Skip to main content
. Author manuscript; available in PMC: 2023 Dec 15.
Published in final edited form as: J Mach Learn Res. 2022 Jan-Dec;23:108.

Table 1:

True positive rates (TPR) and true negative rates (TNR) for Gaussian synthetic data with p*+1=6 active covariates including the intercept. The selection performance of 𝒮small is excellent and similar to the the adaptive lasso. Classical subset, forward, and backward selection are too aggressive, while the posterior interval-based selection is too conservative.

n=50, p=50, SNR = 0.25
lasso forward backward subset posterior HPD Smin Ssmall
TPR 0.22 0.96 0.93 0.53 0.06 0.51 0.22
TNR 0.98 0.06 0.10 0.63 1.00 0.81 0.98
n=50, p=50, SNR = 1
lasso forward backward subset posterior HPD Smin Ssmall
TPR 0.54 0.95 0.89 0.72 0.16 0.77 0.34
TNR 0.92 0.06 0.11 0.64 1.00 0.78 0.99
n=200, p=400, SNR = 0.25
lasso forward backward subset posterior HPD Smin Ssmall
TPR 0.36 0.79 0.78 0.67 0.17 0.75 0.34
TNR 1.00 0.52 0.54 0.96 1.00 0.95 1.00
n=200, p=400, SNR = 1
lasso forward backward subset posterior HPD Smin Ssmall
TPR 0.97 0.96 0.95 0.95 0.75 0.98 0.93
TNR 0.99 0.57 0.60 0.96 1.00 0.95 1.00
n=500, p=50, SNR = 0.25
lasso forward backward subset posterior HPD Smin Ssmall
TPR 0.84 0.96 0.95 0.94 0.59 0.99 0.86
TNR 0.98 0.83 0.83 0.83 1.00 0.70 0.98
n=500, p=50, SNR = 1
lasso forward backward subset posterior HPD Smin Ssmall
TPR 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TNR 1.00 0.84 0.83 0.83 1.00 0.67 0.99