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Abstract

Subset selection is a valuable tool for interpretable learning, scientific discovery, and data 

compression. However, classical subset selection is often avoided due to selection instability, 

lack of regularization, and difficulties with post-selection inference. We address these challenges 

from a Bayesian perspective. Given any Bayesian predictive model ℳ, we extract a family of 

near-optimal subsets of variables for linear prediction or classification. This strategy deemphasizes 

the role of a single “best” subset and instead advances the broader perspective that often many 

subsets are highly competitive. The acceptable family of subsets offers a new pathway for model 

interpretation and is neatly summarized by key members such as the smallest acceptable subset, 

along with new (co-) variable importance metrics based on whether variables (co-) appear in 

all, some, or no acceptable subsets. More broadly, we apply Bayesian decision analysis to 

derive the optimal linear coefficients for any subset of variables. These coefficients inherit 

both regularization and predictive uncertainty quantification via ℳ. For both simulated and real 

data, the proposed approach exhibits better prediction, interval estimation, and variable selection 

than competing Bayesian and frequentist selection methods. These tools are applied to a large 

education dataset with highly correlated covariates. Our analysis provides unique insights into the 

combination of environmental, socioeconomic, and demographic factors that predict educational 

outcomes, and identifies over 200 distinct subsets of variables that offer near-optimal out-of-

sample predictive accuracy.
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1. Introduction

Subset and variable selection are essential components of regression analysis, prediction, 

and classification. By identifying subsets of important covariates, the analyst can acquire 

simpler and more interpretable summaries of the data, improved prediction or classification, 

reduced estimation variability among the selected covariates, lower storage requirements, 
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and insights into the factors that determine predictive accuracy (Miller, 1984). Classical 

subset selection is expressed as the solution to the constrained least squares problem

min
β

∥ y − Xβ ∥2
2     subject to     ∥ β ∥0 ≤ k (1)

where y is an n-dimensional response, X is an n × p matrix of covariates, and β is the 

p-dimensional vector of unknown coefficients. Traditionally, the goal is to determine (i) the 

best subset of each size k, (ii) an estimate of the accompanying nonzero linear coefficients, 

and (iii) the best subset of any size. Subset selection has garnered additional attention 

recently, in part due to the algorithmic advancements from Bertsimas et al. (2016) and 

the detailed comparisons of Hastie et al. (2020). More broadly, variable selection has been 

deployed as a tool for interpretable machine learning, including for highly complex and 

nonlinear models (e.g., Ribeiro et al., 2016; Afrabandpey et al., 2020).

Although often considered the “gold standard” of variable selection, subset selection 

remains underutilized due to several critical limitations. First, subset selection is inherently 

unstable: it is common to obtain entirely distinct subsets under perturbations or resampling 

of the data. This instability undermines the interpretability of a single “best” subset, 

and is a significant motivating factor for the proposed methods. Second, the solutions 

to (1) are unregularized. While it is advantageous to avoid overshrinkage, Hastie et al. 

(2020) showed that the lack of any regularization in (1) leads to deteriorating performance 

relative to penalized regression in low-signal settings. Third, inference about β requires 

careful adjustment for selection bias, which limits the available options for uncertainty 

quantification. Finally, solving (1) is computationally demanding even for moderate p, which 

has spawned many algorithmic advancements spanning multiple decades (e.g., Furnival and 

Wilson, 2000; Gatu and Kontoghiorghes, 2006; Bertsimas et al., 2016). For these reasons, 

penalized regression techniques that replace the ℓ0-penalty with convex or nonconvex yet 

computationally feasible alternatives (Fan and Lv, 2010) are often preferred.

From a Bayesian perspective, (1) is usually translated into a predictive model via a Gaussian 

(log-) likelihood and a sparsity (log-) prior. Indeed, substantial research efforts have been 

devoted to both sparsity (e.g., Ishwaran and Rao, 2005) and shrinkage (e.g., Polson and 

Scott, 2010) priors for β. Yet the prior alone cannot select subsets: the prior is the component 

of the data-generating process that incorporates prior beliefs, information, or regularization, 

while selection is ultimately a decision problem (Lindley, 1968). For instance, Barbieri and 

Berger (2004) and Liang et al. (2013) applied sparsity priors to obtain posterior inclusion 

probabilities, which were then used for marginal selection and screening, respectively. 

Jin and Goh (2020) selected subsets using marginal likelihoods, but required conjugate 

priors for Gaussian linear models. Hahn and Carvalho (2015) more fully embraced the 

decision analysis approach for variable selection, and augmented a squared error loss with 

an ℓ1-penalty for linear variable selection. Alternative loss functions have been proposed for 

seemingly unrelated regressions (Puelz et al., 2017), graphical models (Bashir et al., 2019), 

nonlinear regressions (Woody et al., 2020), functional regression (Kowal and Bourgeois, 

2020), time-varying parameter models (Huber et al., 2020), and a variety of Kullback-
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Leibler approximations to the likelihood (Goutis and Robert, 1998; Nott and Leng, 2010; 

Tran et al., 2012; Piironen et al., 2020).

Despite the appropriate deployment of decision analysis for selection, each of these 

Bayesian methods relies on ℓ1-penalization or forward search. As such, they are restricted 

to limited search paths that cannot fully solve the (exhaustive) subset selection problem. 

More critically, these Bayesian approaches—as well as most classical ones—are unified 

in their emphasis on selecting a single “best” subset. However, in practice it is common 

for many subsets (or models) to achieve near-optimal predictive performance, known as 

the Rashomon effect (Breiman, 2001). This effect is particularly pronounced for correlated 

covariates, weak signals, or small sample sizes. Under these conditions, it is empirically 

and theoretically possible for the “true” covariates to be predictively inferior to a proper 

subset (Wu et al., 2007). As a result, the “best” subset is not only less valuable but also 

less interpretable. Reporting a single subset—or a small number of subsets along a highly 

restricted search path—obscures the likely presence of many distinct yet equally-predictive 

subsets of variables.

We advance an agenda that instead curates and summarizes a family of optimal or near-

optimal subsets. This broader analysis alleviates the instability issues of a single “best” 

subset and provides a more complete predictive picture. The proposed approach operates 

within a decision analysis framework and is compatible with any Bayesian model ℳ
for prediction or classification. Naturally, ℳ should represent the modeler’s beliefs about 

the data-generating process and describe the salient features in the data. Several key 

developments are required:

1. We derive optimal (in a decision analysis sense) linear coefficients for any subset 

of variables.

Crucially, these coefficients inherit regularization and uncertainty quantification 

via ℳ, but avoid the overshrinkage induced by ℓ1-penalization. As such, these 

point estimators resolve multiple limitations of classical subset selection and 

(ℓ1-penalized) Bayesian decision-analytic variable selection, and further are 

adapted to both regression and classification problems. Next,

2. We design a modified branch-and-bound algorithm for efficient exploration over 

the space of candidate subsets.

The search process is a vital component of subset selection, and our modular 

framework is broadly compatible with other state-of-the-art search algorithms 

(e.g., Bertsimas et al., 2016). Until now, these algorithms have not been fully 

deployed or adapted for Bayesian subset selection. Additionally,

3. We leverage the predictive distribution under ℳ to collect the acceptable family 
of near-optimal subsets.

A core feature of the acceptable family is that it is defined using out-of-sample 

metrics and predictive uncertainty quantification, yet is computed using in-
sample posterior functionals from a single model fit of ℳ. Hence, we maintain 
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computational scalability and coherent uncertainty quantification that avoids data 

reuse. Lastly,

4. We summarize the acceptable family with key member subsets, such as the 

“best” (in terms of cross-validation error) predictor and the smallest acceptable 

subset, along with new (co-) variable importance metrics that measure the 

frequency with which variables (co-) appear in all, some, or no acceptable 

subsets.

Unlike variable importances based on effect size, this inclusion-based metric 

effectively measures how many “predictively plausible” explanations (i.e., near-

optimal subsets) contain each (pair of) covariate(s) as a member. Notably, each 

of these developments is presented for both prediction and classification.

The importance of curating and exploring a collection of subsets has been acknowledged 

previously. Existing approaches are predominantly frequentist, including fence methods 

(Jiang et al., 2008), Rashomon sets (Semenova and Rudin, 2019), bootstrapped confidence 

sets (Lei, 2019), and subsampling-based forward selection (Kissel and Mentch, 2021). 

Although the acceptable family has appeared previously for Bayesian decision analysis 

(Kowal, 2021; Kowal et al., 2021), it was applied only along the ℓ1-path which does not 

enumerate a sufficiently rich collection of competitive subsets. Further, previous applications 

of the acceptable family did not address points 1., 2., and 4. above.

The paper is outlined as follows. Section 2 contains the Bayesian subset search procedures, 

the construction of acceptable families, the (co-) variable importance metrics, and 

the predictive uncertainty quantification. Section 3 details the simulation study. The 

methodology is applied to a large education dataset in Section 4. We conclude in Section 

5. The Appendix provides additional algorithmic details, simulation studies, and results 

from the application. An R package is available online at https://github.com/drkowal/ 

BayesSubsets. Although the education dataset (Children’s Environmental Health Initiative, 

2020) cannot be released due to privacy protections, access to the dataset can occur 

through establishing affiliation with the Children’s Environmental Health Initiative (contact 

cehi@nd.edu).

2. Methods

2.1. Predictive decision analysis

Decision analysis establishes the framework for extracting actions, estimators, and 

predictions from a Bayesian model (e.g., Bernardo and Smith, 2009). These tools translate 

probabilistic models into practical decision-making and can be deployed to summarize or 

interpret complex models. However, additional methodology is needed to convert subset 

selection into a decision problem, and further to evaluate and collect many near-optimal 

subsets.

Let ℳ denote any Bayesian model with a proper posterior distribution pℳ θ ∣ y  and posterior 

predictive distribution
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pℳ y ∣ y ≔ ∫ pℳ y ∣ θ, y pℳ θ ∣ y dθ,

where θ denotes the parameters of the model ℳ and y is the observed data. Informally, 

pℳ y ∣ y  defines the distribution of future or unobserved data y conditional on the observed 

data y and according to the model ℳ. Decision analysis evaluates each action δ based on a 

loss function ℒ y, δ  that enumerates the cost of each action when y is realized. Examples 

include point prediction (e.g., squared error loss) or classification (e.g., cross-entropy loss), 

interval estimation (e.g., minimum length subject to 1 − α coverage), and selection among a 

set of hypotheses (e.g., 0–1 loss). Since y is unknown yet modeled probabilistically under 

ℳ, an optimal action minimizes the posterior predictive expected loss

δ ≔ arg min
δ

 Ey ∣ yℒ y, δ (2)

with the expectation taken under the Bayesian model ℳ. The operation in (2) averages the 

predictive loss over the possible realizations of y according to the posterior probability under 

ℳ and then minimizes the resulting quantity over the action space.

Yet without careful specification of the loss function ℒ, (2) does not provide a clear pathway 

for subset selection. To see this, let y x  denote the predictive variable at covariate x. For 

point prediction of y x  under squared error loss, the optimal action is

δ x ≔ arg min 
δ

Ey ∣ y ∥ y x − δ x ∥2
2

= Ey ∣ y y x ,

i.e., the posterior predictive expectation at x. Similarly, for classification of y x ∈ 0, 1
under cross-entropy loss (see (10)), the optimal action is the posterior predictive probability 

δ x = pℳ y x = 1 ∣ y . For a generic model ℳ, there is not necessarily a closed form 

for δ x  : these actions are computed separately for each x with no clear mechanism for 

inducing sparsity or specifying distinct subsets. Hence, additional techniques are needed to 

supply actions that are not only optimal but also selective and interpretable.

Note that we use observation-driven rather than parameter-driven loss functions. Unlike the 

parameters θ, which are unobservable and model-specific, the predictive variables y are 

observable and directly comparable across distinct Bayesian models. A decision analysis 

based on y operates on the same scale and in the same units as the data that have been—and 

will be—observed, which improves interpretability. Perhaps most important, an observation-

driven decision analysis enables empirical evaluation of the selected actions.

2.2. Subset search for linear prediction

The subset search procedure is built within the decision framework of (2). For any Bayesian 

model ℳ, we consider linear actions δ x = x′δ with δ ∈ ℝp, which offer both interpretability 

and the capacity for selection. Let δS denote the linear action with zero coefficients for all 
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j ∉ S, where S ⊆ 1, …, p  is a subset of active variables. For prediction, we assemble the 

aggregate and weighted squared error loss

ℒ yi i = 1
n , δS = ∑

i = 1

n
ω xi yi − xi

′δS 2
2

(3)

where yi ≔ y xi  is the predictive variable at xi for each i = 1, …, n and ω xi > 0 is a weighting 

function. The covariate values xi i = 1
n  can be distinct from the observed covariate values 

xi i = 1
n , for example to evaluate the action for a different population.

The loss in (3) evaluates linear coefficients δS for any given subset S by accumulating the 

squared error loss over the covariate values xi i = 1
n . Since (3) depends on yi i = 1

n , the loss 

inherits a joint predictive distribution pℳ y1, …, yn ∣ y  from ℳ. The loss is decoupled from 

the Bayesian model ℳ : the linear action does not require a linearity assumption for ℳ. 

The weights ω xi  can be used to target actions locally, which provides a sparse and local 

linear approximation to ℳ. For example, we might parametrize the weighting function as 

ω xi ∝ exp − xi − x* 2
2/ ℓ  with range parameter ℓ in order to weight based on proximity 

to some particular x* of interest (Ribeiro et al., 2016). Alternatively, ω can be specified 

via a probability model for the likelihood of observing each covariate value, including 

ω xi = n−1 as a simple yet useful example, especially when using the observed covariate 

values xi i = 1
n = xi i = 1

n ; this is our default choice.

Crucially, the optimal action can be solved directly for any subset S:

Lemma 1 Suppose Ey ∣ yy xi 2
2 < ∞ for i = 1, …, n. The optimal action (2) for the loss (3) is 

given by the nonzero entries

δS = arg min
δS

∑
i = 1

n
ω xi yi − xi

′δS 2
2

(4)

= XS
′ ΩXS

−1XS
′ Ωy, (5)

with zeros for indices j ∉ S, where yi ≔ Ey ∣ y y xi , y ≔ y1, …, yn ′, Ω ≔ diag ω xi i = 1
n , and XS

is the n × S  matrix of the active covariates in xi i = 1
n  for subset S.

Proof It is sufficient to observe that 

Ey ∣ y y xi − xi
'δS 2

2 = Ey ∣ y y xi − yi + yi − xi
'δS 2

2 = Ey ∣ y y xi − yi 2
2 + yi − xi

'δS 2
2
, where the 

first term is a (finite) constant that does not depend on δS. The remaining steps constitute a 

weighted least squares solution. ■

The consequence of Lemma 1 is that the optimal action for each subset S is simply the 

(weighted) least squares solution based on pseudo-data XS, y —i.e., a “fit to the fit” from 

ℳ. The advantages of ℳ can be substantial: the Bayesian model propagates regularization 
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(e.g., shrinkage, sparsity, or smoothness) to the point predictions y, which typically offers 

sizable improvements in estimation and prediction relative ordinary (weighted) least squares. 

This effect is especially pronounced in the presence of high-dimensional (large p) or 

correlated covariates. The optimal action may be non-unique if XS
′ ΩXS is noninvertible, 

in which case the inverse in (5) can be replaced by a generalized inverse.

At this stage, the Bayesian model ℳ is only needed to supply the pseudo-response variable 

yi; different choices of ℳ will result in distinct values of yi and therefore distinct actions δS. 

An illuminating special case occurs for linear regression:

Corollary 2 For the linear regression model ℳ with Ey ∣ θ y x = x′β and any set of 

covariate values xi i = 1
n  and weights ω xi > 0, the optimal action (2) under (3) for the full set 

of covariates is δ 1, …, p = β, where β ≔ Eθ ∣ yβ.

Depending on the choice of xi i = 1
n  and ω, δ 1, …, p  may be non-unique. Corollary 2 links 

the optimal action to the model parameters: the posterior expectation β is also the optimal 

action under the parameter-driven squared error loss ℒ β, δ = ∥ β − δ ∥2
2. Similarly, a linear 

model for ℳ implies that yi = xi
′β, so the optimal action (5) for any subset S is intrinsically 

connected to the (regression) model parameters. This persists for other regression models as 

well. By contrast, these restrictions also illustrate the generality of (3)-(5): the optimal linear 

actions are derived explicitly under any model ℳ (with Ey |y y xi 2
2 < ∞) and using any set of 

covariate values xi i = 1
n , active covariates S ⊆ 1, …, p , and weighting functions ω x > 0.

The critical remaining challenge is optimization—or at least evaluation and comparison—

among the possible subsets S. Our strategy emerges from the observation that there may 

be many subsets that achieve near-optimal predictive performance, often referred to as 

the Rashomon effect (Breiman, 2001). The goal is to collect, characterize, and compare 

these near-optimal subsets of linear predictors. Hence, there are two core tasks: (i) identify 

candidate subsets and (ii) filter to include only those subsets that achieve near-optimal 

predictive performance. These tasks must overcome both computational and methodological 

challenges—similar to classical (non-Bayesian) subset selection—which we resolve in the 

subsequent sections.

An exhaustive enumeration of all possible subsets presents an enormous computational 

burden, even for moderate p. Although tempting, it is misguided to consider direct 

optimization over all possible subsets of 1, …, p ,

δS ≔ arg min 
S, δS

Ey ∣ yℒ yi i = 1
n , δS , (6)

for the aggregate squared error loss (3). To see this—and find suitable alternatives—consider 

the following result:

Lemma 3 Let RSS y, μ ≔ ∥ y − μ ∥2
2 and y ≔ Ey ∣ yy, and suppose Ey ∣ y ∥ y ∥2

2 < ∞. For any 

point predictors μ1 and μ2, we have
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Ey ∣ y RSS y, μ1 ≤ Ey ∣ y RSS y, μ2 RSS y, μ1 ≤ RSS y, μ2 . (7)

Proof Since Ey ∣ y RSS y, μ − RSS y, μ = Ey ∣ y ∥ y ∥2
2 − ∥ y ∥2

2 is finite and does not depend 

on μ, the ordering of μ1 and μ2 will be identical whether using Ey |y RSS y, μ  or RSS y, μ . ■

Notably, Ey ∣ y RSS y, μ  is the key constituent in optimizing the predictive squared error loss 

(3), while RSS y, μ  is simply the usual residual sum-of-squares (RSS) with y replacing y.

Now recall the optimization of (6). For any subset S, the optimal action is the least squares 

solution (5) with pseudo-data y. However, RSS in linear regression is ordered by nested 

subsets: RSS y, XδS1 ≤ RSS y, XδS2  whenever S2 ⊆ S1. By Lemma 3, it follows that the 

solution of (6) is simply

δS = X′ΩX −1X′Ωy,    S = 1, …, p

for X = x1, …, xn ′. As with (5), a generalized inverse can be substituted if necessary. The 

main consequence is that the optimal actions in (4) and (6) alone cannot select variables 

or subsets: (4) provides the optimal action for a given subset S, while (6) trivially returns 

the full set of covariates. Despite the posterior predictive expectation in (6), this optimality 

is only valid in-sample and is unlikely to persist for out-of-sample prediction. Hence, this 

optimality is unsatisfying.

Yet Lemma 3 provides a path forward. Rather than fixing a subset S in (4) or optimizing 

over all subsets in (6), suppose we compare among all subsets up to size k ≤ p. Equivalently, 

this constraint can be representation as an ℓ0-penalty augmentation to the loss function (3), 

i.e.,

δk ≔ arg min 
S, δS

Ey ∣ yℒ yi i = 1
n , δS     subject to     δS 0 ≤ k . (8)

In direct contrast with previous approaches for Bayesian variable selection via decision 

analysis (e.g., Hahn and Carvalho, 2015; Woody et al., 2020; Kowal et al., 2021) we do not 
use convex relaxations to ℓ1-penalties, which create unnecessarily restrictive search paths 

and introduce additional bias in the coefficient estimates.

Under the loss (3), the solution to (8) reduces to

δk = arg min 
S, δS

∑
i = 1

n
ω xi yi − xi

′δS 2
2    subject to     δS 0 = k (9)

using the “fit-to-the-fit” arguments from Lemma 1 and the RSS ordering results from 

Lemma 3. In particular, the solution δk resembles classical subset selection (1), but uses the 

fitted values yi from ℳ instead of the data y and further generalizes to include possibly 

distinct covariates xi  and weights ω xi .
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Because of the representation in (9), we can effectively solve (8) by leveraging 

existing algorithms for subset selection. However, our broader interest in the collection 

of near-optimal subsets places greater emphasis on the search and filtering process. 

For any two subsets S1 and S2 of equal size k = S1 = S2 , Lemma 3 implies that 

Ey ∣ y RSS y, XδS1 ≤ Ey ∣ y RSS y, XδS2  if and only if RSS y, XδS1 ≤ RSS y, XδS2 . Therefore, 

we can order the linear actions from (4) among all equally-sized subsets simply by ordering 

the values of RSS y, XδS . This result resembles the analogous scenario in classical linear 

regression on xi, yi i = 1
n  : subsets of fixed size maintain the same ordering whether using 

RSS or information criteria such as AIC, BIC, or Mallow’s Cp. Here, the criterion of interest 

is the posterior predictive expected RSS, Ey ∣ y RSS y, XδS , and the RSS reduction occurs 

with the model ℳ fitted values yi = Ey ∣ yy xi  serving as pseudo-data.

Because of this RSS-based ordering among equally-sized linear actions, we can leverage 

the computational advantages of the branch-and-bound algorithm (BBA) for efficient subset 

exploration (Furnival and Wilson, 2000). Using a tree-based enumeration of all possible 

subsets, BBA avoids an exhaustive subset search by carefully eliminating non-competitive 

subsets (or branches) according to RSS. BBA is particularly advantageous for (i) selecting 

smax ≤ p covariates, (ii) filtering to mk ≤ p
k  subsets for each size k, and (iii) exploiting the 

presence of covariates that are almost always present for low-RSS models (Miller, 1984). In 

the present setting, the key inputs to the algorithm are the covariates xi , the pseudo-data 

yi , and the weights ω xi . In addition, we specify the maximum number of subsets 

mk ≤ p
k  to return for each size k. As mk increases, BBA returns more subsets—with higher 

RSS—yet computational efficiency deteriorates. We consider default values of mk = 100
and mk = 15 and compare the results in Section 4. An efficient implementation of BBA is 

available in the leaps package in R. Note that our framework is also compatible with many 

other subset search algorithms (e.g., Bertsimas et al., 2016).

In the case of moderate to large p, we screen to smax ≤ p covariates using the original 

model ℳ. Specifically, we select the smax covariates with the largest absolute (standardized) 

linear regression coefficients. When ℳ is a nonlinear model, we use the optimal linear 

coefficients δS on the full subset S = 1, …, p  of (standardized) covariates. The use of 

marginal screening is common in both frequentist (Fan and Lv, 2008) and Bayesian 

(Bondell and Reich, 2012) high-dimensional linear regression models, with accompanying 

consistency results in each case. Here, sceening is motivated by computational scalability 

and interpretability: BBA is quite efficient for p ≤ 35 and mk ≤ 100, while the interpretation 

of a subset of covariates—acting jointly to predict accurately—is muddled as the subset 

size increases. By default, we fix smax = 35. We emphasize that although this screening 

procedure relies on marginal criteria, it is based on a joint model ℳ that incorporates all 

p covariates. In that sense, our screening procedure resembles the most popular Bayesian 

variable selection strategies based on posterior inclusion probabilities (Barbieri and Berger, 

2004) or hard-thresholding (Datta and Ghosh, 2013).
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2.3. Subset search for logistic classifiers

Classification and binary regression operate on {0, 1}, rendering the squared error loss 

(3) unsuitable. Consider a binary predictive functional ℎ y ∈ 0, 1  where y pℳ y ∣ y . In 

this framework, binarization can come from one of two sources. Most common, the data 

are binary yi ∈ 0, 1 , paired with the identity functional ℎ y = y, and ℳ is a Bayesian 

classification (e.g., probit or logistic regression) model. Less common, non-binary data can 

be modeled via ℳ and paired with a functional ℎ that maps to {0, 1}.For example, we may 

be interested in selecting variables to predict exceedance of a threshold, ℎ y = I y ≥ τ , for 

some τ based on real-valued data y. The latter case is an example of targeted prediction 
(Kowal, 2021), which customizes posterior summaries or decisions for any functional ℎ. 

This approach is distinct from fitting separate models to each empirical functional ℎ yi i = 1
n

—which is still compatible with the first setting above—and instead requires only a single 

Bayesian reference model ℳ for all target functionals ℎ.

For classification or binary prediction of ℎ y ∈ 0, 1 , we replace the squared error loss (3) 

with the aggregate and weighted cross-entropy loss,

ℒ ℎ yi i = 1
n , δS = ∑

i = 1

n
ω xi ℎ yi log πS xi + 1 − ℎ yi log 1 − πS xi , (10)

where ℎ yi ∈ 0, 1  is the predictive variable at xi under ℳ and πS xi ≔ 1 + exp −xi
′δS

−1. 

The cross-entropy is also the deviance or negative log-likelihood of a series of independent 

Bernoulli random variables ℎ yi  each with success probability πS xi  for i = 1, …, n. However, 

(10) does not imply a distributional assumption for the decision analysis; all distributional 

assumptions are encapsulated within ℳ, including the posterior predictive distribution 

of ℎ yi . As before, δS is the linear action with zero coefficients for all j ∉ S, where 

S ⊆ 1, …, p  is a subset of active variables.

The optimal action (2) is obtained for each subset S by computing expectations with respect 

to the posterior predictive distribution under ℳ and minimizing the ensuing quantity. As in 

the case of squared error loss, key simplifications are available:

δS = arg min 
δS

∑
i = 1

n
ω xi ℎilog πS xi + 1 − ℎi log 1 − πS xi (11)

where ℎi ≔ Ey ∣ yℎ yi  is the posterior predictive expectation of ℎ yi  under ℳ. The 

representation in (11) is quite useful: it is the negative log-likelihood for a logistic regression 

model with pseudo-data xi, ℎi i = 1

n
. Standard algorithms and software, such as iteratively 

reweighted least squares (IRLS) in the glm package in R, can be applied to solve (11) for 

any subset S.

Instead of fitting a logistic regression to the observed binary variables ℎ yi ∈ 0, 1 , 

the optimal action under cross-entropy (10) fits to the posterior predictive probabilities 

ℎi = pℳ ℎ yi = 1 ∣ y ∈ 0, 1  under ℳ. For a well-specified model ℳ, these posterior 
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probabilities ℎi can be more informative than the binary empirical functionals ℎ yi  : 

the former lie on a continuum between the endpoints zero and one. Furthermore, for 

non-degenerate models ℳ with ℎi ∈ 0, 1 , the optimal action (11) resolves the issue of 

separability, which is a persistent challenge in classical logistic regression.

Despite the efficiency of IRLS for a fixed subset S, the computational savings of BBA for 

subset search rely on the RSS from a linear model. As such, solving (11) for all or many 

subsets incurs a much greater computational cost. Yet IRLS is intrinsically linked with RSS. 

At convergence, IRLS obtains a weighted least squares solution

δS = XS
′ W XS

−1XS
′ W z (12)

where W ≔ diag wi i = 1
n  for weights wi ≔ ω xi πS xi 1 − πS xi , fitted probabilities 

πS xi ≔ 1 + exp −xi
′δS

−1, and pseudo-data

zi ≔ log πS xi

1 − πS xi
+ ℎi − πS xi

πS xi 1 − πS xi
(13)

with z ≔ z1, …, zn ′. By design, the weighted least squares objective associated with (12) is a 

second-order Taylor approximation to the predictive expected cross-entropy loss:

Ey ∣ yℒ ℎ yi i = 1
n , δS ≈ ∑

i = 1

n
ω xi

ℎi − πS xi
2

πS xi 1 − πS xi
= ∑

i = 1

n
wi zi − xi

′δS
2 . (14)

The weighted least squares approximation in (14) summons BBA for subset search. Hosmer 

et al. (1989) adopted this strategy for subset selection in classical logistic regression on 

yi ∈ 0, 1 . Here, both the goals and the optimization criterion are distinct: we are interested 

in curating a collection of near-optimal subsets—rather than selecting a single “best” subset

—and the weighted least squares objective (14) inherits the fitted probabilities ℎi from the 

Bayesian model ℳ along with the weights ω xi .

Ideally, we might apply BBA directly based on the covariates xi , the pseudo-data zi , 

and the weights wi . However, both zi and wi depend on πS xi  and therefore are subset-

specific. As a result, BBA cannot be applied without significant modifications. A suitable 

alternative is to construct subset-invariant psuedo-data and weights by replacing πS xi  with 

the corresponding estimate from the full model, ℎi. Specifically, let

zi ≔ log ℎi/ 1 − ℎi ,     wi ≔ ω xi ℎi 1 − ℎi , (15)

both of which depend on ℳ rather than the individual subsets S. The pseudo-data zi is 

defined similarly to zi in (13), where the second term now cancels. Finally, BBA subset 

search can be applied using the covariates xi , the pseudo-data zi , and the weights wi . 

As for squared error, we restrict each subset size to mk = 100 or mk = 15 for all subsets of size 

k = 1, …, p. Despite the critical role of the weighted least squares approximation in (14) for 
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subset search, all further evaluations and comparisons rely on the exact cross-entropy loss 

(10).

2.4. Predictive evaluations for identifying near-optimal subsets

The BBA subset search filters the 2p possible subsets to the mk best subsets for each size 

k = 1, …, smax according to posterior predictive expected loss using the weighted squared error 

loss for prediction (Section 2.2) or the cross-entropy loss for classification (Section 2.3). 

However, as noted below Lemma 3, further comparisons based on these expected losses 

are trivial: the full set S = 1, …, p  always obtains the minimum, which precludes variable 

selection. Selection of a single “best” subset of each size k invites additional difficulties: 

if multiple subsets perform similarly—which is common for correlated covariates—then 

selecting mk = 1 subset will not be robust or stable against perturbations of the data. Equally 

important, restricting to mk = 1 subset is blind to competing subsets that offer similar 

predictive performance yet may differ substantially in the composition of covariates; see 

Sections 3–4. These challenges persist for both classical and Bayesian approaches.

We instead curate and explore a collection of near-optimal subsets. The notion of “near-

optimal” derives from the acceptable family of Kowal (2021). Informally, the acceptable 

family uses out-of-sample predictive metrics to gather those predictors that match or nearly 

match the performance of the best out-of-sample predictor with nonnegligible posterior 

predictive probability under ℳ. The out-of-sample evaluation uses a modified K-fold 

cross-validation procedure. Let ℐk ⊂ 1, …, n  denote the kth validation set, where each 

data point appears in (at least) one validation set, ∪k = 1
K ℐk = 1, …, n . By default, we use 

K = 10 validation sets that are equally-sized, mutually exclusive, and selected randomly 

from 1, …, n . Define an evaluative loss function L y, x′δS  for the optimal linear coefficients 

of subset S, and let S denote the collection of subsets obtained from the BBA filtering 

process. Typically, the evaluative loss L is identical to the loss ℒ used for optimization, but 

this restriction is not required. For each data split k and each subset S ∈ S, the out-of-sample 

empirical and predictive losses are

LS
out k ≔ 1

ℐk
∑

i ∈ ℐk

L yi, xi
′δS

−ℐk ,     LS
out k ≔ 1

ℐk
∑

i ∈ ℐk

L yi
−ℐk, xi

′δS

−ℐk

(16)

respectively, where δS
−ℐk ≔ arg minδSEy ∣ y−ℐkℒ yi i ∉ ℐk, δS  is estimated using only the training 

data y−ℐk ≔ yi i ∉ ℐk and yi
−ℐk pℳ yi ∣ y−ℐk  is the posterior predictive distribution at 

xi conditional only on the training data. Averaging across all data splits, we obtain 

LS
out ≔ K−1∑k = 1

K LS
out k  and LS

out ≔ K−1∑k = 1
K LS

out k .

The distinction between the empirical loss LS
out and the predictive loss LS

out
 is important. The 

empirical loss is a point estimate of the risk under predictions from δS based on the data y. 

By comparison, the predictive loss provides a distribution of the out-of-sample loss based on 

the model ℳ. Both are valuable: LS
out is entirely empirical and captures the classical notion of 
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K-fold cross-validation, while LS
out

 leverages the Bayesian model to propagate the uncertainty 

from the model-based data-generating process.

For any two subsets S1 and S2, consider the percent increase in out-of-sample predictive loss 

from δS1 to δS2:

DS1, S2
out ≔ 100 × LS2

out − LS1
out /LS1

out . (17)

Since DS1, S2
out

 inherits a predictive distribution under ℳ, we can leverage the accompanying 

uncertainty quantification to determine whether the predictive performances of δS1 and δS2

are sufficiently distinguishable. In particular, we are interested in comparisons to the best 

subset for out-of-sample prediction,

Smin ≔ arg  min 
S ∈ S

LS
out, (18)

so that δSmin is the optimal linear action associated with the subset Smin that minimizes the 

empirical K-fold cross-validated loss. Unlike the RSS-based in-sample evaluations from 

Section 2.2, the subset Smin can—and usually will—differ from the full set 1, …, p , which 

enables variable selection driven by out-of-sample predictive performance.

Using Smin as an anchor, the acceptable family broadens to include near-optimal subsets:

Aη, ε ≔ S ∈ S:ℙℳ DSmin, S
out < η ≥ ε ,     η ≥ 0, ε ∈ 0, 1 . (19)

With (19), we collect all subsets S that perform within a margin η ≥ 0% of the best subset, 

DSmin, S
out < η, with probability at least ε ∈ 0, 1 . Equivalently, a subset S is acceptable if and 

only if there exists a lower 1 − ε  posterior prediction interval for DSmin, S
out

 that includes η. 

Hence, unacceptable subsets are those for which there is insufficient predictive probability 

(under ℳ) that the out-of-sample accuracy of S is within a predetermined margin of the best 

subset. The acceptable family is nonempty, since Smin ∈ Aη, ε, and is expanded by increasing 

η or decreasing ε. By default, we select η = 0% and ε = 0.10 and assess robustness in the 

simulation study (see also Kowal, 2021; Kowal et al., 2021).

Within the acceptable family, we isolate two subsets of particular interest: the best subset 

Smin from (18) and the smallest acceptable subset,

Ssmall ≔ arg min
S ∈ Aη, ε

S . (20)

When Ssmall is nonunique, so that multiple subsets of the same minimal size are acceptable, 

we select from those subsets the one with the smallest empirical loss LS
out. By definition, 

Ssmall is the smallest set of covariates that satisfies the near-optimality condition in (19). 

As noted by Hastie et al. (2009) and others, selection based on minimum cross-validated 

error, such as Smin, often produces models or subsets that are more complex than needed for 
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adequate predictive accuracy. The acceptable family Aη, ε, and in particular Ssmall, exploits this 

observation to provide alternative—and often much smaller—subsets of variables.

To ease the computational burden, we adapt the importance sampling algorithm from Kowal 

(2021) to compute (19) and all constituent quantities (see Appendix A). Crucially, this 

algorithm is based entirely on the in-sample posterior distribution under model ℳ, which 

avoids both (i) the intensive process of re-fitting ℳ for each data split k and (ii) data reuse 

that adversely affects downstream uncertainty quantification. Briefly, the algorithm uses the 

complete data posterior pℳ θ ∣ y  as a proposal for the training data posterior pℳ θ ∣ y−ℐk . 

The importance weights are then computed using the likelihood pℳ yℐk ∣ θ  under model 

ℳ. Similar algorithms have been deployed for Bayesian model selection (Gelfand et al., 

1992), evaluating prediction distributions (Vehtari and Ojanen, 2012), and ℓ1-based Bayesian 

variable selection (Kowal et al., 2021).

In the case of new (out-of-sample) covariate values xi i = 1
n ≠ xi i = 1

n , the predictive loss 

may be defined without cross-validation: LS
out ≔ n−1∑i = 1

n L yi, xi
′δS , where yi ≔ y xi  is the 

predictive variable at xi for each i = 1, …, n. The empirical loss is undefined without a 

corresponding observation of the response variable for each xi. Hence, we modify the 

acceptable family (19) to instead reference the full subset S = 1, …, p  in place of Smin, 

which is no longer defined. When ℳ is a linear model, Corollary 2 implies that the 

corresponding reference is simply the posterior predictive expectation under ℳ.

2.5. Co-variable importance

Although it is common to focus on a single subset for selection, the acceptable family 

Aη, ε provides a broad assortment of competing explanations: linear actions with distinct 

sets of covariates that all provide near-optimal predictive accuracy. Hence, we seek to 

further summarize Aη, ε beyond Smin and Ssmall to identify (i) which covariates appear in any 

acceptable subset, (ii) which covariates appear in all acceptable subsets, and (iii) which 

covariates appear together in the same acceptable subsets.

For covariates j and ℓ, the sample proportion of joint inclusion in Aη, ε achieves each of these 

goals:

VIincl j, ℓ ≔ Aη, ε
−1 ∑

S ∈ Aη, ε

I j, ℓ ∈ S (21)

and measures (co-) variable importance. Naturally, (21) is generalizable to more than two 

covariates, but is particularly interesting for a single covariate: VIincl j ≔ VIincl  j, j  is the 

proportion of acceptable subsets to which covariate j belongs. When VIincl  j > 0, covariate 

j belongs to at least one acceptable subset. Such a result does not imply that covariate j is 

necessary for accurate prediction, but rather that covariate j is a component of at least one 

near-optimal linear subset. When VIincl  j = 1, we refer to covariate j as a keystone covariate: 

it belongs to all acceptable subsets and therefore is deemed essential. For j ≠ ℓ , VIincl  j, ℓ
highlights not only the covariates that co-occur, but also the covariates that rarely appear 
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together. It is particularly informative to identify covariates j and ℓ such that VIincl j  and 

VIincl ℓ  are both large yet VIincl j, ℓ  is small. In that case, covariates j and ℓ are both 

important yet also redundant, as might be expected for highly correlated variables.

Although VIincl  is defined based on linear predictors for each subset S, the variable 

importance metric applies broadly to (possibly nonlinear) Bayesian models ℳ and a variety 

of evaluative loss functions L, and can be targeted locally via the weights ω xi . The 

inclusion-based metric VIincl  can be extended to incorporate effect size, which is a more 

common strategy for variable importance. Related, Dong and Rudin (2019) aggregated 

model-specific variable importances across many “good models”. Alternative approaches 

use leave-one-covariate-out predictive metrics (e.g., Lei et al., 2018), but are less appealing 

in the presence of correlated covariates.

2.6. Posterior predictive uncertainty quantification

A persistent challenge in classical subset selection is the lack of accompanying uncertainty 

quantification. Given a subset S selected using the data X, y , familiar frequentist and 

Bayesian inferential procedures applied to XS, y  are in general no longer valid. In 

particular, we cannot simply proceed as if only the selected covariates S were supplied 

from the onset. Such analyses are subject to selection bias (Miller, 1984).

A crucial feature of our subset filtering (Section 2.2 and Section 2.3) and predictive 

evaluation (Section 2.4) techniques is that, despite the broad searching and the out-of-sample 

targets, these quantities all remain in-sample posterior functionals under ℳ. There is no data 

re-use or model re-fitting: every requisite term is a functional of the complete data posterior 

pℳ θ ∣ y  or pℳ y ∣ y  from a single Bayesian model. Hence, the posterior distribution under 

ℳ remains a valid facilitator of uncertainty quantification.

We elicit a posterior predictive distribution for the action by removing the expectation in (2):

δ ≔ arg min 
δ

ℒ y, δ (22)

which no longer integrates over pℳ y ∣ y  and hence propagates the posterior predictive 

uncertainty. For the squared error loss (3), the predictive action is

δS = XS
′ ΩXS

−1XS
′ Ωy (23)

akin to (5), where y = y1, …, yn ′ pℳ y ∣ y . The linear coefficients δS inherit a posterior 

predictive distribution from y and can be computed for any subset S. Similar computations 

are available for the cross-entropy loss (10). In both cases, draws ys
s = 1

S
pℳ y ∣ y  from the 

posterior predictive distribution are sufficient for uncertainty quantification of δS. Under the 

usual assumption that pℳ y ∣ θ, y = pℳ y ∣ θ , these draws are easily obtained by repeatedly 

sampling θs pℳ θ ∣ y  from the posterior and ys pℳ y ∣ θ = θs  from the likelihood.
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The predictive actions are computable for any subset S, include those selected based on 

the predictive evaluations in Section 2.4. Let S denote a subset identified based on the 

posterior (predictive) distribution under ℳ, such as Smin or Ssmall. The predictive action δS

using this subset in (23) is a posterior predictive functional. Unlike for a generic subset S, 

the predictive action δS is a functional of both y and S, which factors into the interpretation.

A similar projection-based approach is developed by Woody et al. (2020) for Gaussian 

regression. In place of ℒ y, δ  in (22), Woody et al. (2020) suggest Ey ∣ θℒ y, δ , which 

is a middle ground between (2) and (22): it integrates over the uncertainty of y given 

model parameters θ, but preserves uncertainty due to θ. For example, under the linear 

regression model Ey ∣ θ y x = x′β, the analogous result in (23) is XS
′ ΩXS

−1XS
′ ΩXβ; when 

S = 1, …, p , this simplifies to the regression coefficient β. Both approaches have their 

merits, but we prefer (22) because of the connection to the observable random variables y
rather than the model-specific parameters θ.

3. Simulation study

We conduct an extensive simulation study to evaluate competing subset selection techniques 

for prediction accuracy, uncertainty quantification, and variable selection. Prediction for 

real-valued data is discussed here; classification for binary data is presented in Appendix 

B. Although we do evaluate individual subsets from the proposed framework—namely, Smin

and Ssmall—we are more broadly interested in the performance of the acceptable family of 

subsets. In particular, the acceptable family is designed to collect many subsets that offer 

near-optimal prediction; both cardinality and aggregate predictive accuracy are critical.

The simulation designs feature varying signal-to-noise ratios (SNRs) and dimensions n, p , 

including p ≫ n, with correlated covariates and sparse linear signals. Covariates xi, j are 

generated from marginal standard normal distributions with Cor xi, j, xi, j′ = (0.75) j − j′  for 

i = 1, …, n and j = 1, …, p. The p columns are randomly permuted and augmented with an 

intercept. The true linear coefficients β* are constructed by setting β0
* = − 1 and fixing p* = 5

nonzero coefficients, with p*/2  equal to 1 and p*/2  equal to −1, and the rest at zero. 

The data are generated independently as yi N yi
*, σ*

2  with yi
* ≔ xi

′β* and σ* ≔ sd y* / SNR. 

We consider n, p ∈ 50, 50 , 200, 400 , 500, 50  and SNR ∈ 0.25, 1  for low and high SNR. 

Evaluations are conducted over 100 simulated datasets.

First, we evaluate point prediction accuracy across competing collections of near-optimal 

subsets. Each collection is built from the same Gaussian linear regression model with 

horseshoe priors (Carvalho et al., 2010) ℳ and estimated using bayeslm (Hahn et 

al., 2019). The collections are generated from different candidate sets S based on 

distinct search methods: the proposed BBA method (bbound(bayes)), the adaptive 

lasso search (lasso (bayes)) proposed by Hahn and Carvalho (2015) and Kowal et 

al. (2021), and both forward (forward(bayes)) and backward (backward(bayes)) 

search. For each collection of candidate subsets, we compute the acceptable families 

for η = 0%, ε = 0.10, mk = 15, and the observed covariate values xi i = 1
n = xi i = 1

n ; variations 
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of these specifications are presented in Appendix C. These methods differ only in the 

search process: if a particular subset S is identified by more than one of these competing 

methods, the corresponding point predictions—based on the optimal action δS in (5)—will 

be identical.

The competing collections of near-optimal subsets are evaluated in aggregate. At each 

simulation, we compute the qth quantile of the root mean squared errors (RMSEs) for the 

true mean yi
*

i = 1
n  across all subsets within that acceptable family, and then average that 

quantity across all simulations. For example, q = 1 describes the predictive performance if 

we were to use the worst acceptable subset at each simulation, as determined by an oracle. 

These quantities summarize the distribution of RMSEs within each acceptable family; we 

report the values for q ∈ 0, 0.25, 0.5, 0.75, 1  and present the results as boxplots in Figure 1. 

Most notably, the proposed bbound(bayes) strategy produces up to 10 times the number 

of acceptable subsets as the other methods, yet crucially maintains equivalent predictive 

performance. Naturally, this expanded collection of subsets also produces a minimum 

RMSE q = 0  that outperforms the remaining methods. Clearly, the proposed approach is far 

superior at collecting more subsets that provide near-optimal predictive accuracy.

Figure 1 also summarizes the point prediction accuracy for several competing methods. 

First, we include the usual point estimate under ℳ given by the posterior expectation 

of the regression coefficients β (post.mean), which does not include any variable or 

subset selection. Next, we compute point predictions for the key acceptable subsets Smin

and Ssmall using the proposed bbound(bayes) approach; the competing search strategies 

produced similar results and are omitted. Among frequentist estimators, we use the 

adaptive lasso (lasso; Zou, 2006) with λ chosen by 10-fold cross-validation and the one-

standard-error rule (Hastie et al., 2009). In addition, we include classical subset selection 

(subset) implemented using the leaps package in R with the final subset determined 

by AIC. When p > 35, we screen to the first 35 predictors that enter the model in the 

aforementioned adaptive lasso. Forward (forward) and backward (backward) selection 

were also considered, but were either noncompetitive or performed similarly to the adaptive 

lasso and are omitted from this plot.

Most notably, the predictive performance of Ssmall is excellent, especially for high SNRs, 

and substantially outperforms the frequentist methods in all settings. Because Smin is overly 

conservative—i.e., it selects too many variables (see Table 1)—it performs nearly identically 

to post.mean. Although Smin and post.mean outperform Ssmall when the SNR is low and 

the sample size is small, note that Ssmall is not targeted exclusively for optimal predictive 

performance; rather, it represents the smallest subset that obtains near-optimal performance. 

Lastly, the regularization induced by ℳ is greatly beneficial: every member of each 

acceptable family decisively outperforms classical subset selection across all scenarios.

Next, we compare uncertainty quantification for the regression coefficients β*. We compute 

90% intervals using the predictive action δS from (23) for Ssmall and Smin based on the 

proposed bbound(bayes) procedure. In addition, we compute 90% highest posterior 

density (HPD) credible intervals for β under ℳ (post.HPD) and 90% frequentist 
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confidence intervals using Zhao et al. (2021), which computes confidence intervals from 

a linear regression model that includes only the variables selected by the (adaptive) lasso 

(lasso+lm). The 90% interval estimates are evaluated and compared in Figure 2 using 

interval widths and empirical coverage. The intervals from Ssmall using (22) are uniformly 

better (i.e., narrower) than the usual posterior HPD intervals under ℳ. In addition, the 

intervals from Zhao et al. (2021) are highly competitive, despite ignoring selection bias. In 

all cases, the intervals are overly conservative and achieve the nominal empirical coverage.

Lastly, marginal variable selection is evaluated using true positive rates and true negative 

rates in Table 1. In addition to Smin and Ssmall, we include the common Bayesian selection 

technique that includes a variable j when the 95% HPD interval for βj excludes zero 

(posterior HPD). The selection performance of Ssmall is excellent and similar to the 

the adaptive lasso. Classical subset, forward, and backward selection are too aggressive, 

while the posterior interval-based selection is too conservative. Hence, despite the primary 

focus on the collection of near-optimal subsets, the smallest acceptable subset Ssmall is a 

key member with excellent prediction, uncertainty quantification, and marginal selection 

performance.

The appendix contains simulation studies for classification (Appendix B) and variations for 

ε ∈ 0.01, 0.10, 0.20 , xi i = 1
n , and the distributions of xi i = 1

n  and xi i = 1
n  (Appendix C). All 

results are qualitatively similar to those presented here.

4. Subset selection for predicting educational outcomes

Childhood educational outcomes are affected by adverse environmental exposures, such as 

poor air quality and lead, as well as social stressors, such as poverty, racial residential 

isolation, and neighborhood deviation. We study childhood educational development using 

end-of-grade reading test scores for a large cohort of fourth grade children in North Carolina 

(Children’s Environmental Health Initiative, 2020). The reading scores are accompanied by 

a collection of student-level information detailed in Figure 3, which includes air quality 

exposures, birth information, blood lead measurements, and social and economic factors (see 

also Kowal et al., 2021). The goal is to identify subsets of these variables and interactions 

that offer near-optimal prediction of reading scores as well as accurate classification of 

at-risk students.

A prominent feature of the data is the correlation among the covariates. After centering 

and scaling the continuous covariates to mean zero and standard deviation 0.5, we augment 

the variables in Figure 3 (excluding the test scores) with interactions between race and the 

social and economic factors. The resulting dimensions are n = 16806 and p = 32. Figure E.1 

displays the pairwise correlations among the covariates and the response variable. There are 

strong associations among the air quality exposures as well as among race and the social 

and economic factors. Due to the dependences among variables, it is likely that distinct 

subsets of similar predictive ability can be obtained by interchanging among these correlated 

covariates. Hence, it is advantageous to collect and study the near-optimal subsets.
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We compute acceptable families for (i) the reading scores yi under squared error loss and 

(ii) the indicator ℎ yi = I yi ≥ τ0.1  under cross-entropy loss, where τ0.1 is the 0.1-quantile 

of the reading scores (see Appendix D). While task (i) broadly considers the spectrum of 

educational outcomes via reading scores, task (ii) targets at-risk students in the bottom 10% 

of reading ability. Acceptable families and accompanying quantities for both tasks can be 

computed using the same Bayesian model ℳ : we focus on Gaussian linear regression with 

horseshoe priors. The acceptable families are computed using the proposed BBA search with 

η = 0%, ε = 0.10, mk = 100 and xi i = 1
n = xi i = 1

n ; results for other η values, ε = 0.20, and mk = 15
are noted, while alternative target covariates xi i = 1

n  are in Section 4.2.

4.1 Subset selection for predicting reading scores

First, we predict reading scores using a linear model for ℳ and squared error loss for L. 

Since acceptable family is defined based on DSmin, S
out

 in (19), we summarize its distribution 

in Figure 4. For each S ∈ S, we display 80% intervals, expectations, and the empirical 

analog DS, Smin
out ≔ 100 × LS

out − LSmin
out /LSmin

out . The smaller subsets of sizes four to six demonstrate 

clear separation for certain subsets. Along with the intercept and the race indicators, these 

subsets include mEdu (college diploma), EconDisadv, and mEdu (completed high school) 

in sequence. However, larger subsets are needed to procure near-optimal predictions for 

smaller margins, such as η < 2%. While the best subset Smin = 29 includes nearly all of the 

covariates, many subsets with S > 10 achieve within η = 1% of the accuracy of Smin .

Among the S = 2761 candidate subsets identified from the BBA search, there are 

A0, 0.1 = 1183 acceptable subsets. We summarize Aη, ε via the co-variable importance metrics 

VIincl j  and VIincl j, ℓ  in Figures 5 and E.2, respectively. Unlike many variable importance 

metrics that measure effect sizes, VIincl  j  instead quantifies whether each covariate j is a 

component of all, some, or no competitive subsets. There are many keystone covariates 

that appear in (nearly) all acceptable subsets, including environmental exposures (prenatal 

air quality and blood lead levels), economic and social factors (EconDisadv, mother’s 

education level, neighborhood deprivation at time of test), and demographic information 

(race, gender), among others.

Interestingly, chronic and acute PM2.5 exposure each belong to nearly 50% of acceptable 

subsets (Figure 5), yet rarely appear in the same acceptable subset (Figure E.2). The 

pairwise correlations (Figure E.1) offer a reasonable explanation: these variables are weakly 

correlated with reading scores but highly correlated with one another. Similar results persist 

for neighborhood deprivation and racial residential isolation both at birth and time of 

test. Moreover, this analysis was conducted after removing one acute PM2.5 outlier (50% 

larger than all other values). When that outlier is kept in the data, acute PM2.5 no longer 

belongs to any acceptable subset, while VIincl  j  for chronic PM2.5 increases. These results are 

encouraging: the acceptable family identifies redundant yet distinct predictive explanations, 

but prefers the more stable covariate in the presence of outliers.

Next, we analyze the smallest acceptable subset Ssmall and incorporate uncertainty 

quantification for the accompanying linear coefficients. The Ssmall = 19 selected covariates 
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are displayed in Figure 6 alongside the point and 90% intervals based on the proposed 

approach, the Bayesian model ℳ, and the adaptive lasso. The estimates and intervals for 

covariates excluded from Ssmall are identically zero for the proposed approach (and, in this 

case, the adaptive lasso as well), while the estimates and HPD intervals from ℳ are dense 

for all covariates. Despite the encouraging simulation results for the Zhao et al. (2021) 

frequentist intervals, these intervals often exclude the adaptive lasso point estimates, which 

undermines interpretability.

The estimates from Ssmall and ℳ are similar with anticipated directionality: higher mother’s 

education levels, lower blood lead levels in the child, less neighborhood deprivation, and 

absence of economic disadvantages predict higher reading scores. Prenatal air quality 

exposure PM2.5  is significant: due to seasonal effects, the 1st and 3rd trimester exposures 

have negative coefficients, while the 2nd trimester has a positive effect. Naturally, these 

effects can only be interpreted jointly. Among interaction terms, the negative effect of NH 

Black × RI_birth suggests the lower reading scores among non-Hispanic Black students 

are accentuated by racial residential isolation in the neighborhood of the child’s birth. Since 

we do not force all main effects into each subset, Ssmall does not contain an estimated 

effect of RI_birth for other race groups. Other interactions, such as the positive effects of 

Hisp and NH Black by EconDisadv and Hisp × Blood_lead, must also be interpreted 

carefully: the vast majority of Hispanic and non-Hispanic Black students belong to the 

EconDisadv group and have much higher blood lead levels on average, while each of NH 

Black, EconDisadv, and Blood_lead has a strong negative main effect.

The results are not particularly sensitive to mk or ε. When mk = 15, there are S = 436
candidate subsets and A0, 0.1 = 197 acceptable subsets. The variable importance metrics 

broadly agree with Figures 5 and E.2, while Ssmall—and therefore Figure 6—is unchanged. 

When ε = 0.20 (and mk = 100 as before), the acceptable family reduces slightly to A0, 0.1 =
977 members and Ssmall differs only in the addition of Smoker and Hisp × NDI_test.

4.2 Out-of-sample prediction

We evaluate the predictive capabilities of the proposed approach for 20 training/testing 

splits of the NC education data. The same competing methods are adopted from Section 3, 

including the distinct search strategies for collecting near-optimal subsets. Since Ssmall and 

Smin are reasonably robust to mk, we select mk = 15 for computational efficiency. In addition, 

we include the acceptable family defined by setting xi i = 1
n  to be the testing data covariate 

values (bbound(Xtilde)), which is otherwise identical to bbound(bayes). Root mean 

squared prediction errors (RMSPEs) are used for evaluation.

The results are presented in Figure 7. Among single subset methods, Ssmall outperforms all 

competitors—including the classical forward and backward estimators and the smallest 

acceptable subsets from lasso(bayes), forward(bayes), and backward (bayes) 

discussed in Section 3 (not shown). The adaptive lasso selects fewer variables and is not 

competitive. Among search methods, Figure 7 confirms the results from the simulation 

study: the proposed BBA strategy (bbound (bayes)) identifies 10–25 times the number 
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of subsets as the other search strategies, yet does not sacrifice any predictive accuracy in 

this expanded collection. Clearly, bbound(bayes) provides a more complete predictive 

picture, as the competing search strategies omit a massive number of subsets that do 
offer near-optimal prediction. The acceptable family based on the out-of-sample covariates 

bbound(Xtilde) is much larger, which is reasonable: the subsets are computed and 

evaluated on covariates for which the accompanying response variables are not available. 

This collection of subsets sacrifices some predictive accuracy relative to the other search 

strategies, yet still outperforms the adaptive lasso—yet another testament to the importance 

of the regularization induced by ℳ.

Although the RMSPE differences appear to be small, minor improvements are practically 

relevant: even a single point on a standardized test score can be the difference between 

progression to the next grade level (on the low end) or eligibility for intellectually gifted 

programs (on the high end). More generally, education data are prone to weak signals and 

small effect sizes, which are conditions under which many methods may offer similar 

predictive performance. Nonetheless, our primary goal is not to substantially improve 
prediction, but rather to identify and analyze a large collection of near-optimal subsets.

The importance of the broader BBA search strategy is further highlighted in comparison 

lasso(bayes), which uses a lasso search path for decision analytic Bayesian variable 

selection (Hahn and Carvalho, 2015; Kowal et al., 2021). In particular, lasso(bayes) 

generates only S = 25 candidate subsets and A0, 0.1 = 9 acceptable subsets. By comparison, 

bbound(bayes) returns more than 100 times the number of candidate subsets and 
acceptable subsets. Figure 7 shows that the subsets omitted by lasso(bayes) yet 

discovered by bbound(bayes) are indeed near-optimal. Further, the restrictive search path 

of lasso(bayes) does not guarantee greater stability: the smallest acceptable subsets 

for bbound(bayes) and lasso(bayes) are nearly identical, yet the interquartile range 

of Ssmall  across the 20 training/testing splits under bbound(bayes) is 0, while the same 

quantity under lasso(bayes) is 2. Indeed, by this metric, bbound(bayes) actually 

provides the most stable smallest acceptable subset across all search strategies considered.

5. Discussion

We developed decision analysis tools for Bayesian subset search, selection, and (co-) 

variable importance. The proposed strategy is outlined in Algorithm 1. Building from a 

Bayesian predictive model ℳ, we derived optimal linear actions for any subset of covariates. 

We explored the space of subsets using an adaptation of the branch-and-bound algorithm. 

After filtering to a manageable collection of promising subsets, we identified the acceptable 
family of near-optimal subsets for linear prediction or classification. The acceptable family 

was summarized by a new (co-) variable importance metric—the frequency with which 

variables (co-) appear in all, some, or no acceptable subsets—and individual member 

subsets, including the “best” and smallest subsets. Using the posterior predictive distribution 

from ℳ, we developed point and interval estimates for the linear coefficients of any subset. 

Simulation studies demonstrated better prediction, interval estimation, and variable selection 
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for the proposed approach compared to existing Bayesian and frequentist selection methods

—even for high-dimensional data with p > n.

We applied these tools to a large education dataset to study the factors that predict 

educational outcomes. The analysis identified several keystone covariates that appeared in 

(almost) every near-optimal subset, including environmental exposures, economic and social 

factors, and demographic information. The co-variable importance metrics highlighted an 

interesting phenomenon where certain pairs of covariates belonged to many acceptable 

subsets, yet rarely appeared in the same acceptable subset. Hence, these variables are 

effectively interchangeable for prediction, which provides valuable context for interpreting 

their respective effects. We showed that the smallest acceptable subset offers excellent 

prediction of end-of-grade reading scores and classification of at-risk students using 

substantially fewer covariates. The corresponding linear coefficients described new and 

important effects, for example that greater racial residential isolation among non-Hispanic 

Black students is predictive of lower reading scores. However, our results also caution 

against overreliance on any particular subset: we identified over 200 distinct subsets of 

variables that offer near-optimal out-of-sample predictive accuracy.

Future work will attempt to generalize these tools via the loss functions and the actions. 

Alternatives to squared error and cross-entropy loss can be incorporated with an IRLS 

approximation strategy similar to Section 2.3, which would maintain the methodology and 

algorithmic infrastructure from the proposed approach. Similarly, the class of parametrized 

actions can be expanded to include nonlinear predictors, such as trees or additive models, 

with acceptable families constructed in the same way.
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Appendix A.: Approximations for out-of-sample quantities

The acceptable family Aη, ε in (19) is based on the out-of-sample predictive discrepancy 

metric DS1, S2
out

 and the best subset δSmin in (18). These quantities both depend on 

the out-of-sample empirical and predictive losses LS
out k  and LS

out k , respectively, in 

(16). Hence, it is required to compute (i) the optimal action on the training data, 

δS
−ℐk ≔ arg minδSEy ∣ y−ℐkℒ yi i ∈ ℐk, δS , and (ii) samples from the out-of-sample predictive 

distribution yi
−ℐk pℳ yi ∣ y−ℐk . Because of the simplifications afforded by (4)-(5) and 

(11), computing δS
−ℐk

 only requires the out-of-sample expectations yi
−ℐk ≔ Ey ∣ y−ℐk y xi  or 

ℎi
−ℐk ≔ Ey ∣ y−ℐkℎ yi  for the classification setting. For many models ℳ, there is a further 

simplification that Ey ∣ y−ℐk y xi = Eθ ∣ y−ℐk Ey ∣ θ y xi , where often Ey ∣ θ y xi  has an explicit 

form (such as in regression models). Absent such simplifications, the expectations can be 

computed by averaging the draws of yi
−ℐk pℳ yi ∣ y−ℐk .

Although these terms can be computed by repeatedly re-fitting the Bayesian model ℳ for 

each training/validation split k = 1, …, K, such an approach is computationally demanding. 

Instead, we apply a sampling-importance resampling (SIR) algorithm to approximate these 

out-of-sample quantities. Notably, the SIR algorithm requires only a single fit of model 

ℳ to the complete data—which is already needed for posterior inference—and therefore 

contributes minimally to the computational cost of the aggregate analysis.

The details are provided in Algorithm 2. By construction, the samples yi
s

s = s1
S  are 

from the out-of-sample predictive distribution pℳ yi ∣ y−ℐk . Based on Algorithm 2, it is 

straightforward to compute draws of DS1, S2
out

 for any S1, S2 ∈ S, as well as the best subset δSmin

in (18). Therefore, the acceptable family Aη, ε is readily computable for any η, ε. By default, 

we use S = S/2  SIR samples.

Algorithm 2 recycles computations: steps 1–2(d) are shared among all subsets S and loss 

functions L. Hence, the algorithm is efficient even when the number of candidate subsets 

S  is large—and notably does not require re-fitting the Bayesian model ℳ. Modifications 

for classification (Section 2.3) are straightforward: steps (c), (d), and (e) are replaced by 

c′  yi
s pℳ yi ∣ θs  for s = s1, …, sS and i = 1, …, n;   d′  ℎj

−ℐk ≈ S−1∑s = s1
S ℎ yj

s  for j ∉ ℐk; and 
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e′  compute δS
−ℐk

 by solving (11) using the training data covariates xi i ∉ ℐk, the weights 

ω xi i ∉ ℐk, and the pseudo-data ℎj
−ℐk

j ∉ ℐk
.

Appendix B.: Simulation study for classification

The synthetic data-generating process for classification mimics that for prediction: the only 

difference is that the data are generated as yi
indepBernoulli πi

*  with πi
* ≔ 1 + exp −yi

* −1 and 

yi
* ≔ xi

′β* as before. For the Bayesian model ℳ, we use a logistic regression model with 

horseshoe priors and estimated using rstanarm (Goodrich et al., 2018). The competing 

estimators are constructed similarly as before, now using cross-entropy loss (10) for the 

proposed approach and the logistic likelihood for the adaptive lasso.

The classification performance is evaluated using cross-entropy loss for πi
* in Figure B.1 

(top), using the same competing search methods as in Figure 1. As in the regression case, the 

proposed bbound(bayes) search procedure returns vastly more subsets in the acceptable 

family, yet maintains excellent classification performance within this collection. In addition, 

classification based on Smin and Ssmall substantially outperform the adaptive lasso. We also 

include the 90% interval comparisons in Figure B.1 (bottom), which confirm the results 

from the prediction scenario: Ssmall and Zhao et al. (2021) (modified for the logistic case) 

achieve the nominal coverage with the narrowest intervals.

Figure B.1: 
Top: cross-entropy loss for πi

*. The boxplots summarize the cross-entropy quantiles for 

the subsets within each acceptable family, while the vertical lines denote cross-entropy of 

Kowal Page 24

J Mach Learn Res. Author manuscript; available in PMC 2023 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



competing methods. The average size of each acceptable family is annotated. Bottom: Mean 

interval widths (boxplots) with empirical coverage (annotations) for β*.

Appendix C.: Simulation study for sensitivity analysis

We revisit the comparisons in Figure 1 to consider sensitivities to ε and xi i = 1
n . In Figure 

C.1, we report results for the acceptable families with ε = 0.01 and ε = 0.20; the frequentist 

estimators and post.mean are unchanged from Figure 1. Compared also to the analogous 

case in Figure 1 with ε = 0.10, we see the expected ordering in the cardinalities of the 

acceptable families: larger values of ε produce a more stringent criterion and therefore 

fewer acceptable subsets. Notably, the main results are not sensitive to the choice of 

ε ∈ 0.01, 0.10, 0.20 , and Ssmall performs exceptionally well in all cases.

Figure C.1: 
Root mean squared errors (RMSEs) for predicting y*. The boxplots summarize the RMSE 

quantiles for the subsets within each acceptable family; here, the acceptable families use 

ε = 0.01 (left) and ε = 0.20 (right). The vertical lines denote RMSEs of competing methods 

and the average size of each acceptable family is annotated. The results suggest only minor 

sensitivity to the choice of ε.

Next, we again modify the comparisons in Figure 1 to evaluate prediction at a new collection 

of covariates xi i = 1
n . We allow variations in the covariate data-generating process—either 

correlated standard normals from Section 3 or iid Uniform(0,1)—and whether the observed 

covariates xi i = 1
n  follow the same data-generating process as the target covariates xi i = 1

n . 

These configurations generate four scenarios, all with xi i = 1
n ≠ xi i = 1

n . The competing 

acceptable families are each generated using this choice of xi i = 1
n  and the point predictions 

are evaluated for y* xi = xi
′β* for i = 1, …, n = 1000. The results are in Figure C.2. Naturally, 

performance worsens across the board when observed and target covariates differ in either 

their values xi i = 1
n ≠ xi i = 1

n  or their distributions. When the target covariates are iid 

uniform (top right, bottom left), all methods actually perform better—likely due to the 

light-tailed (bounded) and independent covariate values. Yet perhaps most remarkably, the 

relative performance among the methods remains consistent, while Ssmall outperforms all 

competitors in all but one scenario—and decisively outperforms the frequentist methods in 

all cases.
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Appendix D.: Subset selection for classifying at-risk students

We now focus the analysis on at-risk students via the functional ℎ yi = I yi ≥ τ0.1  under 

cross-entropy loss, where τ0.1 is the 0.1-quantile of the reading scores. The posterior 

predictive variables yi derive from the same model ℳ as in Section 4, which eliminates the 

need for additional model specification, fitting, and diagnostics. However, it is also possible 

to fit a separate logistic regression model to the empirical functionals ℎ yi , which we do for 

the logistic adaptive lasso competitor.

Figure C.2: 
Root mean squared errors (RMSEs) for predicting y* xi = xi

′β* for covariates xi i = 1
n = 1000 when 

the observed covariates xi i = 1
n  are correlated standard normals (top) or iid uniforms (bottom) 

and when the target covariates xi i = 1
n = 1000 have the same distribution (left) or a different 

distribution (right) from xi i = 1
n . The boxplots summarize the RMSE quantiles for the subsets 

within each acceptable family. The vertical lines denote RMSEs of competing methods and 

the average size of each acceptable family is annotated.

It is most informative to study how the acceptable families A0, 0.1 differ for targeted 

classification relative to prediction. The comparative distributions of DSmin, S
out

 (Figures 4 

and D.1) clearly show that classification admits smaller subsets capable of matching the 

performance of Smin within 1%.

The variable importance metrics (Figures D.2 and E.3) identify the same keystone covariates 

as in the prediction setting. However, although there are many more acceptable subsets 

for classification A0, 0.1 = 1547  than for prediction A0, 0.1 = 1183 , each VIincl  j  is generally 
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much smaller for classification. Indeed, the smallest acceptable subset for classification is 

smaller, Ssmall = 16, and is accompanied by 21 acceptable subsets of this size. In aggregate, 

these results suggest that near-optimal linear classification of at-risk students is achievable 

for a broader variety of smaller subsets of covariates.

Lastly, the selected covariates from Ssmall are plotted with 90% intervals in Figure D.3. 

Compared to the prediction version, Ssmall for classification replaces 1st trimester PM2.5

exposure with acute PM2.5 exposure and omits the interactions Hisp × Blood_lead and 

Hisp × EconDisadv, but is otherwise the same. The posterior expectations under ℳ are 

excluded because they are not targeted for prediction of ℎ yi  and therefore are not directly 

comparable. However, there is some disagreement between Ssmall and the adaptive lasso, the 

latter of which excludes several keystone covariates and again suffers from inconsistency 

between the point and interval estimates.

Figure D.1: 

The 80% intervals (bars) and expected values (circles) for DSmin, S
out

 with DS, Smin
out  (x-marks) under 

cross-entropy for each subset size S  with S ∈ S. We annotate Smin (dashed gray line) and 

Ssmall (solid gray line) and jitter the subset sizes for clarity of presentation.
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Figure D.2: 
Variable importance VIincl j  for classification of the 0.1-quantile mk = 100 .

Figure D.3: 
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Estimated linear effects and 90% intervals for the variables in Ssmall based on the proposed 

approach and the adaptive lasso.

Appendix E.: Supporting figures

These figures include: pairwise correlations among the covariate (Figure E.1) and co-

variable importance for prediction (Figure E.2) and classification (Figure E.3).

Figure E.1: 
Pairwise correlations among the covariates in the NC education data.
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Figure E.2: 
Co-variable importance VIincl j, ℓ  for prediction. For certain pairs of variables (chronic and 

acute PM2.5 exposure; neighborhood deprivation and racial residential isolation both at birth 

and time of test), it is common for one—but not both—to appear in an acceptable subset.
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Figure E.3: 
Co-variable importance VIincl j, ℓ  for classification of the 0.1-quantile.
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Figure 1: 
Root mean squared errors (RMSEs) for predicting y* across n, p, SNR  configurations. The 

boxplots summarize the RMSE quantiles for the subsets within each acceptable family, 

while the vertical lines denote RMSEs of competing methods. The average size of each 

acceptable family is annotated. The proposed BBA search returns vastly more subsets that 

remain highly competitive, while Ssmall performs very well and substantially outperforms 

classical subset selection.
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Figure 2: 
Mean interval widths (boxplots) with empirical coverage (annotations) for β*. Non-

overlapping notches indicate significant differences between medians. The proposed 

intervals based on Ssmall are significantly narrower than the usual HPD intervals under ℳ
yet maintain the empirical nominal 90% coverage.
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Figure 3: 
Variables in the NC education dataset. Data are restricted to individuals with 37–42 weeks 

gestation, mother’s age 15–44, Blood_lead ≤80, birth order ≤4, no current limited English 

proficiency, and residence in NC at time of birth and time of 4th grade test.
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Figure 4: 

The 80% intervals (bars) and expected values (circles) for DSmin, S
out

 with DS, Smin
out

 (x-marks) under 

squared error loss for each subset size S  with S ∈ S. We annotate Smin (dashed gray line) 

and Ssmall (solid gray line) for ε = 0.10 and η = 0 and jitter the subset sizes for clarity of 

presentation.
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Figure 5: 
Variable importance VIincl  j  for prediction. There are several tiers: variables appear in 

(nearly) all, many (> 70%), some (> 30%), or no acceptable subsets.
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Figure 6: 
Estimated linear effects and 90% intervals for the variables in Ssmall based on the proposed 

approach, model ℳ, and the adaptive lasso.
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Figure 7: 
Root mean squared prediction errors (RMSPEs) across 20 training/testing splits of the NC 

education data. The boxplots summarize the RMSPE quantiles for the subsets within each 

acceptable family, while the vertical lines denote RMSPEs of competing methods. The 

average size of each acceptable family is annotated. The proposed BBA search returns vastly 

more subsets that remain highly competitive, while the accompanying Ssmall subset performs 

best overall.
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Table 1:

True positive rates (TPR) and true negative rates (TNR) for Gaussian synthetic data with p* + 1 = 6 active 

covariates including the intercept. The selection performance of Ssmall is excellent and similar to the the 

adaptive lasso. Classical subset, forward, and backward selection are too aggressive, while the posterior 

interval-based selection is too conservative.

n = 50, p = 50, SNR = 0.25

lasso forward backward subset posterior HPD Smin Ssmall

TPR 0.22 0.96 0.93 0.53 0.06 0.51 0.22

TNR 0.98 0.06 0.10 0.63 1.00 0.81 0.98

n = 50, p = 50, SNR = 1

lasso forward backward subset posterior HPD Smin Ssmall

TPR 0.54 0.95 0.89 0.72 0.16 0.77 0.34

TNR 0.92 0.06 0.11 0.64 1.00 0.78 0.99

n = 200, p = 400, SNR = 0.25

lasso forward backward subset posterior HPD Smin Ssmall

TPR 0.36 0.79 0.78 0.67 0.17 0.75 0.34

TNR 1.00 0.52 0.54 0.96 1.00 0.95 1.00

n = 200, p = 400, SNR = 1

lasso forward backward subset posterior HPD Smin Ssmall

TPR 0.97 0.96 0.95 0.95 0.75 0.98 0.93

TNR 0.99 0.57 0.60 0.96 1.00 0.95 1.00

n = 500, p = 50, SNR = 0.25

lasso forward backward subset posterior HPD Smin Ssmall

TPR 0.84 0.96 0.95 0.94 0.59 0.99 0.86

TNR 0.98 0.83 0.83 0.83 1.00 0.70 0.98

n = 500, p = 50, SNR = 1

lasso forward backward subset posterior HPD Smin Ssmall

TPR 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TNR 1.00 0.84 0.83 0.83 1.00 0.67 0.99
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