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Abstract

Finite element models (FEM) of the tongue have facilitated speech studies through analysis of 

internal muscle forces indirectly derived from imaging data. In this work, we build a uniform 

hexahedral FEM of a tongue atlas constructed from magnetic resonance imaging data of a healthy 

population. The FEM is driven by inverse internal tongue tissue kinematics of speakers temporally 

aligned and deformed into the same atlas space, while performing the speech task “a souk” 

allowing muscle activation predictions. This work aims to investigate the commonalities in tongue 

motor strategies in the articulation of “a souk” predicted by the inverse tongue atlas model. Our 

findings report variability among five speakers for estimated muscle activations with a similarity 

index using a dynamic time warp function. Two speakers show similarity index > 0.9 and two 

others < 0.7 with respect to a reference speaker for most tongue muscles. The relative motion 

tracking error of the model is less than 2% which is promising for speech study applications.

Index Terms

speech production; biomechanical modeling; tongue atlas

1. Introduction

The tongue is a highly deformable organ that plays a major role in speech production 

via interdigitated muscles activated with neuro-anatomical signals locally rather than as 

a whole unit [1]. In previous studies, the internal tongue deformation during specific 

speech utterances has been effectively captured using state-of-the-art medical imaging 

modalities to study speech synthesis [2]. However, there remains a gap in understanding 

how the biomechanical properties of the tongue musculature tie to speech synthesis using 

even simple motions such as the tongue’s protrusion or retraction [3]. Determining the 

relationship between the neuro-muscular activations and articulatory gestures in these 
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speech utterances has been a long-standing issue in speech research areas [3–6], particularly 

those related to inter-subject variability of tongue anatomy and functionality of tongue 

muscles.

The aforementioned problem in speech research may be solved by investigating the range of 

motor functions of the tongue muscles in producing the same sounds with different speakers. 

Direct measurement strategies such as electromyography (EMG) for studying tongue muscle 

function are invasive and noisy [7]. On the other hand, medical imaging techniques such 

as magnetic resonance imaging (MRI), ultrasound, and computed tomography (CT) can 

provide highly detailed morphological information of oropharyngeal structures for studying 

deformations during sound production, chewing, or swallowing. However, they do not 

directly measure internal muscular forces. Finite element (FE) modeling and simulation of 

oropharyngeal structures has proved to be an effective strategy to quantify aspects of speech 

production, such as internal tissue forces and muscle activation patterns, which cannot be 

directly derived from medical imaging [8]. The modeling approaches for this purpose can 

be broadly classified into two types: 1) forward modeling, measuring tongue deformation 

from muscle activations and 2) inverse modeling, estimating muscle activation patterns from 

internal tongue deformation [9].

Recently, as related developments, Woo et al. [10] developed a 4D atlas of tongue motion 

using both cine and tagged MRI while uttering the words “a souk” and “a geese.” To 

establish a pattern of variability in a given population uttering these words, Xing et al. [11] 

developed a statistical approach using correlation among different internal muscles. Muscle 

activation correlation patterns for subjects were estimated using the tissue deformation fields 

obtained from tagged MRI of individual subjects morphed into the atlas space. However, 

this approach did not account for the nonlinear hyperelastic properties of the tongue tissue, 

which are often modeled in state-of-the-art FE models [4, 8]. Based on motion data in 

subject spaces from tagged MRI, Harandi et al. [7] developed subject-specific FE models 

for four subjects using the Artisynth toolkit [12] that predicted activations using a quadratic 

inverse solver [13]. However, the predictions were suboptimal [4] due to significant relative 

tracking error and the lack of internal muscle fiber directions of each speaker, which are 

difficult to acquire without invasive techniques.

To overcome these shortcomings, in this work, we propose a data-driven approach of 

inverse FE modeling to measure variability in muscle functions among different subjects 

by simulating subject-specific motion data [11] morphed into the statistical atlas geometry 

of healthy individuals. The FE model is built by registering the muscle fiber directions 

of a cadaver tongue [14] in the same atlas space. Specifically, we provide a quantitative 

analysis to show similarities in the motor strategies employed while speaking the same word 

“a souk” among five American English speakers using inverse tongue atlas modeling. Our 

proposed inverse atlas model can predict muscle functions for several subjects, thus saving 

the complex and time-consuming process of generating a subject-specific model for each 

speaker. Moreover, the model provides morphological structures that can be used to register 

bone geometry, and the predictions only depend on the motion deformation fields of each 

subject in the atlas space. We report the findings based on the estimated muscle activation 

patterns, including: 1) variation in muscle excitation among the five speakers for the same 
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vowel and consonant sounds, and 2) function of the tongue protruder and retractor muscles 

for aforementioned sounds.

2. Materials and Methods

2.1. Data Acquisition and Atlas Construction

The cine and tagged MRI data were acquired using a 12-channel head and a four-channel 

neck coil on a Siemens 3.0T Tim-Trio MRI scanner. The in-plane image resolution 

was 1.875mm × 1.875mm, and the slice thickness was 6 mm. The following sequence 

parameters were used: a repetition time (TR) of 36 ms, an echo time (TE) of 1.47 ms, a flip 

angle of 6, and a turbo factor of 11.

To obtain the displacement vectors of tissue points inside the tongue volume of a 

particular subject over time in their corresponding subject space, we utilized a phase vector 

incompressible registration algorithm (PVIRA) [11]. Specifically, PVIRA reconstructed 

a dense, 3D, and incompressible motion field at each time frame by tracking the 

corresponding harmonic phase data from tagged MR volumes. To construct the atlas, 

we applied a registration strategy that deformed the displacement vectors of the subjects 

speaking “a souk” and “a geese” into the average atlas space. The average atlas space was 

then determined by spatially aligning all healthy subjects. The phrases “a souk” and “a 

geese” as target utterances are of phonetic importance in speech studies, as it primarily 

involves superior-posterior and anterior-posterior tongue motion, minimal lateral motion, 

and limited jaw and lip movement. This particular study uses the motion data of two male 

and three female native English speakers in the age range of 20–45 years uttering “a souk”.

2.2. Tongue Atlas Model Design

2.2.1. Voxelized FEM generation—The multi-subject atlas is modeled as a voxelized 

volumetric mesh, comprising 6,166 nodes and 5,070 uniform hexahedral elements generated 

using the work by Lloyd et al. [12] to create embedded FEM in Artisynth. The algorithm 

generates a cuboid or a bounding FEM around any polygonal surface mesh. The number of 

elements of this bounding FEM that are more than 50% inside the surface mesh are used 

to generate the voxelized FEM as shown in Figure 1.a). For the purpose of visualization, a 

surface mesh generated from the atlas segmentation mask is added to the model.

2.2.2. Tongue Muscles definition—The following muscles are modeled in the tongue 

FEM, as shown in Figure 1.b): genioglossus (GG), hyoglossus (HG), styloglossus (STY), 

geniohyoid (GH), and myohyoid (MH), which are the extrinsic muscles (connected to 

the bone), and transverse (TRANS), verticalis (VERT), superior longitudinal (SL), inferior 

longitudinal (IL), which are intrinsic muscles (located inside the tongue). The genioglossus 

(GG), transverse (TRANS), and vertical (VERT) muscle bundles are further divided into 

five smaller functionally relevant segments (a: posterior to e: anterior), to accommodate 

more degrees of freedom [5, 15]. Using the same algorithm in Section 2.2.1 to generate 

a bounding FEM around each segmented muscle mask from structural MRI [11], the 

hexahedral elements in the total FEM volume are allocated to different muscle bundles. 

Next, we define the resting fiber directions inside each element. However, obtaining accurate 
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information on fiber directions from structural MRI is challenging. A viable approach is 

to register the muscle fibers defined in state-of-the-art FE models [4], which have fiber 

orientations based on a cadaver tongue [8].

In order to obtain the muscle fiber directions for the corresponding elements for each 

muscle bundle, a two-step approach of mesh registration and deformation is carried out. The 

registration is carried out via Iterative Closest Point Mesh Correspondence with Gaussian 

weight function parameters. The maximum weight was set to 1, and the standard deviation 

was set to 0.01. The dynamic registration controller used is described in detail by Khallaghi 

et al. [16]. The surface mesh (assigned as the source) is taken from a model that contains 

the aforementioned muscle fiber directions and a voxelized FEM is generated for that mesh 

in the same way as mentioned in Section 2.2.1. This voxelized FEM deforms around the 

atlas surface mesh, which serves as the target. The deformed voxelized FEM is then used to 

perform a non-linear geometry transformation of the muscle fibers for each muscle segment 

in the selected subject-specific model. The geometry transformation in Artisynth developed 

by Lloyd et al. [17] is carried out using a piece-wise smooth deformation field from the 

deformed FEM. The transformer that generates an affine transformation which is applied to 

the muscle fibers is described in Section 3.4 of the Artisynth toolkit [12]. The deformed and 

transformed muscle fiber directions are used to create a Delaunay interpolation matrix that 

calculates the muscle fiber direction at rest for each hex element of the Atlas FEM for every 

corresponding muscle bundle [17].

2.2.3. Material Properties—The voxelized Tongue Atlas FEM is modeled using a non-

linear hyperelastic material similar to the models by Harandi et al. [4]. The FE model uses 

a fifth-order Mooney-Rivlin Material, and we refer the reader to Buchaillard et al.’s work 

[8] for the definition of the material parameters. We replicate the strain energy modifications 

done by Harandi et al. [7] in their FE model and define the muscle bundle material as a 

Blemker muscle [18]. Further details on how the parameters are chosen can be found in the 

work by Harandi et al. [19].

2.3. Data-driven Inverse simulation

Using Stavness et al.’s inverse tracking controller [13], we predict muscle activation 

patterns of five speakers saying “a souk.” The controller utilizes the deformed internal 

tissue kinematics of each speaker in the atlas space, with linearly interpolated displacement 

vectors from the motion field on selected FEM nodes serving as input. The simulation of 

articulatory trajectory relies on muscle redundancy (many-to-one mapping) and imposed 

constraints. The estimated muscle activations can either reflect realistic patterns or highlight 

limitations in the model based on existing anatomical knowledge.

2.3.1. Target Nodes selection—Selection of the target nodes affects the simulations 

and we address it as follows: a) we select regions with high velocity densities, b) nodes are 

selected along the muscles that are expected to get activated the most. For this study, we 

select four clusters of five nodes each, extending from the tip to the posterior end of the 

central muscles in the tongue FEM.
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2.3.2. Inverse tracking controller—The inverse tracking controller solves for 

normalized activation values a for muscle exciter terms by minimizing the loss term as 

given by

arg   min
a

wm v − Hma 2 + α
2 aTa , (1)

where wm∥v−Hma∥2 is the velocity tracking error term of the 20 target points, and Hm is 

a matrix summarizing the biomechanical characteristics of the system, such as mass, joint 

constraints, and force-activation properties of the muscles. α
2 aTa is the l2-norm regularization 

term to reduce muscle redundancy and distribute the predictions among the exciters equally. 

The weight of the motion target component wM was set to 1.1, and the regularization 

coefficient α was set to 0.01 to achieve the lowest possible tracking error, while maintaining 

model stability.

2.3.3. Error Analysis—We evaluate the model from a data-driven perspective, by 

assessing its ability to accurately reproduce the actual tongue tissue displacement motion 

observed in tagged MRI. To measure the performance of the inverse model, we calculate the 

Root Relative Mean Square Error (RRMSE) and the Relative Absolute error (RAE) for each 

time frame of the simulation as given by

RRMSE =
∑i = 1

3n xi − xi
2

∑i = 1
3n xi

2
, RAE =

∑i = 1
3n xi − xi

∑i = 1
3n xi − x

, (2)

where xi represents the actual displacement of each target node, while xi is the target 

displacement in any of the three directions of tongue movement, namely forward, 

upwards, or lateral. The total number of target nodes is denoted by n, and the sum of 

errors is calculated for 3n directions (forward, upward, and lateral). The mean of actual 

displacements of all nodes in each time frame is represented by x. We report both the 

maximum and mean error values across the time frames of motion simulation.

2.4. Similarity Measurement

The input tagged MRI data in the atlas space for each subject were initially recorded at a rate 

of 26 frames per second, with each frame lasting 38.46ms. Of note, for a smooth simulation, 

this data is interpolated across 50 time frames in the inverse model. Although all speakers 

perform the speech task “a souk” in the same duration, there are slight variations in the 

time frames of the utterances for /ə/, /s/, /u/, and /k/ for each speaker, and these are identified 

visually by a speech scientist from the sagittal view of cine MRI [7]. To incorporate this 

variation into our quantitative analysis of the similarities in muscle motor strategies for the 

five speakers using the inverse tongue atlas model, we apply a Dynamic Time Warping 

(DTW) algorithm [20], which is commonly employed for speech recognition. The DTW 

function calculates the minimum sum of Euclidean distance d, between estimated muscle 

activation curves for two subjects for any given muscle exciter (see Figure 2).
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As the value of d increases, the difference between the two curves also increases. The 

Euclidean sum dij is calculated for each exciter i across all subjects j, resulting in the matrix 

Dp×m as given by

Dp × m =

d11 … d1m

d21 … d2m

⋅ … ⋅
dp1 .. dpm

, (3)

where p is the number of exciters, and m is the number of subjects. The similarity index 

matrix Sp×m is defined by its elements sij, which are calculated through normalization, as 

follows:

sij = 1 − dij − dmin

dmax − dmin
, (4)

where dmax and dmin are the maximum and minimum values of dij, respectively. The value 

of sij ranges from 0 to 1, with 0 indicating no similarity between signals and 1 indicating 

identical signals. For our evaluation, we use speaker S1 as the control, meaning that each 

element in the first column of the matrix S is set to 1.

3. Results

3.1. Tongue Muscles activation for “a souk”

This section interprets the muscle activation patterns. The middle and anterior fibers of the 

genioglossus (GGM/GGA) lower the dorsum of the tongue, causing an overall backward 

motion [21]. Geniohyoid (GH) and myohyoid (MH) are floor muscles that assist in tongue 

elevation and protrusion [21]. Additionally, it is known that extrinsic muscles styloglossus 

(STY) and hyoglossus (HG) aid in backward/upward and backward/downward tongue 

motion, respectively. Intrinsic muscles superior-longitudinal (SL) and inferior-longitudinal 

(IL) both aid in tongue retraction and also elevate/lower the tongue-tip, respectively [21]. 

The estimated muscle activations are plausible indicators, not actual values, revealing 

potential muscle activities aligned with predictions and identifying similarities in motor 

strategies for “a souk.”

3.1.1. Articulation for /ə/ to /s/—GGM is significantly activated (except for S4) 

during /ə/, while GGA shows slight activation. As the tongue elevates and pushes 

forward for /s/, distinct muscle activations occur. VERT segments are mostly inactive 

during /ə/, except for minor activation in VERTe. However, VERTa-b gradually increases 

activation during /s/. TRANSe is active throughout /ə/, while TRANS(a-c) gradually activate 

during /s/. HG and SL muscles exhibit minimal activation initially to aid in slight retraction 

and tip elevation for /ə/.

3.1.2. Transition from /s/ to /u/—While uttering /s/ and transitioning to the high 

vowel /u/, the tongue holds a constrained pose for a few milliseconds and proceeds to move 

forward. As such, it is expected that the tongue protrudor muscles will get increasingly 

activated while there will be a decline in activation of tongue retractor muscles. Thus, it 
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makes complete sense to observe a slow rise in activation of TRANSa-b and MH and slow 

decline in activation of STY and GH in the predicted pattern. TRANSa and VERTb exhibit 

peak activation, while GGPa shows the lowest activation near the production of the high 

vowel /u/. The tongue retractor muscles, such as GGM, GGA, VERTe, and HG exhibit 

near-zero activation levels.

3.1.3. Transition from /u/ to /k/—Lastly, while uttering /k/, the tongue tip slowly 

moves downward, but remains relatively close to the position it maintains during the /u/ 

sound. Hence, the only difference observed from the previous transition period is a further 

steady decline in muscles that elevate the tongue tip and push the tongue forward. The 

observations are consistent with these predictions, as observed with a slight decrease in 

activation of TRANSa-b. In all the speakers, there is also a slight increase in activation 

towards the end of /k/ with some assistance from tongue retractor muscles, including 

TRANSe and GGPa.

3.2. Tracking Error

Table 1 shows both the maximum and average RRMSE and RAE values (expressed in 

percentage) for five speakers over the time period of 1s simulated at 50 fps.

3.3. Similarity Index using Dynamic Time Warp

The values of the similarity index matrix Sm×p (described in Section 2.4) using the DTW 

function are calculated for each speaker (with respect to S1) for 21 muscle exciters and 

represented as a heatmap as in Figure 3. The similarity index between S1 and S2 is very 

high (over 0.9) for seven exciters, moderately high (between 0.7–0.9) for eight exciters, and 

very low (below 0.2) for two exciters. Between S1 and S3, ten exciters have a similarity 

index >0.9. For S4, it is <0.5 for seven exciters and >0.9 only for five exciters indicating 

low similarity with S1. Lastly, for S5, it is > 0.9 for eight exciters, between 0.7–0.9 for five 

exciters, and <0.5 for five exciters.

4. Discussion and Conclusion

This study used the inverse atlas tongue to estimate muscle activation patterns for five 

native English speakers saying the word “a souk.” The results showed that tongue retractor 

muscles were observed to be most activated during the utterance of /ə/, and the tongue 

protrudor muscles were relatively more active during the utterance of /s/ and peaked around 

the high vowel /u/ with steady decline around /k/ for most speakers. We defined a Similarity 

Index using a DTW function to quantify the similarities in the estimated muscle activation 

patterns of the five speakers. These values indicate there are common motor strategies that 

may be explored by analyzing these plausible muscle activations. However, there are a few 

limitations in this work, including 1) the muscle fiber orientations are assumed to be the 

same in the multi-subject atlas for all five speakers, 2) the FE model has limited degrees of 

freedom, and 3) the inverse tracking controller can track only a definite number of nodes 

accurately so far. In future work, we will analyze motor strategies in the production of ”a 

souk” and ”a geese” based on observed muscle activation patterns (Section 3.3) and acoustic 

Maity et al. Page 7

Interspeech. Author manuscript; available in PMC 2023 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formant analysis. We plan to expand the study to include more speaker datasets and examine 

muscle activation during ”a geese.”
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Figure 1: 
a) Sagittal and coronal perspective view of the atlas tongue FEM. The attachment of the 

tongue to the jaw and hyoid bones are also shown in red and blue respectively b) Muscle 

bundles defined in the hexahedral mesh. Top row: central muscles GG, VERT and TRANS 

divided into 5 distinct segments (a: posterior to e: anterior) in mid-sagittal view. Bottom row 

shows the muscle segments HG, MH, SL, IL and GH. A midcoronal view (bottom center) is 

also included for HG and MH.
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Figure 2: 
Dynamic Time Warping to calculate dij for muscle HG between S1 and S2
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Figure 3: 
Similarity Index between S1 and the rest of speakers based on DTW. Darker green indicates 

a higher level of similarity.
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Table 1:

Error Analysis

S1 S2 S3 S4 S5

RAE% Mean 0.381 0.873 0.672 0.575 0.535

Max 0.567 1.521 1.020 1.079 0.805

RRMSE% Mean 0.044 0.103 0.077 0.069 0.063

Max 0.068 0.180 0.111 0.131 0.098
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