya UR. Application of 550 

explainable artificial intelligence for healthcare: A systematic review of the last 551 

decade (2011–2022). Comput Methods Programs Biomed. 2022;226:107161. 552 

39. Payrovnaziri SN, Chen Z, Rengifo-Moreno P, et al. Explainable artificial intelligence 553 

models using real-world electronic health record data: a systematic scoping review. 554 

J Am Med Inform Assoc. 2020;27(7):1173-1185. 555 

40. Lundberg S, Lee SI. A unified approach to interpreting model predictions. arXiv [csAI]. 556 

Published online May 22, 2017. Accessed January 15, 2023. 557 

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67558 

767-Abstract.html 559 

41. Spirtes P, Glymour C, Scheines R. Causation, Prediction, and Search. Springer New 560 

York 561 

42. Wiese AD, Roumie CL, Buse JB, et al. Performance of a computable phenotype for 562 

identification of patients with diabetes within PCORnet: The Patient-Centered Clinical 563 

Research Network. Pharmacoepidemiol Drug Saf. 2019;28(5):632-639. 564 

43. Yu Z, Yang X, Guo Y, Bian J, Wu Y. Assessing the Documentation of Social 565 

Determinants of Health for Lung Cancer Patients in Clinical Narratives. Front Public 566 

Health. 2022;10:778463. 567 



 29 

44. Yu Z, Yang X, Dang C, et al. A Study of Social and Behavioral Determinants of Health 568 

in Lung Cancer Patients Using Transformers-based Natural Language Processing 569 

Models. AMIA Annu Symp Proc. 2021;2021:1225-1233. 570 

45. Yu Z, Yang X, Dang C, et al. SODA: A Natural Language Processing Package to 571 

Extract Social Determinants of Health for Cancer Studies. arXiv [csCL]. Published 572 

online December 6, 2022. http://arxiv.org/abs/2212.03000 573 

46. Zhang H, Hu H, Diller M, et al. Semantic standards of external exposome data. 574 

Environ Res. 2021;197:111185. 575 

47. Hu H, Zheng Y, Wen X, et al. An external exposome-wide association study of 576 

COVID-19 mortality in the United States. Sci Total Environ. 2021;768:144832. 577 

48. Tolles J, Meurer WJ. Logistic Regression: Relating Patient Characteristics to 578 

Outcomes. JAMA. 2016;316(5):533-534. 579 

49. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc Series 580 

B Stat Methodol. 1996;58(1):267-288. 581 

50. Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal 582 

Problems. Technometrics. 1970;12(1):55-67. 583 

51. Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. J R Stat 584 

Soc Series B Stat Methodol. 2005;67(2):301-320. 585 



 30 

52. Shin J, Lee J, Ko T, Lee K, Choi Y, Kim HS. Improving Machine Learning Diabetes 586 

Prediction Models for the Utmost Clinical Effectiveness. J Pers Med. 2022;12(11). 587 

doi:10.3390/jpm12111899 588 

53. Zhao Y, Li X, Li S, et al. Using Machine Learning Techniques to Develop Risk 589 

Prediction Models for the Risk of Incident Diabetic Retinopathy Among Patients With 590 

Type 2 Diabetes Mellitus: A Cohort Study. Front Endocrinol . 2022;13:876559. 591 

54. Deberneh HM, Kim I. Prediction of Type 2 Diabetes Based on Machine Learning 592 

Algorithm. Int J Environ Res Public Health. 2021;18(6). doi:10.3390/ijerph18063317 593 

55. Li Y, Wang H, Luo Y. Improving Fairness in the Prediction of Heart Failure Length of 594 

Stay and Mortality by Integrating Social Determinants of Health. Circ Heart Fail. 595 

2022;15(11):e009473. 596 

56. Yang H, Li J, Liu S, Yang X, Liu J. Predicting Risk of Hypoglycemia in Patients With 597 

Type 2 Diabetes by Electronic Health Record-Based Machine Learning: 598 

Development and Validation. JMIR Med Inform. 2022;10(6):e36958. 599 

57. Wang L, Wang X, Chen A, Jin X, Che H. Prediction of Type 2 Diabetes Risk and Its 600 

Effect Evaluation Based on the XGBoost Model. Healthcare (Basel). 2020;8(3). 601 

doi:10.3390/healthcare8030247 602 

58. Lockhart RS. Introduction to Statistics and Data Analysis: For the Behavioral 603 

Sciences. Macmillan; 1998. 604 

59. Lee JD, Hastie TJ. Learning the Structure of Mixed Graphical Models. J Comput 605 

Graph Stat. 2015;24(1):230-253. 606 



 31 

60. Raghu VK, Poon A, Benos PV. Evaluation of Causal Structure Learning Methods on 607 

Mixed Data Types. Proc Mach Learn Res. 2018;92:48-65. 608 

61. Colombo D, Maathuis MH. Order-independent constraint-based causal structure 609 

learning. J Mach Learn Res. Published online 2014. 610 

https://www.jmlr.org/papers/volume15/colombo14a/colombo14a.pdf 611 

62. Castelnovo A, Crupi R, Greco G, Regoli D, Penco IG, Cosentini AC. A clarification of 612 

the nuances in the fairness metrics landscape. Sci Rep. 2022;12(1):1-21. 613 

63. Chouldechova A. Fair prediction with disparate impact: A study of bias in recidivism 614 

prediction instruments. Big Data. 2017;5(2):153-163. 615 

64. Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S. 616 

Certifying and Removing Disparate Impact. In: Proceedings of the 21th ACM SIGKDD 617 

International Conference on Knowledge Discovery and Data Mining. KDD ’15. 618 

Association for Computing Machinery; 2015:259-268. 619 

65. Zhang BH, Lemoine B, Mitchell M. Mitigating Unwanted Biases with Adversarial 620 

Learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and 621 

Society. AIES ’18. Association for Computing Machinery; 2018:335-340. 622 

66. Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ. On Fairness and 623 

Calibration. In: Guyon I, Luxburg UV, Bengio S, et al., eds. Advances in Neural 624 

Information Processing Systems. Vol 30. Curran Associates, Inc.; 2017. 625 

https://proceedings.neurips.cc/paper/2017/file/b8b9c74ac526fffbeb2d39ab038d1cd626 

7-Paper.pdf 627 



 32 

67. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in 628 

Python. J Mach Learn Res. 2011;12(85):2825-2830. 629 

68. Lemaitre G, Nogueira F, Aridas CK. Imbalanced-learn: A python toolbox to tackle the 630 

curse of imbalanced datasets in machine learning. arXiv [csLG]. Published online 631 

September 21, 2016. Accessed February 8, 2023. 632 

https://www.jmlr.org/papers/volume18/16-365/16-365.pdf 633 

69. Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling with python. 634 

In: Proceedings of the 9th Python in Science Conference. SciPy; 2010. 635 

doi:10.25080/majora-92bf1922-011 636 

70. Bellamy RKE, Dey K, Hind M, et al. AI Fairness 360: An extensible toolkit for detecting 637 

and mitigating algorithmic bias. IBM J Res Dev. 2019;63(4/5):4:1-4:15. 638 

71. Ramsey JD, Zhang K, Glymour M, et al. TETRAD - A TOOLBOX FOR C AUSAL D 639 

ISCOVERY. Accessed August 5, 2023. 640 

https://www.atmos.colostate.edu/~iebert/PAPERS/CI2018_paper_35.pdf 641 

72. Guo Y, Chen Z, Xu K, et al. International Classification of Diseases, Tenth Revision, 642 

Clinical Modification social determinants of health codes are poorly used in electronic 643 

health records. Medicine (Baltimore). 2020;99(52):e23818. 644 

73. Weinstein E, Galindo RJ, Fried M, Rucker L, Davis NJ. Impact of a focused nutrition 645 

educational intervention coupled with improved access to fresh produce on 646 

purchasing behavior and consumption of fruits and vegetables in overweight patients 647 

with diabetes mellitus. Diabetes Educ. 2014;40(1):100-106. 648 



 33 

74. Egede LE, Walker RJ, Linde S, et al. Nonmedical Interventions For Type 2 Diabetes: 649 

Evidence, Actionable Strategies, And Policy Opportunities. Health Aff . 650 

2022;41(7):963-970. 651 

75. Schleifer D. It’s about Trust: Low-Income Parents’ Perspectives on How Pediatricians 652 

Can Screen for Social Determinants of Health. Health Serv Res. Published online 653 

2020. https://onlinelibrary.wiley.com/doi/abs/10.1111/1475-654 

6773.13524?casa_token=2BUO6MQv4lAAAAAA:83viGh_JmS7XGAFeG8b08XBR0655 

JlRW9PoRs6jVXuqSNGfnrOxuZ9Ys1TM4t_8vf-3p7H_TQVravdQybvd 656 

76. Hammer GP, du Prel JB, Blettner M. Avoiding bias in observational studies: part 8 in 657 

a series of articles on evaluation of scientific publications. Dtsch Arztebl Int. 658 

2009;106(41):664-668. 659 

77. The Physicians Foundation 2022 Physician Survey: Part 1 Examining How the Social 660 

Drivers of Health Affect the Nation’s Physicians and their Patients. The Physicians 661 

Foundation. Published April 5, 2022. Accessed June 12, 2022. 662 

https://physiciansfoundation.org/physician-and-patient-surveys/the-physicians-663 

foundation-2022-physician-survey-part-1/ 664 

78. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. Federated Learning for 665 

Healthcare Informatics. Int J Healthc Inf Syst Inform. 2021;5(1):1-19.666 



 34 

 

Figure 1 Processing workflow of the University of Florida integrated data repository type 2 diabetes cohort and the patient timeline. 
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Figure 2 Data analytics pipeline. 
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(a) XGBoost 

 

(b) Ridge regression 

Figure 3 Model performance assessment of XGBoost and ridge regression. 

 

 
Figure 4 One-year hospitalization risk by iPsRS decile. 
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Figure 5 Feature importance analysis with SHAP values.  SHAP values from the original XGBoost.  We removed the features with an “unknown” 
category.
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Figure 6 Causal graph generated by MGM-PC-Stable in the independent testing set. The yellow nodes 

present demographics, blue nodes stand for contextual-level SDoH and green nodes mean the individual-

level SDoH, and the pink node indicates the outcome. 

 

 

(a) XGBoost 

 

(b) Ridge regression 

Figure 7 False negative rate (FNR) curve between different populations. 

  



 39 

 

(a) Mitigation results on the NHB vs NHW.  CEP had the best fairness mitigation ability but led to a drastic 

decrease in model performance from 0.7220 to 0.5501, measured by AUROC, which is unacceptable.  

DIR and ADB resulted in an acceptable decrease in prediction performance, particularly with DIR's 

AUROC decreasing from 0.7220 to 0.7100. 

 

(b) Mitigation results on the Hispanic vs NHW. DIR and ADB struggled to handle the fairness mitigation. 

These methods turned to favoritism towards the protected group (Hispanic), resulting in biased 

predictions for the NHW group. 



 40 

Figure 8 NHB (protected group) vs. NHW (privileged group) and Hispanic vs. NHW, respectively.  The 

ideally fair line is represented by the blue line, while the range of statistically fair is shown by the red dots.  

the ridge regression model initially fell outside the range of statistically fair but became fairer when we 

employed the fairness mitigation methods CEP, DIR, and ADB, resulting in equal opportunity regarding 

FNR raito. 
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Table 1 Summary of demographic, individual-level SDoH, and key contextual-level SDoH of the study 

population. 

 Overall (n=10192) NHW (n=5133) NHB (n=4011) 
Hispanics 

(n=495) 
Others (n=553) p-value 

Age 58.45 60.19 56.39 55.95 59.42 0.0049 

Sex      0.0018 

Male 4267 (41.9%) 2470 (48.1%) 1330 (33.2%) 212 (42.8%) 255 (46.1%)  

Female 5925(58.1%) 2663 (51.9%) 2681 (66.8%) 283 (57.2%) 298 (53.9%)  

Race/ethnicity      <0.001 

NHB 4011 (39.4%) 0 (0.0%) 4011 (100.0%) 0 (0.0%) 0 (0.0%)  

NHW 5133 (50.4%) 5133 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)  

Hispanics 495 (4.9%) 0 (0.0%) 0 (0.0%) 495 (100.0%) 0 (0.0%)  

Others 553 (5.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 553 (100.0%)  

Insurance type      <0.001 

Medicare 4183 (41.0%) 2214 (43.1%) 1610 (40.1%) 170 (34.3%) 189 (34.2%)  

Private 3169 (31.1%) 1663 (32.4%) 1144 (28.5%) 148 (29.9%) 214 (38.7%)  

Medicaid 1511 (14.8%) 558 (10.9%) 804 (20.0%) 97 (19.6%) 52 (9.4%)  

Nopay 579 (5.7%) 228 (4.4%) 285 (7.1%) 38 (7.7%) 28 (5.1%)  

Unknown 537 (5.3%) 362 (7.1%) 84 (2.1%) 32 (6.5%) 59 (10.7%)  

Others 213 (2.1%) 108 (2.1%) 84 (2.1%) 10 (2.0%) 11 (2.0%)  

Marites status      <0.001 

Single 2116 (20.8%) 743 (14.5%) 1221 (30.4%) 80 (16.2%) 72 (13.0%)  

Married or has partner 3570(35.0%) 2073 (40.4%) 1069 (26.7%) 179(36.2%) 249 (45.0%)  

Widow or divorced 2050 (20.1%) 888 (17.3%) 1052 (26.2%) 65 (13.1%) 45 (8.1%)  

Unknown 2456 (24.1%) 1429 (27.8%) 669 (16.7%) 171 (34.5%) 187 (33.8%)  

Smoking status      <0.001 

Ever smokers 4096 (40.2%) 2331 (45.4%) 1473 (36.7%) 149 (30.1%) 143 (25.9%)  

Never 5588 (54.8%) 2525 (49.2%) 2380 (59.3%) 321 (64.8%) 362 (65.5%)  

Unknown 508(5.0%) 277(5.4%) 158 (3.9%) 25(5.1%) 48(8.7%)  

Alcohol use      <0.001 

Yes 2631 (25.8%) 1381 (26.9%) 1012 (25.2%) 123 (24.8%) 115 (20.8%)  

No 6650(65.2%) 3223(62.8%) 2737(68.2%) 325 (65.7%) 365 (66.0%)  

Unknown 911 (9.0%) 529 (10.3%) 262 (6.5%) 47(9.5%) 73(13.2%)  

Drug abuse      <0.001 

Yes 500 (4.9%) 225 (4.4%) 253 (6.3%) 16 (3.2%) 6 (1.1%)  

No 8487 (83.3%) 4218 (82.2%) 3409 (85.0%) 417 (84.2%) 443 (80.1%)  

Unknown 1205 (11.8%) 690 (13.4%) 349 (8.7%) 62(12.5%) 104 (18.8%)  

Education level      <0.001 

College or above 978 (9.6%) 518 (10.1%) 376 (9.4%) 38 (7.7%) 46 (8.3%)  

High school or lower 1110 (10.9%) 461 (9.0%) 563 (14.0%) 50 (10.1%) 36 (6.5%)  

Unknown 8104 (79.5%) 4154 (80.9%) 3072 (76.6%) 407 (82.2%) 471 (85.2%)  

Employment      <0.001 
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Employed 3996 (39.2%) 2078 (40.5%) 1489 (37.1%) 207 (41.8%) 222(40.1%)  

Unemployed 1439 (14.1%) 570 (11.1%) 760 (18.9%) 57 (11.5%) 52 (9.4%)  

Retired or disabled 1948 (19.1%) 1017 (19.8%) 782 (19.5%) 68 (13.7%) 81 (14.6%)  

Unknown 2809(27.6%) 1468 (28.6%) 980 (24.4%) 163 (32.9%) 198 (35.8%)  

Housing stability      <0.001 

Homeless or shelter 80 (0.8%) 32 (0.6%) 44 (1.1%) 3 (0.6%) 1 (0.2%)  

Stable housing 4215 (41.4%) 1971 (38.4%) 1933 (48.2%) 160 (32.3%) 151 (27.3%)  

Unknown 5897 (57.9%) 3130 (61%) 2034 (50.7%) 332 (67.1%) 401 (72.5%)  

Food security      <0.001 

Having food insecurity 7052(69.2%) 3416 (66.5%) 2982 (74.3%) 300 (60.6%) 354 (64.0%)  

Unknown 3140 (30.8%) 1717 (33.5%) 1029 (25.7%) 195 (39.4%) 199 (36.0%)  

Financial constraints      0.0092 

Has financial constraints 5172 (50.7%) 2386 (46.5%) 2323 (57.9%) 216 (43.6%) 247 (44.7%)  

Unknown 5020(49.3%) 2747 (53.5%) 1688 (42.1%) 279(56.4%) 306 (55.3%)  

Percentage of low 

income and low access 

population at 1/2 mile 

for urban and 10 miles 

for rural 

0.2625 (0.1965) 0.1944 (0.1733) 0.3528 (0.1946) 0.2579 (0.1740) 0.2442 (0.1685) 0.1708 

Share of tract 

population that are 

seniors beyond 1/2 mile 

from supermarket 

-0.1661 (0.0949) -0.1635 (0.1035) -0.1669 (0.0831) -0.1734 (0.0837) -0.1779 (0.1000) < 0.001 

Murder rate (per 100 

population) 

0.0075 (0.0043) 0.0064 (0.0040) 0.0089 (0.0041) 0.0076 (0.0041) 0.0074 (0.0044) < 0.001 

Aggravated assault rate 

(per 100 population) 

0.3867 (0.1365) 0.3767 (0.1704) 0.3980 (0.0753) 0.3994 (0.1489) 0.3858 (0.1060) < 0.001 

Motor vehicle theft rate 

(per 100 population) 

0.2348 (0.0882) 0.2042 (0.0921) 0.2718 (0.0684) 0.2420 (0.0785) 0.2440 (0.0794) < 0.001 

Flag for low access 

tract at 1 mile for urban 

areas or 20 miles for 

rural areas counts 

          < 0.001 

Yes 4630 (45.4%) 2091 (40.7%) 2031 (50.6%) 253 (51.1.%) 306 (55.3%)   

No 5562 (54.6%) 3042 (59.3%) 1980 (49.4%) 242 (48.9%) 247 (44.7%)   
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Table 2 Statistical parity (equal opportunity) by different models on various feature sets. 

Black & White Full SDoH Individual-level Contextual-level SDoH 

Xgboost 1.03 0.98 1.24 

Ridge regression 1.44 1.18 1.45 

Hispanic & White Full SDoH Individual-level Contextual-level SDoH 

Xgboost 1.22  1.00 1.63  

Ridge regression 1.32  1.73 2.12  
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