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Abstract

Important challenges in retinal microsurgery include prolonged operating time, inadequate force 

feedback, and poor depth perception due to a constrained top-down view of the surgery. The 

introduction of robot-assisted technology could potentially deal with such challenges and improve 

the surgeon’s performance. Motivated by such challenges, this work develops a strategy for 

autonomous needle navigation in retinal microsurgery aiming to achieve precise manipulation, 

reduced end-to-end surgery time, and enhanced safety. This is accomplished through real-time 

geometry estimation and chance-constrained Model Predictive Control (MPC) resulting in high 

positional accuracy while keeping scleral forces within a safe level. The robotic system is 

validated using both open-sky and intact (with lens and partial vitreous removal) ex vivo porcine 

eyes. The experimental results demonstrate that the generation of safe control trajectories is robust 

to small motions associated with head drift. The mean navigation time and scleral force for MPC 

navigation experiments are 7.208 s and 11.97 mN, which can be considered efficient and well 

within acceptable safe limits. The resulting mean errors along lateral directions of the retina are 

below 0.06 mm, which is below the typical hand tremor amplitude in retinal microsurgery.

I. INTRODUCTION

Retinal microsurgery requires precise manipulation of the delicate and non-regenerative 

tissue of the retina, while using high precision surgical tools. Its requirement for micrometer 

accuracy often exceeds the capability of even the most experienced surgeons. The success of 

retinal microsurgery relies on a clear view of the surgical workspace and precise hand-eye 

coordination while managing physiological hand tremor. Riviere et al. [1] have reported 

that the root mean square amplitude of hand tremor in retinal microsurgery is around 0.182 

mm while the required positioning accuracy of subretinal injection can be as small as 0.025 

mm [2]. Risks that may lead to damage of the retina and sclerotomy port must be reduced 

to avoid irreversible complications to the eye tissue. One challenge in retinal microsurgery 

is prolonged surgery duration. Loriga et al. [3] have shown a positive association between 

postoperative pain and duration of surgery. Experimentally induced light toxicity increase 

significantly after 13 minutes [4]. It is also thought that muscular and mental fatigue develop 
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with prolonged operating times that exacerbate fine motor control and hand tremor concerns 

[5]. Due to physical limitations of the human surgeon and demands for short surgery 

duration, robot-assisted technology for autonomy and safety is necessary.

Various works have focused on robotic applications for retinal microsurgery. During these 

studies, artificial eye phantoms are commonly used due to their fixed and simple geometry. 

However, the use of porcine eyes, which are used in this study, imposes more challenges 

compared to artificial eye phantoms, since biological tissues have more irregular and 

unpredictable geometry. Furthermore, the additional physical constraints applied to the 

Remote-Center-of-Motion (RCM) at the scleral incision point (Fig. 1b) will make the robot 

system more complicated. In this work, we implement both open-sky and intact ex vivo 
porcine eye experiments. We have shown that by using this experimental setup (Fig. 1a), 

we can achieve high image resolution, and a field of view approaching that of a stereo 

microscope, Fig. 1c.

Our previous work [6], [7] demonstrated that autonomous navigation was possible using 

predicted depth information and optimal control. We used a deep neural network to 

assess depth perception, and predict the distance vector based on a top-down microscope 

image and a user-defined goal position, Fig. 2. Furthermore, we proposed a method [8] 

that combined real-time geometry estimation and chance constraint to generate a safer 

autonomous navigation process. However, all these works were validated using only silicone 

eye phantoms. Moreover, we only dealt with the simplest situation in which the eye was 

static.

The present work extends and improves prior results in several ways. First, we demonstrate 

improved (in terms of completion time, accuracy, and safety) autonomous navigation. To 

better estimate the local geometry of the retina, we add a regularization term to the geometry 

fitting equation. We improve our chance constraint formulation through linearizing all 

ellipsoid parameters. By the use of MPC and chance constraint incorporated Differential 

Dynamic Programming (DDP) [9], the safety and navigation speed are thereby guaranteed. 

This could potentially alleviate the surgeon of any burden incurred by navigating the tool to 

the desired position, and allow the surgeon to focus on the main surgical objectives. Second, 

we evaluate the robotic system in a more realistic setting using both open-sky and intact 

ex vivo porcine eyes. Third, we show that the system is sufficiently robust to navigate to 

the updated goal position during simulated small head drift. To prove the efficiency of our 

scleral constraint, we measure the scleral force using a Fiber Brag Grating (FBG) sensors 

integrated surgical tool (Fig. 1a) developed by He et al. [10]. The results show that the 

scleral force can be maintained at a safe level.

II. RELATED WORK

A. Hand Tremor and Scleral Force Reduction

Numerous studies have focused on reducing hand tremor and scleral forces. Our group 

from Johns Hopkins University [11], [12] has developed a co-manipulation system called 

the Steady-Hand Eye Robot (SHER) that measures the force applied by the user to filter 

hand tremor. Gonenc et al. [13] integrated a force-sensing motorized micro-forceps with the 
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hand-held device Micron tool to reduce hand tremor. Ida et al. [14] designed a teleoperated 

system to enable microcannulation experiments on an ex vivo porcine eye. To detect scleral 

force, He et al. [10] developed a multi-functional force-sensing instrument that measured 

both the scleral and tip forces. A recurrent neural network was further designed and trained 

to predict future safety status [15].

B. Depth Estimation

Research on depth estimation in image guided retinal surgery relies on the feedback of 

features generated by the light source. Zhou et al. [16] have developed a method to measure 

the distance between the instrument and surface based on projection patterns of the spotlight 

in the microscope camera. Koyama et al. [17] proposed a shadow-based autonomous 

positioning using two robotic manipulators. They automated the motion of the light guide to 

ensure that the shadow of the instrument was always inside the microscopic view. Our prior 

work [6], [7], [8] demonstrated that a deep neural network can be trained to predict depth 

with high accuracy. The work of others has utilized OCT [18], [19], [20], [21], which can 

provide significantly higher resolution than a microscope camera, but at a higher cost.

C. Head Drift or Eye Movement

Head drift or eye movement is an underappreciated problem during intraocular surgery. It 

may significantly increase the challenge or even prevent successful procedure completion. 

Severe intraoperative complications may result and diminish surgical outcomes [22]. 

McCannel et al. [23] reported that in 20 out of 230 vitreoretinal surgery cases major head 

movement occurred. Notably, 18 out of 37 snoring patients moved their heads substantially 

during the surgery.

III. PROBLEM SETUP

To achieve the autonomous navigation process in Fig. 2, we first define the tool-tip state 

of the surgical tool attached to the robot end-effector as x = (p, R, υ, ω, where p ∈ ℝ3 and 

R ∈ SO (3) are the tool-tip position and orientation, υ ∈ ℝ3 and ω ∈ ℝ3 are the linear and 

angular velocity relative to robot base frame. The control inputs are defined as u = (uυ, uω), 
where uυ ∈ ℝ3 and uω ∈ ℝ3 are translational forces and joint torques. The full state x can be 

determined by robot joint encoders and forward kinematics.

Second, we use a convolutional neural network to achieve depth perception. The input of our 

network combines a RGB top-down image of the current surgical scene and a binary goal 

position image defined by users. The observed top-down image from a fixed microscope 

camera at time t is defined as o(t) ∈ ℐ. The user is able to specify a 2-D goal position 

gi = (xi, yi) ∈ ℝ2 by clicking directly on the displayed real-time image. We convert this goal 

position into a binary image and attach as an additional layer along with o(t) to form the 

input. The output is a 3-D vector defined by d = [x y z]T , which is a vector predicted by 

the network from the current tool-tip position to the user-defined goal position. ‖d‖ is the 

predicted distance between tool-tip and goal position.
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Third, we generate a collision free tool-tip trajectory using chance constraint incorporated 

DDP. The cost function and constraints over time interval [t0, tf] are defined as:

argmin
x( ⋅ ), u( ⋅ )∫t0

tf

C(x(t), u(t))dt, subject to: (1)

robot dynamics: x.(t) = f(x(t), u(t)), (2)

scleral constraint: (I − υo(t)υo(t)T)(ps − p(t)) = 0, (3)

terminal constraint:x(tf) ∈ Xf, (4)

collision chance constraint:
Pr(‖p(t) − pc‖ ≤ l(t)) ≥ α, for 0 ≤ α ≤ 1, (5)

where υo(t) is a unit vector representing the current orientation of surgical tool. ps ∈ ℝ3 is the 

scleral incision point. The translational motion of the instrument at this point will cause a net 

force applied to the sclera, which could damage the sclera. The scleral constraint closes the 

gap between the current and desired orientation of the tool shaft (Fig. 1b), and guarantees 

the range of movement within a small threshold. pc ∈ ℝ3 is the estimated ellipsoid center, 

α ∈ ℝ is the level of confidence, and l(t) ∈ ℝ is a length parameter defined as:

l(t) = ‖pc − pproj(t)‖, (6)

where pproj(t) is the projection point that projects the corresponding sample point p(t) onto 

the estimated ellipsoid surface along the direction from pc pointed to the sample point. For 

example, if the estimated geometry is a sphere instead of an ellipsoid, l(t) is equal to the 

radius.

The stop position of the tool-tip should be immediately above the goal position and yet, 

without contact with the retinal surface. We summarize the process (Fig. 2) as follows: 

1) Define a 2-D goal position through mouse clicking. 2) Collect over 200 sample points 

around the goal position based on predictions of the network. 3) Estimate the local retinal 

geometry as though it’s an ellipsoid using the weighted least squares method. 4) Use 

DDP-based MPC to navigate the surgical tool to the goal position autonomously and safely.

IV. TECHNICAL APPROACH

A. Experimental Setup

Both open-sky and intact porcine eye experimental setups contain a surgical robot 

manipulator (SHER 2.0 for open-sky eye and SHER 2.1 for intact eye experiments) with a 

surgical needle attached to its end-effector, a Q-522 Q-motion XYZ linear stage from Physik 

Instrumente (PI), an E-873.3QTU linear stage controller (PI), and a microscope camera to 

obtain the current image. The light source for the open-sky porcine eye experiments is on 
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the right, while we use a brighter light source for the intact porcine eye experiments on the 

left - to enhance visual feedback inside the eye. An Accurus 800CS vitrectomy machine 

from Alcon Surgical is used to remove the lens and vitreous humor. The vitrectomy infusion 

maintains the intraocular pressure for intact eyes, avoiding eye collapse during experiments. 

A 3D-printed eye socket is used to secure and stabilize the eye. A wide-angle lens is used to 

provide a wide field of view and to simulate the distortion caused by the human lens, Fig. 

3. The balanced saline solution is used to couple the gap between the lens and cornea. The 

outer diameter of the tool-tip is 0.1 mm.

B. Eye Preparation

The most time-consuming part before data collection is preparation of suitable intact eyes, 

that allows a clear top-down camera view. Retinal detachment and corneal opacity are 

two of the main obstacles in carrying out the experiments. While the intact eye allows 

immediate capture of a clear view through the lens and vitreous humor directly, the view 

is lost relatively quickly. As it requires one hour to collect 150 trajectories for one eye, we 

remove the lens and leave most vitreous humor inside the eye. Maintaining corneal clarity 

remains a challenge that is mitigated by keeping the cornea wet and utilizing the freshest 

eyes obtainable.

C. Data Collection

1800 trajectories are collected from 12 different porcine eyes (150 for each) for open-sky 

eye experiments, and 2100 trajectories are collected from 14 different porcine eyes for the 

intact eye experiments. Since the geometry of fresh cadaveric porcine eye varies from eye-

to-eye, we collect the training data manually. To collect one trajectory for each experiment, 

we start the surgical tool from a random position and navigate it to a random goal position 

in a straight line. Both current surgical scene images and tool-tip positions are recorded at 

a frequency of 15 fps. We manually label the tool-tip stop position of the last frame from 

each trajectory, and generate the binary goal image based on this. The direction and distance 

vector label are calculated by subtracting the last frame tool-tip position from other frames.

D. Network Training

Our network is constructed using ResNet-18 [24] as well as our previous work [7], [8]. 

75% of collected trajectories are randomly selected for training and the rest are used as a 

validation dataset. We discretize continuous XYZ coordinates into 854, 887, and 360 bins 

for both experiments to better label distance vectors. Each bin represents 0.02 mm. The 

cross-entropy loss is used as the loss function.

E. Regularized Geometry Fitting

We use weighted least squares ellipsoid estimation for local retinal geometry fitting. The 

ellipsoid fitting is a continuation of works by Li [25] and Reza [26]. We add a regularized 

term to the generalized ellipsoid equation, which fits better to our model with some prior 

information:
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ax2 + by2 + cz2 + 2fyz + 2gxz
+ 2ℎxy + 2px + 2qy + 2rz + d

+ λ[(x − x0)2 + (y − y0)2 + (z − z0)2 − r0
2] = 0,

subject to kJ − I2 = 1,

(7)

where I = a + b + c, J = ab + bc + ac − f2 − g2 − ℎ2, λ is the regularization gain, x0, y0, z0, and 

r0 are the ellipsoid center position and radius based on prior information. Let:

Xi = (xi
2, yi

2, zi
2, 2yizi, 2xizi, 2xiyi, 2xi, 2yi, 2zi, 1)T ,

υ = (a + λ, b + λ, c + λ, f, g, ℎ, p − λx0, q − λy0,
, r − λz0, d + λ[x0

2 + y0
2 + z0

2 − r0
2])T ,

Equation (7) can be written with weight matrix W  as:

min υTDW DTυ subject to υTCυ = 1,

W =

w1

0
⋮
0

0
w2

⋮
0

⋯
⋯
⋱
⋯

0
0
⋮
wn

=

1
σ1

2

0
⋮
0

0
1
σ2

2

⋮
0

⋯
⋯
⋱
⋯

0
0
⋮
1
σn

2

,

(8)

where D = (X1, X2, …, Xn) ∈ ℝ10 × n, and σn
2 is the distance variance calculated from the 

validation dataset.

Using the Lagrange multiplier method, υ is solved as an eigenvalue and eigenvector 

problem. We can rewrite (7) as:

(x − pc)TLLT(x − pc) = 1, (9)

where pc = [x0 y0 z0]T  is the estimated center of ellipsoid, and L is a lower triangular matrix.

Then (5) can be expressed as:

Pr((p(t) − pc)TLLT(p(t) − pc) ≤ 1) ≥ α, (10)

F. Chance Constraint Incorporated DDP and MPC

It is difficult to incorporate the chance constraint into the cost function directly. However, 

Blackmore et al. [27] has proved that a linear chance constraint is equal to a deterministic 

constraint on the mean of x denoted as:
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Pr (aTx ≤ b) ≤ δ aTx − b ≥ c, (11)

where x ∼ N(x, Σ) is a multivariate random variable with fixed covariance, δ is the level of 

confidence, c = erf−1(1 − 2δ) 2aTΣa, and erf(x) = 2
π ∫0

xe−t2 dt is the standard error function.

Instead of approximating the nonlinear constraint at the center only in our previous work [8], 

we linearize (10) at both pc and L. pc and L can be derived by running geometry estimation 

several times. Then (10) can be written as:

Pr (p(t) − pc)TLLT(p(t) − pc) + 2 ∑
i = 1

3
∑
j = 1

3
mij −

2(p(t) − pc)TLLT(pc − pc) ≤ 1 ≥ α,
(12)

where mij is the element of matrix:

(p(t) − pc)(p(t) − pc)TL ⊙ (L − L) ∈ ℝ3 × 3,

let ∑
i = 1

3
∑

j = 1

3
mij = K(S − S),

where K ∈ ℝ1 × 6 derives from (p(t) − pc)(p(t) − pc)TL , S ∈ ℝ6 × 1 derives from L, then:

Pr (2Mpc + 2KS ≤ 1 + b) ≥ α, (13)

where M = − (p(t) − pc)TLLT , and 

b = − 2(p(t) − pc)TLLT pc + 2KS − (p(t) − pc)TLLT (p(t) − pc). Let aT = [2M 2K] and 

y = [pc S]T , then (13) is euqal to:

1
2 + 1

2erf 1 + b − aTy
2aTΣa

≥ α

erf−1(2α − 1) 2aTΣa + aTy − (1 + b) ≤ 0,

where Σ ∈ ℝ9 × 9 is a combination of Σpc and ΣL. If α = 0.99, then erf−1(2α − 1) ≈ 1.64497636.

MPC is then implemented by generating trajectories using chance constraint incorporated 

DDP along the actual navigation track. The time horizon is set to be 5s. Based on each 

trajectory generated by DDP, we navigate towards the predicted goal for a small step. Then 

we predict the goal position once again with the current top-down image and use this newly 

predicted goal to generate a new trajectory using DDP. We continue navigating the surgical 

tool for each small step and repeating the whole process until the predicted distance is less 

than 0.1 mm.
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G. Optical Flow

We simulate the head drift by moving the XYZ linear stage randomly along the XY axes. 

Since our goal position is selected via mouse click on the monitor, the clicked goal on the 

screen will not move along with the linear stage movement. We must therefore track the 

goal position movement based on the top-down images. Optical flow is a feasible way to 

solve this. We first capture a 300 × 160 pixel image area before and after the linear stage 

movement. Then we use the Shi-Tomasi Corner Detector [28] to detect relevant features in 

both images. Then we use the Lucas-Kanade method [29] to derive the resulting motion 

between the two images. The goal position on the screen and the RCM point are updated 

based on these calculations.

H. Scleral Force Measurement

We use a Fiber Brag Grating (FBG) sensors integrated surgical tool (Fig. 1a) to measure 

the scleral force during the navigation process. Previous work [10] has related the raw 

wavelength data of FBGs to the scleral force along XY axes. The measurement starts from 

the initial position and ends by retracting the surgical tool to the initial position again. 

Before each trial, we rebias the force reading at the initial position. After that, we do some 

preliminary navigation tests to make sure when we retract the tool, the force reading is 

returned to the original level (i.e., the force reading should close to 0 mN before and after 

each test). In this work, we want to prove that by using scleral constraint incorporated 

control, we could keep the scleral forces at the scleral incision point within a safe limit. We 

set this safe limit as 115 mN based on mean forces using manual manipulators in in vivo 
rabbit experiments performed by two retina specialists. [30].

V. EXPERIMENTS

A. Open-sky Porcine Eye Experiments

We used the open-sky porcine eye to evaluate the performance of our network with and 

without a chance constraint. For each trajectory, we navigated the surgical tool directly 

towards the goal until the tool-tip was 2mm away from the goal position. Then we followed 

the DDP-generated trajectory to reach the goal. Two eyes were tested. For each eye, we 

navigated the surgical tool to 20 pre-defined positions autonomously. The 20 positions were 

selected from a 60 × 80 pixel area in the camera view, Fig. 4. The actual size of the test 

area selected was 1.5 × 2.0 mm. The determination of depth perception performance was 

evaluated based on the number of trajectories that hit the retinal surface. This was done by 

assessing light reflection patterns around the contact area via the recorded video.

B. Intact Porcine Eye Experiments

In the intact porcine eye experiments, we first navigated to 20 pre-defined goal positions 

(60 × 80 pixel) without using chance constraint. We used this result as a baseline. Then we 

navigated to the same 20 pre-defined goal positions using MPC. The actual size of the test 

area was 1.32 × 1.76 mm due to the different magnifications of microscope. The tool was 

considered to reach the goal if the norm of the network prediction was smaller than 0.1 mm. 

To make a comparison, we added another stop condition and repeated the experiment. The 
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tool will be stopped as well if the norm of the network prediction was smaller than 0.3 mm 

and the norm of tool tip error along XY axes was smaller than 2.3 pixels. Finally, we tested 

the performance of our system in the presence of modeled head drift using the two stop 

conditions mentioned above. We controlled the XYZ linear stage to randomly move along 

XY axes for a small distance during each navigation process. The movement range for each 

axis was from [−0.25 mm, 0.25 mm]. Head drift was only simulated within this small range. 

Otherwise, we lost the working area view from the fixed camera. Also, the scleral forces 

applied to the scleral wall were potentially too large to prevent surgical tool bending. When 

there was residual vitreous humor in the eye, we were unable to evaluate the performance 

of depth perception using the reflection of light. In this instance we assessed tool-to-retina 

contact by retinal surface deformation at the user-defined goal position.

C. Scleral Force Measurement

We navigated the FBG sensors integrated tool to 10 pre-defined positions to measure the 

scleral force during the MPC navigation. To evaluate the head drift motion, we navigated to 

a fixed position 10 times. For each time, we randomly moved the linear stage for a small 

distance along XY axes. We increased the movement range for each axis to [−0.5 mm, 0.5 

mm] to make the change of force more visible. All goal positions were manually defined 

above the retinal surface.

VI. RESULTS

For the best network model of open-sky eye experiments, the mean training errors for 

XYZ axes were 0.028, 0.016, and 0.042 mm and the mean validation errors for XYZ axes 

were 0.058, 0.044, and 0.087 mm respectively. For the best network model of intact eye 

experiments, the mean training errors for XYZ axes were 0.049, 0.041, and 0.054 mm and 

the mean validation errors for XYZ axes were 0.152, 0.102, and 0.157 mm respectively. 

The relationship between distance groups and prediction errors was plotted in Fig. 5. A 

trend was evident indicating that when the tool was closer to the retina, the prediction 

errors were smaller. The validation errors of the intact eye were larger than open-sky eye’s 

due to increased blur in these top-down training images. This was not avoidable as in the 

time required for data collection degradation of the view through the intact cornea was 

progressive. Despite corneal opacity the prediction accuracy of the last few millimeters 

remained relevant. Fig. 5 showed that it was in an acceptable range of approximately 0.05 

mm. The mean X and Y errors in Table I were mean errors between pre-defined goal 

positions and actual tool-tip stop positions in the top-down image, Fig. 4.

A. Open-sky Porcine Eye Experiments

The last column of Table I demonstrated that by using the chance constraint, the result was a 

more reliable mean to determine depth. Although tool-to-retina contact had occurred during 

these experiments, it was not sufficient to cause retinal tissue deformation or damage. It was 

noted that the chance constraint method rendered the autonomous navigation process safer, 

but this did come at the cost of a small reduction in accuracy along the XY axes.
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B. Intact Porcine Eye Experiments

The results of intact eye experiments showed that using the MPC can almost eliminate the 

collision risk between the tool-tip and the retinal surface. This was because the MPC kept 

predicting the goal position until the tool-tip was very close to the goal. This differed from 

the open-sky eye experiments where the last prediction occurred at 2 mm from the goal 

position. This fact contributed to smaller mean XY axes errors. Also, the mean time duration 

was reduced significantly from 36.194s to 7.208s by using MPC. Fig. 6 showed one trial of 

the head drift simulation. The last two rows in Table I showed that the surgical tool was able 

to track the updated goal positions following head drift for all 40 trials. The mean navigation 

time of head drift was longer than MPC. This may result from the time spent to relocate the 

updated goal, and changes in the camera view and the relative shadow position. Experiments 

with 0.1 mm stop condition had longer mean time duration than the 0.3 mm stop condition, 

as for some trials the tool paused for the last few seconds waiting for the network prediction 

to meet the stop condition.

C. Scleral Force Measurement

Fig. 7 showed the experimental results from the scleral force measurements. As 

aforementioned, we set the safe limit of the scleral force to be 115 mN based on the 

work of Urias [30]. The results showed that no measured forces exceeded 30 mN for MPC 

navigation or 60 mN during head drift motion. The mean scleral forces were 11.97 mN and 

21.75 mN respectively. Take trial 10 of head drift simulation as an example, the scleral force 

changed drastically along one direction when the eye moved. Since we updated the RCM 

point based on the movement of eye, the scleral force would drop a little bit afterwards. This 

RCM compensation lasted until we reached the goal (The light blue area in Fig. 7). As the 

tool moved towards the goal, it also rotated to reach the desired orientation. This further 

increased the scleral force until the goal was reached. Subsequently, we retracted the tool 

to the initial position using the original RCM point. Finally, we moved the eye back to the 

original position, explaining the large change of scleral force at the end of the trial. The 

mean scleral force was calculated from navigation start to the moment that the tool reached 

the goal.

VII. CONCLUSIONS

In this work, we test our improved robotic system using both open-sky and intact ex vivo 
porcine eyes. The results demonstrate smaller than 0.06 mm mean XY axes errors during 

experiments involving biological tissues. Moreover, by using chance constraint incorporated 

MPC, a safer, faster, and more accurate navigation process is obtained. We also demonstrate 

that our system is sufficiently robust to track the updated goal accurately during simulated 

head drift experiments. However, we only simulated head drift within a limited range. More 

work is required to refine performance especially during head movement. Future work 

will focus on experiments that use intact porcine eyes for the surgically relevant task of 

subretianl injection.
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Fig. 1. 
Robotic system overview: (a) Scleral force measurement setup. (b) Scleral incision point and 

cornea. The red-dashed line is set to zero as the scleral constraint. (c) The top-down view of 

an intact porcine eye.
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Fig. 2. 
Workflow of autonomous navigation process using MPC.
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Fig. 3. 
Intact eye experimental setup. The vitrectomy machine provides the light source and air 

infusion to maintain the intraocular pressure.
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Fig. 4. 
Experimental results for the open-sky eye (left) and the intact eye (right). The white points 

are pre-defined goal positions and the green points are actual landing positions. The white 

square is the current goal position. The directions of XY axes are different due to the 

utilization of different SHERs for the two experiments.
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Fig. 5. 
Relationship between distance groups and validation errors by three axes. (top) Open-sky 

eye (450 trajectories). (bottom) Intact eye (525 trajectories).
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Fig. 6. 
(a)-(f) Head drift simulation results. The head drift happens between (b) and (c). The white 

square in (a)-(c) is the original user-defined goal, and the white square in (d)-(f) is the 

updated goal. The red square represents the original goal after the head drift. In (c) the 

overlap occurs when the head drift happens, but the goal has not been updated.
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Fig. 7. 
Results of scleral force measurement. (Top) Scleral force of 10 trials of MPC navigation. 

(Middle) Scleral force of 10 trials of head drift simulation. (Bottom) Trial 10 0f head drift 

simulation.
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