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SUMMARY

A standard unsupervised analysis is to cluster observations into discrete groups using a dissimilarity
measure, such as Euclidean distance. If there does not exist a ground-truth label for each observation
necessary for external validity metrics, then internal validity metrics, such as the tightness or separation
of the clusters, are often used. However, the interpretation of these internal metrics can be problematic
when using different dissimilarity measures as they have different magnitudes and ranges of values that
they span. To address this problem, previous work introduced the “scale-agnostic” G+ discordance metric;
however, this internal metric is slow to calculate for large data. Furthermore, in the setting of unsupervised
clustering with k groups, we show that G+ varies as a function of the proportion of observations assigned
to each of the groups (or clusters), referred to as the group balance, which is an undesirable property. To
address this problem, we propose a modification of G+, referred to as H+, and demonstrate that H+ does not
vary as a function of group balance using a simulation study and with public single-cell RNA-sequencing
data. Finally, we provide scalable approaches to estimate H+, which are available in the fasthplus R
package.
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1. INTRODUCTION

Quantifications of discordance such as Gamma (Goodman and Kruskal, 1979) and Tau (Kendall, 1938)
have historically been derived to assess fitness from contingency tables. (The terms “discordance” and
“disconcordance” have been used interchangeably to describe related metrics for contingency tables
(Rohlf, 1974; Goodman and Kruskal, 1979), but here we use “discordance.”)

In this article, we explore the problem of unsupervised clustering (also known as observation partition-
ing). A typical clustering algorithm seeks to optimally group n observations into k groups (or clusters)
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using a dissimilarity matrix D(n × n) (e.g., Euclidean distance) or dij for each i, j observations with
Nd = (n

2

)
unique pairs of distances. If there does not exist a ground-truth label for each observation,

internal validity metrics are often used to evaluate the performance of a set of predicted cluster labels
L = [l1, . . . , ln : li = 1 . . . , k] for a fixed D. Many internal fitness metrics quantify the tightness or
separation of partitions with functions such as within-cluster sums of squares or mean Silhouette scores
(Rousseeuw, 1987). However, when comparing multiple dissimilarity measures, the interpretation of these
performance metrics can be problematic as different dissimilarity measures have different magnitudes and
ranges, leading to different ranges in the tightness of the clusters.

One solution is to use discordance as an internal validity metric that depends on the ranks of the
dissimilarities, rather than on the dissimilarities themselves, thereby making it a “scale-agnostic.” For
example, the discordance metric G+ (Williams and Clifford, 1971; Rohlf, 1974) uses the following to
assess how well a given predicted cluster label L fits a dissimilarity D induced from the same observations
(Rohlf, 1974; Desgraupes, 2018) (Note 1 of the Supplementary material available at Biostatistics online):

s =
n∑

i=2

∑

j<i

1[aij=1]
n∑

u=2

∑

v<u

1[auv=0]1[dij>duv ] (1.1)

given fixed L, an adjacency matrix A(n × n) is defined using the predicted cluster label li, lj for the i, j
observations, where aij = 1 if li = lj or aij = 0 otherwise. We can define the set of within-cluster distances
as DW = {dij : aij = 1; i = 2, . . . , n, j < i} and between-cluster distances as DB = {duv : auv = 0; u =
2, . . . , n, v < u} with the total number of distances in each set as |DW | and |DB|, respectively. As we
know that each upper triangular entry of A is binary (every distance is either between- or within-cluster),
then |DW | + |DB| = Nd . Here, we define α as the proportion of total distances Nd that are within-cluster
distances, or α = |DW |

Nd
.

In the following sections, we first consider properties of G+ and show how G+ is a function of α

(Section 2), which has an explicit relationship with what we refer to as b (the group balance, Section 2.4.1),
where bk is the proportion of observations assigned to each of k groups (or clusters) and

∑
k bk = 1. We

illustrate how this is an undesirable property for G+ to vary as a function of α, thereby also the vector b
and k . For example, when simulating “null” data (random Gaussian data with no mean difference between
k = 2 groups), the expected mean (and the interpretation itself) of the G+ discordance metric varies
depending on b (e.g., if the groups are balanced or b = (0.5, 0.5), then G+ = 0.25, but if the groups are
imbalanced, such as b = (0.9, 0.1), then G+ = 0.14 using simulated data) (Figure 1). In addition, we
demonstrate that G+ is slow to calculate for large data (due to the pairwise comparisons of dissimilarities
in (1.1)). To ameliorate these challenges, we propose a modification to G+, referred to as H+ (Section 3)
and demonstrate that H+ does not vary as a function of group balance using a simulation study and with
public single-cell RNA-sequencing (scRNA-seq) data (Section 4). Finally, we provide scalable approaches
to estimate H+, which are available in the fasthplus R package.

2. THE G+ DISCORDANCE METRIC

The discordance metric G+ (Williams and Clifford, 1971; Rohlf, 1974) scales s (1.1) by
(Nd

2

)
, the number

of ways to compare each unique distance to every other.

G+ = s

Nd(Nd − 1)/2
. (2.2)

Generally, G+ close to zero represents high concordance, while a larger G+ is more discordant. In this
way, G+ can be used to quantify the cluster fitness for a given D and L (that is, a designation of each
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(a) (b) (c) (d) (e) (f)

Fig. 1. The G+ discordance metric varies as function of α (proportion of within-cluster distances), which is a function
of the group balance. We randomly sampled n = 1000 observations with 500 features from a mixture distribution
b ∗ X + (1 − b) ∗ Y with b being the probability of an observation coming from X ∼ N (μx, σ 2) and 1 − b coming
from Y ∼ N (μy, σ 2) with (a,b) no mean difference (μx − μy = 0) (or a “null” setting), (c,d) a small mean difference
(μx − μy = 0.2), and (e,f) a large mean difference (μx − μy = 0.6). We simulate data with (a,c,e) balanced groups
(b = 0.5) and (b,d,f) imbalanced groups (b = 0.9). For each simulation, the top row contains observations belonging
to a group (X and Y ) along the first two principal components (PCs) and the bottom row contains histograms of
the within- (DW ) and between- (DB) cluster distances (Euclidean) for the balanced and imbalanced groups. Refer to
Figure S1 of the Supplementary material available at Biostatistics online for an illustration of (and Section 2.4.1 for
the explicit relationship between) the proportion of within-cluster distances (α) and the group balance (b). For each
simulation, the bottom row includes α and the two discordance metrics G+ and H+. Generally, values close to zero
represent more concordance, while a larger values represent more discordance.

pairwise dissimilarity as within- or between-cluster), where a small G+ value would be interpreted as
good performance with tight, separate clusters.

2.1. Applications of G+

As noted above, if D is fixed, smaller values of G+ among many sets of labels L1, L2 . . . indicate increased
cluster fitness (or the generated labels with smaller G+ have more accurately described the dissimilarity
structure of the data) (Rand, 1971; Williams and Clifford, 1971). If we instead fix L, we can also use G+
to assess the fitness of multiple dissimilarity matrices D1, D2 . . . (Rohlf, 1974).

Because G+ depends on the relative rankings of pairwise distances, this transformation enables a
“scale-agnostic” approach to compare dissimilarity measures through the structure they impose on the
data, rather than by the exact values of the distances themselves. This allows distances to be compared on
varying scales without imposing bias from the expected magnitude of distances.

2.2. Properties of s

Consider s (1.1) with an adjacency matrix A(n × n) and dissimilarity matrix D(n × n), with induced
within-cluster distances DW and between-cluster distances DB where |DW | + |DB| = Nd . We can define
α ∈ (0, 1) as the proportion of total distances Nd that are within-cluster distances. In this way, |DW | = αNd ,

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
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and similarly, |DB| = (1 −α)Nd . Then, conditional on Nd and α, the E[s] is (Note 1 of the Supplementary
material available at Biostatistics online):

E[s] = α(1 − α)N 2
d P(dij > duv), (2.3)

where P(dij > duv) is the probability that a within-cluster distance dij ∈ DW is greater than a between-
cluster distance duv ∈ DB. This is the quantity we are interested in estimating, but there is a scaling
factor α(1 − α)N 2

d that depends on both α and Nd . Next, we consider properties of first P(dij > duv) and
then G+.

2.3. Properties of P(dij > duv)

If we know the expected mean and variance for dij ∈ DW and duv ∈ DB, we can estimate P(dij > duv). In the
simple case where E[DW ] = E[DB], we can consider X = DW −DB, then E[X ] = 0 and a standardization
of X demonstrates (assuming [co]variances exist) that P(DW − DB > 0) = 1

2 . As we might expect, there
is a 50% chance that dij > duv when E[DW ] = E[DB].

2.4. Properties of G+

Using (2.2) and (2.3), the expected value of G+ is (Note 1 of the Supplementary material available at
Biostatistics online):

E[G+] = Nd

Nd − 1
2α(1 − α)P(dij > duv)

As Nd
Nd −1 → 1 for large enough Nd , then we see that E[G+] is a function of 2α(1 − α). Next, we derive

the relationship between α and b (group balance) (Section 2.4.1). Then, we provide an illustration of how
G+ varying as function of α and b is an undesirable property (Section 2.4.2).

2.4.1. Relationship between α and b Herein, we derive the relationship between α (the proportion of
total distances Nd that are within-cluster distances) and the group balance b (the proportion of observations
assigned to each of the k groups). For an arbitrary label L (a vector of length n, Li ∈ 1, . . . , k) where
Li = j indicates that the ith observation is assigned membership to the jth cluster group, we can define
the portion of observations in group j using bj defined as

bj = 1

n

n∑

i=1

1[Li=j].

By definition, we know
∑k

j=1 bj = 1. Each of the k clusters will contribute to the quantity α, which is
a fraction of the Nd = n(n − 1)/2 unique pairs of distances. Now, for the jth cluster, this contribution (cj)
is the upper triangular elements of a matrix block with size n · bj

cj = nbj(nbj − 1)

2
.

Finally, we can express α as a sum over each of k contributions cj for j = 1, . . . , k for the explicit
relationship between α and the bjs (and consequently k)

α = 2

n(n − 1)
·

k∑

j=1

cj = 2

n(n − 1)
·

k∑

j=1

nbj(nbj − 1)

2
= 1

n − 1

k∑

j=1

bj(nbj − 1). (2.4)
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2.4.2. G+ as a function of α and b is an undesirable property Because G+ is a function of α and thereby
the group balance b (and consequently k), the interpretation of what we expect G+ to mean, for example,
in a null setting without any true difference between groups, changes across data sets with different group
balances b.

For example, assume we randomly sampled n = 1000 observations with 500 features from a mixture
distribution b ∗ N (μx, σ 2) + (1 − b) ∗ N (μy, σ 2) with no mean difference (μx − μy = 0) and balanced
classes (b = 0.5 and α = 0.5) then, we know P(dij > duv) = 1

2 and E[G+] = 2 1
2 (1 − 1

2 )
1
2 = 1

4 . This can be
thought of as a “null” simulation where we expect no difference in class character or balance, yet G+ will
(perhaps unintuitively) equal 1

4 . However, if there is an imbalance in class sizes (b = 0.9 and α = 0.82)
then E[G+] ≈ 2 · 0.82 · (1 − 0.82) · 1

2 ≈ 0.14 (Figure 1). An illustration of the relationship between α and
b for this example can be seen in Figure S1A,B of the Supplementary material available at Biostatistics
online, which shifts the majority of the distances to within-cluster distances simply due to the imbalance
of the classes.

However, if we consider the same scenario as above, but if we change k from k = 2 to k = 10, we see
that because there are a larger number of groups, this changes α (the portion of within-cluster distances)
for both the balanced (Figure S1C of the Supplementary material available at Biostatistics online) and
imbalanced simulations (Figure S1D of the Supplementary material available at Biostatistics online).

3. THE PROPOSED METHOD

3.1. An unbiased discordance metric with H+

To ameliorate this effect, we propose H+, which replaces the scaling factor Nd(Nd−1)/2 in the denominator
in G+ with |DW ||DB| = α(1 − α)N 2

d :

H+ = s

|DW ||DB| . (3.5)

In other words, instead of scaling s by the total number of ways to compare every distance to every
other distance, we divide by the number of ways to compare within-cluster distances to between-cluster
distances. Hence, E[H+] is not a function of α:

E[H+] = α(1 − α)N 2
d P(dij > duv)

α(1 − α)N 2
d

= P(dij > duv).

In fact, we can empirically verify that while G+ varies as a function of α (and b) (Figure 2a), H+ does not
(Figure 2b), regardless of difference in expectation between the groups.

3.2. Generalizing properties of P(dij > duv)

More generally, consider the function 1[dij>duv ]. For some constant c, we can decompose this event as a
joint event 1[dij>c] ∩ 1[duv≤c] or 1[dij>c] ∩ (1 − 1[duv>c]) (Jardine and Sibson, 1968; Rohlf, 1974). Therefore,
as E[H+] = P(dij > duv), we can decompose E[H+] into two quantities: E[H+] = γW γB where γW =
P(dij > c) and γB = (1 − P(duv > c)). In other words, H+ empirically states a 100 × γW % of dij ∈ DW is
strictly greater than 100 × γB% of duv ∈ DB. This implies H+ is not uniquely determined. For example, if
H+ = 0.4, we could have γW = 1.00, γB = 0.4 or γW = 0.80, γB = 0.50. It should be noted that one can
construct examples where two distinct pairs of γW , γB will have the same product, but do not imply each
other.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
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Fig. 2. The H+ discordance metric does not change as a function of class balance. We randomly sampled n = 1000
observations with 500 features from a mixture distribution b ∗ X + (1 − b) ∗ Y with b being the probability of
an observation coming from X ∼ N (μx, σ 2) and 1 − b coming from Y ∼ N (μy, σ 2) with a true mean difference
(� = μx − μy) (y-axis). Along the x-axis we change group (or class) balance from balanced (e.g., b = 0.50) and to
imbalanced (e.g., b = 0.05) groups. The plots are heatmaps of true G+ (left) and H+ (right) discordance metrics, which
shows H+ does not change as a function of class balance (x-axis), only as a function of the true effect size (y-axis).

3.3. Two algorithms to estimate H+ and γW , γB

One problem with the H+ (and G+) discordance metric (3.5) is that it requires the calculation of both (i)
the dissimilarity matrix D(n×n) which scales O(n2) and (ii) s (1.1) which scales with the number of ways
to compare within-cluster distances to between-cluster distances (or O(n4) comparisons). For example,
with data sets of sizes n = 100 and 500, it takes 0.01 and 0.22 s, respectively, to calculate D(n × n) and
it takes 0.08 and 59.68 s, respectively, to calculate s (Figure 3a, Table S1 of the Supplementary material
available at Biostatistics online). For data sets with more than n = 500 observations, this quickly becomes
computationally infeasible.

To address this, we propose two algorithms to estimate H+, both referred to as an “h-plus estimator”
or (HPE): (i) a brute force approach inspired by the Top-Scoring Pair (Leek, 2009; Magis and Price,
2012) algorithms, which use relative ranks to classify observations with O(p2) comparisons and (ii) a
grid search approach with O(p) comparisons, where p refers to percentiles of the data (rather than the n
observations themselves). Typically, p is chosen such that p << n, leading to significant improvements

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
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(a) (b) (c)

Fig. 3. Computation times (seconds) for exact and approximate H+ calculations as a function of increasing number
of observations n. Computational time (y-axis) as a function of observations (x-axis) to calculate the individual
components of (a) exact H+ including (i) the dissimilarity matrix D(n × n) (purple) scaling O(n2), (ii) the adjacency
matrix (orange), and (iii) the most expensive operation s (pink) scaling O(n4). Note, s is only shown for n = 100
and 500 observations, but the trend is shaded in for the other observations; (b,c) have different y-axes than (a). The
diagonal line between (a) and (b) connects the 20-s ticks of these two axes. (b) Approximate H+ estimation (HPE)
using the grid search procedure including (i) the dissimilarity matrix D(n × n) (blue) scaling O(n2) and (ii) the HPE
algorithm to estimate s (orange) scaling O(p); (c) approximate H+ estimation using the bootstrap procedure (HPB)
(purple), which scales similarly to HPE without the computational expense required for calculating D. Note (b) and
(c) have a different y-axis scale than (a) for an zoomed in visualization of time.

in the computational speed to calculate H+. Specifically, both algorithms estimate H+ (referred to as He

or HPE) assuming D(n × n) has been precalculated and provide faster ways to approximate s (Figure 3b).
Both algorithms are implemented in the hpe() function in the fasthplus R package.

Finally, in a later section (Section 3.5), we introduce a third algorithm based on bootstrap sampling to
avoid calculating the full dissimilarity matrix D, thereby leading to further improvements in computational
speed to estimate H+ (referred to as Hb or HPB) (Figure 3c). The bootstrap algorithm is implemented in
the hpb() function in the fasthplus R package.

3.3.1. Intuition behind HPE algorithms The estimator He (or HPE) assumes D(n × n) has been pre-
calculated and then provides faster ways to approximate s (the pairwise comparisons of DW and DB).
Specifically, we let the two sets DW and DB represent the ordered (ascending) dissimilarities dij ∈ DW

and duv ∈ DB, respectively. Then, we bin the sets DW and DB into p + 1 percentiles where q(DW )i and
q(DW )j are the percentiles for i, j = 0, . . . , p. Note, q(DW )0 = min(DW ) and q(DW )p = max(DW ). In both
algorithms below, we check if q(DW )0 > q(DB)p, then He = 1, and similarly, if q(DW )p < q(DB)0 then
He = 0.

Next, we provide a graphical intuition for the two HPE algorithms by performing a simulation study.
First, we simulate observations from two Gaussian distributions, namely DW ∼ N10 000(0.3, 1) and DB ∼
N10 000(−0.3, 1) and calculate the quantiles q(DW ) and q(DB) for each of the sets with p + 1 = 11
(Figure 4a), p + 1 = 26 (Figure 4b), and p + 1 = 51 (Figure 4c). The calculation of these quantiles
seeks to approximate the true ordered inequality information for each dij ∈ DW and duv ∈ DB. That is, if
DW , DB were both given in ascending order, the white line in Figure 4 shows the percent of duv ∈ DB that
is strictly less than each dij ∈ DW . The true H+(≈ 0.66) is then given by the area under the white curve
(the true rank orderings for each pair). Our goal is to use the following two algorithms to estimate the true
H+ (fraction of blue area in the grid).
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(a) (b) (c)

Fig. 4. Graphical representation of two HPE algorithms to estimate H+. We simulate observations from two Gaussian
distributions, namely A ∼ N10 000(0.3, 1) and B ∼ N10 000(−0.3, 1) and calculate the quantiles q(DW ) and q(DB)
for each of the sets with (a) p + 1 = 11, (b) p + 1 = 26, and (c) p + 1 = 51. The white curve represents the
percent of elements in DW that are strictly less than each element in DB. The goal is to estimate the true H+(≈ 0.66)
(area under the white curve) using one of two HPE algorithms. The brute force approach (HPE algorithm 1) uses
Riemann integration to approximate the white curve by summing the area of the blue squares below the curve. The
grid search approach (HPE algorithm 2) starts at the minimum of q(DW ) and q(DB) and moves along the red–blue
border to approximate the white curve (path followed represents the squares with the light blue borders). The HPE
contour He (or estimate of H+) ± 1

p−1 is given by yellow-bordered squares. In other words, every pair γW , γB such

that γW · γB ∈ He ± 1
p−1 , the interval guaranteed to contain H+. The intersection of this yellow contour (He ± 1

p−1 )
and blue contour (grids visited by HPE algorithm 2) are the green-bordered squares, which represents the numerical
estimate for γW and γB.

3.3.2. HPE algorithm 1: H+ (brute force) Algorithm 1 numerically approximates H+ with Riemann
integration. Specifically, using a double for loop with (p + 1)2 comparisons, this brute force approach
sums the area of the squares that are blue in Figure 4, resulting in an algorithm on the order of O(p2). The
path taken by our implementation of this algorithm is given by the squares with light blue borders, and the
contour corresponding to the true H+ ≈ 0.66 is (approximately) represented by the squares with yellow
outlines (Figure 4).

Algorithm 1 H+ (brute force)
1. se = 0
2. for i = 0, . . . , p do
3. for j = 0, . . . , p do
4. se+ = 1(q(DW )i > q(DB)j)

5. end for
6. end for
7. He = se/p2

3.3.3. HPE algorithm 2: H+ (grid search) An alternative and faster approach (on the order of O(p)

comparisons) is to sketch the surface (blue–red border) that defines H+. By starting at the minimum of
q(DW ) and q(DB), Algorithm 2 moves along the blue–red border that defines H+ using grid search to
determine whether to increase q(DW )i or q(DB)j with each iteration.
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Algorithm 2 H+ (grid search)
1. se = 0
2. se = 0
3. i = j = 0
4. v = [0, 0, . . . , 0]
5. while i =< p and j =< p do
6. si = q(DW )i > q(DB)j

7. if si then
8. j + +
9. else

10. zi = j/p2

11. i + +
12. end if
13. end while
14. He = ∑p

i=0 zi

3.4. Convergence of HPE algorithms 1 and 2

Next, we provide a numerical bound for the accuracy of He for both the brute force and grid search
approaches. For each q(DW )i, i = 0, . . . , p, HPE algorithm 2 (and intrinsically algorithm 1) ascertains
one of the following:

(1) q(DW )i < q(DB)0

(2) ∃j : q(DB)j < q(DW )i ≤ q(DB)j+1 j ∈ 0, . . . , p − 1
(3) q(DW )i > q(DB)p

(3.6)

In (1), we have confirmed that i
p × 100% of DW are less than 0

p × 100% of DB and the ith addition to the

numerical integral will be zero, that is, zi = 0 in HPE algorithm 2. In (3), we see that i
p × 100% of DW

are greater than p
p × 100% of DB and zi = 1

p in HPE algorithm 2. In (2), we know that i
p × 100% of DW

are bigger than j
p × 100% of DB, but not greater than j+1

p × 100% of DB, and zi = j
p2 in HPE algorithm 2.

Recall that He is estimated as the sum over each zi where j
p2 ≤ zi <

j+1
p2 . We denote yi as the true value of

this sum for column i, that is, for some β, yi = β

p2 where β

p × 100% of DB are less than or equal to q(DW )i

and j
p2 < yi ≤ j+1

p2 . Thus, for (2), we have the condition 0 ≤ |zi − yi| <
j+1
p2 − j

p2 = 1
p2 , in other words, the

addition to He from the ith column will differs from the true value (H+) by at most 1
p2 . Thus, for all p:

|H+ − He| ≤
p∑

i=0

|zi − yi| ≤ (p + 1)
1

p2
<

1

p
. (3.7)

That is, by taking p + 1 percentiles of DW and DB, our estimate for HPE algorithm 2 will be within 1
p

of H+. This follows when one considers HPE algorithms 1 and 2 are approximations of the paired true
rank comparisons (white curve in Figure 4) using Riemann integration with increasing accuracy as a
function of p. An additional argument for the convergence of these algorithms is presented in Note 2 of
the Supplementary material available at Biostatistics online.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
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3.4.1. Estimating γW and γB To estimate γW and γB, we use the intersection of the yellow contour
(He ± 1

p−1 ) and blue contour (path visited by HPE algorithm 2), which are the green-bordered squares

in Figure 4. As our approach guarantees that He − 1
p−1 ≤ H+ ≤ He + 1

p−1 , we can identify every pair

γW , γB : γW · γB ∈ He ± 1
p−1 as potential values of γW , γB : γW · γB ≈ H+. Our algorithm also identifies

the values of γW , γB that are true for the observed data (all areas below the white line in Figure 4) or those
which have been verified as false (all area above the white line in Figure 4). Our estimate for γW , γB is
then the intersection of γW , γB that are empirically verified in HPE algorithm 2 such that 100 × γW % of
dij ∈ DW is strictly greater than 100×γB% of duv ∈ DB (blue squares in Figure 4) and γW , γB which satisfy
γW · γB ≈ H+ (yellow squares in Figure 4).

3.5. Bootstrap algorithm to estimate H+

As noted in Section 3.3, while the computational speed of the HPE algorithms for identifying ways to
approximate s is significantly faster than calculating the full H+ (Figures 3(a) and (b)), both of these
algorithms assume the dissimilarity matrix D(n × n) has been precomputed and that an adjacency matrix
A(n × n) must be calculated. Unfortunately, the O(n2) computational requirements for full pairwise
dissimilarity calculation to quickly becomes infeasible (Figure 3, Table S1 of the Supplementary material
available at Biostatistics online).

To address the limitation of computing and storing all pairwise dissimilarities, we implemented a
bootstrap approximation of H+ (HPB or Hb) that samples with replacement from the original n observations
r times (bootstraps) with a per-bootstrap sample size t. We sample proportionally according to the vector
b as described in Section 2.4.1, that is, each of the k clusters is randomly sampled tj ≈ bj × t times
(where

∑k
j=1 bj = 1) such that

∑k
j=1 tj ≈ t. For each of r iterations, the t sampled observations are used

to generate dissimilarity and adjacency matrices which are then used to calculate a point estimate of
H+. The mean over these r bootstraps is Hb, the bootstrap H+ estimate. The bootstrap approach scales
substantially better than full dissimilarity calculation (Figure 3c). In our simulations, bootstrap parameters
r = 0.05 × n, t = 100 yield H+ estimates within 0.01 of that given by HPB with p = 10 001 (1e − 04
accuracy) with economical performance improvements. For example, we saw a reduction in computation
time from 38.57 s with HPE to 5.74 s with HPB at 3000 observations) (Figure S2 and Table S1 of the
Supplementary material available at Biostatistics online).

4. APPLICATION OF H+ TO THE ANALYSIS OF SINGLE-CELLRNA-SEQUENCING DATA

In this section, we demonstrate the use of H+ as an internal validity metric in the application of scRNA-seq
data with predicted cluster labels. Also, we compare H+ to other widely used validity measures, including
both (i) external (i.e., comparing predicted labels to ground-truth clustering known a priori) and (ii)
internal (derived from the data itself) measures (Halkidi and others, 2001; Theodoridis and Koutroumbas,
2008).

4.1. Motivation

Consider a scRNA-seq data set with n observations (or cells) each with G features (or genes).We introduced
and formulated H+ an internal validity metric to assess the fitness of a single dissimilarity measure D
and label L. Here, we introduce two scenarios where the goal is to compare the performance of either (i)
two label sets Lm, Lm−1 and a fixed dissimilarity D or (ii) two dissimilarity measures Dm, Dm−1 with a fixed
label L. In the first scenario, m and m − 1 could represent two iterations in a single clustering algorithm or

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
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they could be labels from two separate clustering algorithms. As E[H+,m] = P(dij > duv)m (and similarly
with m − 1), the condition H+,m < H+,m−1 can be rewritten as follows

P(dij > duv)m < P(dij > duv)m−1. (4.8)

As Nd is fixed in the following subsections, we offer interpretations of the condition in (4.8) for fixed L
with varying D and fixed D with varying L.

4.2. Data

We used the sc_mixology (Tian and others, 2019) scRNA-seq data set, which provides an exper-
imentally derived “gold standard” true cell type identity (label) for each cell (https://github.com/
LuyiTian/sc_mixology/).

The UMI counts and cellular identities were obtained for n = 902 cells comprised of three cell lines
(H1975, H2228, and HCC827). The cell lines are used as the true cell type labels. Raw counts were
log 2-normalized with a pseudocount of 1, and per-gene variance was calculated using scran (Lun
and others, 2016). For comparison of distances, five dissimilarities (Euclidean, Maximum Manhattan,
Canberra, and Binary) were calculated using log 2-normalized counts and the top 1000 most variant
genes. For comparison of induced labels, dendrograms were induced directly from Euclidean distances
using four hierarchical clustering methods (Ward’s method, single linkage method, complete linkage
method, and unweighted pair group method with arithmetic mean). Cluster labels were induced by cutting
each dendrogram at the true value of k = 3.

4.3. Fixed L varying D

If a user were generating an analysis pipeline, prior to deployment, it may be insightful to compare the
performance of several dissimilarity measures on a previously validated label–data set pair (Baker and
others, 2021). In this case, fixing L will imply that αm = αm−1, then from (4.8), we know that sm < sm−1

for two dissimilarity matrices Dm and Dm−1. That is, the number of within-cluster distances greater than
between-cluster distances will have strictly decreased. To illustrate this capacity, we used H+ to compare
the fitness of five dissimilarity methods induced from the same data and using the same “gold standard”
true cell identities. These values may be found in Table S2 of the Supplementary material available at
Biostatistics online. Further valuation of dissimilarities in this setting is outside the scope of this work,
and we refer the reader to (Baker and others, 2021) for an exploration of this topic.

4.4. Fixed D varying L

Similarly, D can be fixed (e.g., Euclidean distance) with the goal to compare the fitness of one generated
label set Lm (i.e., iteration m of a clustering algorithm) to a previous label Lm−1. In this scenario, Equa-
tion (4.8) does not imply an explicit relation for αm, αm−1; however, the discordance has still decreased.
To demonstrate the use of H+ as a cluster fitness metric, we induce labels using four hierarchical cluster-
ing methods (Ward’s method, single linkage method, complete linkage method, unweighted pair group
method with arithmetic mean) (Figures 5(a–d)), and compare against well-known both external and internal
validity metrics (Figure 5(e) and (f)).

First, we compare H+ as an internal validity metric to an external validity metric, namely the Adjusted
Rand Index (ARI), which assesses the performance of the induced cluster labels using a gold-standard set
of cell type labels in the sc_mixology (Tian and others, 2019) scRNA-seq data set. Here, the induced
labels with better (higher) ARI also yield better (less) H+ discordance (Figure 5(e)). In this sense, H+
(an internal validity measure without the dependency of a gold-standard set of labels) captures similar
information as ARI (an external validity measure that depends on the use of a gold-standard set of labels).

https://github.com/LuyiTian/sc_mixology/
https://github.com/LuyiTian/sc_mixology/
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxac035#supplementary-data
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(a)

(c)

(f)

(d)

(b) (e)

Fig. 5. The H+ metric is an internal validity measure for assessing the performance of induced cluster labels. Multi-
dimensional scaling (MDS) plots with shapes representing true cell type labels from the sc_mixology scRNA-seq
data set and colors representing induced (or predicted) cluster labels from four hierarchical clustering methods imple-
mented in the hclust() function in the base R stats package including (a) Ward’s method, (b) single linkage
method, (c) complete linkage method, and (d) unweighted pair group method with arithmetic mean (UPGMA). (e)
Scatter plot of H+ (an internal validity metric) compared to Adjusted Rand Index (ARI) (an external validity metric)
demonstrating shared information between the two metrics, which H+ (calculated with the HPE algorithm 1 using
p = 101) recovers without the need of an externally labeled set of observations. (f) A performance plot with three
internal validity metrics (y-axis scaled between 0 and 1): (i) 1 − H+ (for ease of comparison) calculated from labels
induced using with k = 2, . . . , 10 (x-axis), (ii) mean silhouette score, and (iii) within-clusters sums of square (WCSS).
The “peak” of the 1 − H+ metric at the correct k = 3 indicates that H+ accurately identifies the most accurate label
in a comparable fashion to established internal fitness measure, namely a “peak” at the mean silhouette score and a
“bend” in the WCSS curve.
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Next, we compare H+ as an internal validity measure to other internal validity measures. Specifically,
we induce labels using partition around medoids (k-medoids clustering) for values of k = 2, . . . , 10. For
each label and k , the mean Silhouette score (Rousseeuw, 1987) and H+ were calculated. We found that
H+ accurately identifies the correct k = 3 for induced labels when compared to an internal validity metric
(i.e., how well the data are explained by a single set of labels) using either the within-cluster sum of square
“bend" (or “elbow") criterion or the mean Silhouette score (Figure 5(f)).

5. DISCUSSION

Quantifying how well a generated clustering fits the observed data is an essential problem in the statistical
and computational sciences. Most methods for measuring cluster fitness are explicitly valued on the
dissimilarity induced from the data.While appealing in their simplicity and interpretation, these approaches
are potentially more susceptible to numerical bias between observations or types of dissimilarity measures.
Discordance metrics, such as τ and G+ circumvent this issue by assessing label-dissimilarity fitness
implicitly on the dissimilarity values. In this work, we show G+ is an estimator for the probability that a
within-cluster dissimilarity is strictly greater than a between-cluster dissimilarity, P(dij > duv). However,
we also show that G+ varies as a function of the proportion of total distances that are within-cluster
distances (α) and thereby also the group balance (b) and number of groups k , which an undesirable
property of the discordance metric.

Here, we present H+, a modification of G+ that retains the scale-agnostic discordance quantification
while addressing problems with G+. Explicitly, H+ is an unbiased estimator for P(dij > duv). This benefit
is most easily seen in the manner that H+ will be unaffected by the value of α (the portion of distance
pairs that are within the same cluster), a formulation that permits the user to assess fitness for an arbitrary
value of k . We discuss the theoretical properties of this estimator, provide two simple algorithms for
implementation, and ascertain a strict numerical bound for their accuracy as a function of a simple user-
defined parameter. We also introduce an estimator of H+ based on bootstrap resampling from the original
observations that does not require the full dissimilarity and adjacency matrices to be calculated.

As H+ can be used to assess the fitness of multiple dissimilarities for a fixed label, or to compare multiple
labels given a fixed dissimilarity, we envision that H+ can be employed in both development and analysis
settings. If the true observation identities (labels) are known for a data set, H+ could be utilized in the
development stages of analytical software and pipelines to ascertain the most advantageous dissimilarity
measure for that specific problem. In the alternate setting, we envision that H+ can be used to quantify
performance in clustering/classification scenarios. If the true labels are unknown, H+ could be used to
identify the clustering algorithm which produces the tightest clusters for a fixed dissimilarity measure. As
a possible future direction, one could imagine directly minimizing discordance as the objective criteria
within a clustering algorithm for optimizing iterative labels.

Due to its generalizability to the number of clusters k or the portion of within to within-cluster dis-
similarity pairs α, H+ may be susceptible to degenerate cluster labels. For example, in the hierarchical
clustering portion of Figure 5, Label 4 is less discordant than Label 3 in terms of both H+ and ARI. Label
4 has simply merged two true clusters, and placed a single point in a third identity. While Label 4 is
more accurate than Label 3, it achieves this by exploiting an opportunity to increase the proportion of
same-cluster pairs, that is, maximizing α. One could also imagine a scenario where an algorithm simply
makes k very large to minimize α. In both scenarios, the labels generated are unlikely to be particularly
informative for the user. We posit that some form of penalization for H+ may help to alleviate these
degenerate cases. For example, dividing H+ by max{α, 1 − α} is a penalty for degeneracy in the case
of putting many observations in the same label. Conversely, a division by min{α, 1 − α} is a potential
penalty for the other degeneracy of making many very small clusters.
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We also imagine that discordance measures can be synthesized with probabilistic dissimilarity frame-
works such as locality-sensitive hashing (LSH) and coresets (Datar and others, 2004; Har-Peled and
Mazumdar, 2004). For example, it could be useful if theoretical (probabilistic) guarantees of observation
proximity from LSH algorithms could be extended to similar guarantees for the discordance of observa-
tions embedded in the hash space. It may also prove fruitful to explore discordance outside the scope of
the clustering/classification problem, such as pseudotime (1-dimensional ordering) or “soft” (weighting
membership estimation) clustering problems.

In practice, H+ could provide an additional means to consider the termination of a clustering algorithm
in a distance-agnostic manner. For example, the k-means algorithm (Hartigan and Wong, 1979) and its
variants seek to minimize a form of the total within-cluster dispersion (dissimilarity). These algorithms
with similar objective functions are subject to changes in behavior as the distance function changes. The
extent to which minimizing discordance such as H+ provides benefits regarding sensitivity to noise and
magnitude of the distances is intriguing and outside the scope of this work.

CODE AND SOFTWARE AVAILABILITY

All analyses and simulations were conducted in the R programming language. Code for repro-
duction of all plots in this article is available at https://github.com/stephaniehicks/fasthpluspaper.
Both HPE and HPB have been implemented in the fasthplus package in R available on
CRAN at https://CRAN.R-project.org/package=fasthplus and for developmental versions on GitHub at
https://github.com/ntdyjack/fasthplus.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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