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THE BIGGER PICTURE Traditional chemical similarity searches have been effective in identifying structur-
ally similar compounds but struggle to find structurally distinct molecules with similar functionality. It would
be advantageous to have a similarity search that comparesmolecules with the functional properties implicit
in their structure. Such a search would help rapidly deploy antiviral candidates for future pandemics, com-
bat microbial resistance, and discover better analgesics.
Machine learning models identify complex patterns and present a promising solution to this task. These
models learn representations of molecules, encapsulating complex chemical structural knowledge into vec-
tor representations. We developed a chemical similarity search using a chemical language model and
SMILES-based prompt engineering strategy that identifies functional analogues. This method may be valu-
able for discovering novel molecules with specific target functionalities in pharmaceutical research.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Chemical similarity searches are awidely used family of in silicomethods for identifying pharmaceutical leads.
These methods historically relied on structure-based comparisons to compute similarity. Here, we use a
chemical language model to create a vector-based chemical search. We extend previous implementations
bycreatingapromptengineering strategy that utilizes twodifferent chemical string representation algorithms:
one for the query and the other for the database.Weexplore thismethodby reviewing search results fromnine
querieswithdiverse targets.Wefind that themethod identifiesmoleculeswith similar patent-derived function-
ality to the query, as determined by our validated LLM-assisted patent summarization pipeline. Further, many
of these functionally similar molecules have different structures and scaffolds from the query, making them
unlikely to be found with traditional chemical similarity searches. This method may serve as a new tool for
the discovery of novel molecular structural classes that achieve target functionality.
INTRODUCTION

Applications for small molecules in modern society are various

and widespread, including treatment of heritable disease, path-

ogen inhibition, and the generation of functional materials

for use in electronics and consumer goods. Molecular function

emerges from structure, but it is not always obvious how this

emerges from first principles due to the dependence of function

on the target molecule.1 Many traditional pharmaceuticals and
This is an open access article und
specialty chemicals are the result of natural product explora-

tion.2–5 These first-generation molecules act as starting points

upon which new molecules are engineered for furthering

desired functionality.6 Structural neighbors often share similar

functionality, as the relevant chemistry may be unchanged or

improved.7 However, molecules with low structural similarity

can act on the same target despite highly different structure,

as is the case with morphine and fentanyl on the mu-opioid

receptor.8
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There are numerous contemporary approaches applying ma-

chine learning to chemistry.9–16 In particular, the application of

languagemodels to this spacehas led tosurprising success inpre-

dicting biochemical features such as drug-likeness and protein-

ligand interactions.11,13 These methods require string representa-

tions ofmolecules, commonly using the simplifiedmolecular-input

line-entry system (SMILES).17 Language models are often trained

in a self-supervised manner through masked language modeling,

in which the objective function is tied to sequence reconstruction

(i.e., feeding themodel amaskedorpartial inputwith the goal of re-

constructing the original sequence). It was recently demonstrated

that a chemical languagemodel, although trained only on SMILES

strings, correctly predicted complex biophysical and quantum-

chemical properties.18 This points to the possibility that these

chemical language models develop a latent space that allows for

the emergence of higher-order biochemical comprehension.

Recently, computationally generated chemical libraries have

grown to surpass 37 billion commercially available compounds.19

This growth spurred the pharmaceutical industry toward the prac-

tice of computationally pre-screening chemicals for resource-effi-

cient discovery in the laboratory.20 One primary class of computa-

tional pre-screening methods are chemical similarity searches.

These methods have historically used structure-based compari-

sons, notably 2D/3D pharmacophore searches and the fingerprint

Tanimoto search, the latter of which computes a hierarchical list of

molecules ranked by molecular substructure similarity to a given

query.21,22

Chemical language models (CLMs) have previously been

applied to drug discovery, in particular de novomolecule genera-

tion and chemical similarity searches. De novo methods autore-

gressively generate novel molecular strings using recurrent neural

networks, transformers, or generative pre-trained transformer

(GPT) models, typically after fine-tuning toward a specific

molecular dataset or downstream task to narrow the solution

space.14–16,18 De novo molecule generation has shown promise

but is currently limited due to a lack of generalizability and guaran-

teedsynthesizability.23 Incontrast, aCLM-basedchemical similar-

ity search has the advantage of computational speed, generaliz-

ability, and high database control to ensure synthesizability.

Sellner et al. recently created a novel transformer-based chemical

similarity search to approximate previous structure-based

methods, emphasizing the computational efficiency of a vector

search that surpassed that of traditional approaches.12 This

methodwas trained to identify molecules with high structural sim-

ilarity to the querymolecule, but it is often the case that wewish to

find structurally dissimilar molecules that retain their target func-

tionality. These structurally distant molecules are beneficial in

combatting antibiotic resistance, reducing drug side effects, and

improving our understanding of chemistry. Such a CLM-based

search does not currently exist.

Here, we describe a CLM-based chemical similarity search

that identifies structurally dissimilar molecules with similar pat-

ent-derived function to a given query molecule. This method

computes CLM embedding similarities between a query

SMILES string and a chemical database. Keeping the SMILES

canonicalization algorithmconstant between the query anddata-

base results in a vector search that approximates recent trans-

former-based chemical similarity search methods.12 However,

when the query SMILES string is canonicalizedwith a different al-
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gorithm thanwasused for thedatabase, the relianceon structural

similarity is diminished while functional similarity is retained. This

behavior seemed reasonable given the previous literature on

SMILESaugmentation formodel training and leads to thehypoth-

esis that we are performing a partially out-of-distribution query

that confounds the model enough to eliminate memorization-

based structural comparisons but not enough to impede seman-

tic understanding.24,25 This method fundamentally differs from

existing literature in that SMILES augmentation is employed dur-

ing inference of a chemical language model rather than during

model training. This method was tested across three canonicali-

zations and nine query molecules, ultimately showing that

queries canonicalized differently than the database were able

to identify structurally distinct functional analogues.

RESULTS

In silico drug discovery methods have long relied on chemical

similarity searches in pharmaceutical pipelines.22 Recently, lan-

guage models have been successful in biochemical prediction

tasks for chemical properties such as drug-likeness, protein-

ligand interactions, and other metrics.11,13 As CLMs have been

used for prediction of a multitude of chemical characteristics, it

is plausible that embeddings from these models are structured

in a way that approximates a summary of molecular properties

for a given molecule. SMILES representations can be used to

represent chemical structures as strings and can be used as in-

puts to CLMs, but, due to the nature of chemical connectivity,

there are often many valid representations for the same mole-

cule.17 Thismultiplicity of input formats results in the CLM gener-

ating different embeddings for the same molecule, which can

either be mitigated through string standardization (known as

canonicalization) or utilized as a data augmentation technique

to create a SMILES representation-invariant CLM.24,25 The latter

is predominantly used during model training, reducing overfitting

to particular strings by teaching the model that a given structure

has multiple corresponding string representations.24,25

However, SMILES augmentation during model inference,

rather than model training, may prove to be advantageous for

a chemical similarity search. Chemical databases often include

structural permutations of well-studied chemicals, causing

embedding-based similarity searches to be dominated by low-

level structure-based comparisons. SMILES strings represent-

ing the same structure often share characters and substrings

with one another, the primary difference being the specific

canonicalization rules used to assemble the string for a given

molecule. For CLMs trained on one canonicalization, inputs us-

ing unseen canonicalizations would be out of distribution, not

on the token identity level but on the immediate token relation-

ship level for a given molecule. This is because the underlying to-

kens and token relationships are not entirely unknown to the

model but are novel in the context of the givenmolecule. It seems

plausible that a vector comparison between embeddings from

two different canonicalizations could ignore the differences in

low-level string and structural data and instead use whole-mole-

cule properties approximating molecular function, thus serving

as a novel prompt engineering strategy for the discovery of

structurally distinct functional analogues. To our knowledge,

this behavior has been largely unexplored.



Figure 1. Chemical semantic search

The query molecule and chemical database are converted into SMILES strings, canonicalized, and then inputted into a language model to obtain embeddings. The

cosine similarity between the query embedding and database embeddings is computed, resulting in a vector of embedding similarities. The database is canonicalized

withRDKitAtom0,whereas thequeriesarecanonicalizedusingoneof thefollowing:RDKitAtom0,RDKitAtomn,orOEChem2.3.0.FigurecreatedwithBioRender.com.
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To test this hypothesis, we built a CLM-embedding-based

chemical similarity search utilizing one canonicalization for the

CLM and database and another canonicalization for the query.

A pipeline was developed to perform a chemical similarity

search using cosine similarity on CLM embeddings obtained

fromChemBERTa, a self-supervised transformer-based encoder

model.26 This pipeline was named the Chemical Semantic

Search (CheSS) and is outlined in Figure 1.ChemBERTawaspre-

trained on SMILES strings canonicalized using the default RDKit

implementation, herein referred to as ‘‘RDKit Atom 0.’’26,27 We

converted the SureChEMBL dataset into a molecular database

of 18.9 million patent-associated RDKit Atom 0 SMILES strings,

upon which CheSS searches were performed. We then explored

how the CheSS search results were affected by three different

query SMILES canonicalizations. The first was RDKit’s default

canonicalization RDKit Atom 0 (Tables 1 and S1). The second

canonicalization was created by varying the RDKit root atom

number to create a string that resulted in maximum distance in

feature space from the RDKit Atom 0 query, herein referred to

as ‘‘RDKit Atom n’’ (Tables 1 and S1; Figure S2). The third used

OEChem 2.3.0, a markedly different algorithm, to canonicalize

the query, referred to as ‘‘OEChem’’ (Tables 1 and S1). CheSS

searches utilizing these three canonicalizations differed only in

the representation of the query molecule with the database and

model remaining constant.

A CheSS search using each of the three query canonicaliza-

tions was conducted on nine structurally and functionally distinct

molecules: zidovudine, penicillin, nirmatrelvir, lysergic acid
Table 1. SMILES string differences for zidovudine based on

canonicalization

Query Canonicalization algorithm SMILES

Zidovudine RDKit Atom 0 Cc1cn(C2CC(N=[N+]=[N�])

C(CO)O2)c(=O)[nH]c1=O

RDKit Atom n O=c1[nH]c(=O)c(C)cn1C1CC

(N=[N+]=[N�])C(CO)O1

OEChem CC1=CN(C(=O)NC1=O)C2CC

(C(O2)CO)N=[N+]=[N�]

Unabridged SMILES for each query are listed in Table S1.
diethylamide (LSD), fentanyl, SB-759335-B, BMS-536924,

558441-90-0, and fluticasone furoate (Figures 2 and S1).

Statistical analysis of canonicalized query
representations
For each querymolecule, several pairwise similaritymetricswere

calculated between the three canonicalizations (Figure 3).

Gestalt pattern matching, a string similarity metric, showed

that each query canonicalized into different strings with a

mean pairwise value of 0.47 across canonicalizations (n = 9) (Fig-

ure 3). Because the CLM does not directly receive strings as in-

puts but instead receives the tokenized representations (integer-

mapped subsections) of strings, the token vectors were

analyzed to understand how these strings would be presented

to the model. The ratio of shared tokens indicated that the query

strings were converted using different input tokens (mean pair-

wise ratio of 0.67 across canonicalizations) (Figure 3). Similarly,

token vectors had variable length depending on canonicaliza-

tion, with some queries differing by a factor of nearly 2 (Figure 3).

Token vectors directly affect featurization, or the model’s inter-

pretation of the input. As hypothesized, different canonicaliza-

tions generated distinct embeddings (mean pairwise embedding

cosine similarity of 0.64), indicating that the model interpreted

different canonicalizations of the samemolecule as quite distinct

inputs (Figure 3).

String, token, and structural relevance of top search
results
To explore how different canonicalizations affect vector search

behavior, similarity metrics were obtained comparing each can-

onicalized query to its respective top 250 CheSS search results.

Queries canonicalized with RDKit Atom 0 yielded compounds

high in structural similarity, as measured by the fingerprint Tani-

moto coefficient (a metric of molecular substructure similarity),

which had a mean coefficient of 0.67 (n = 2,250) (Figure 4A). In

contrast, the mean fingerprint Tanimoto coefficients for RDKit

Atom n and OEChemwere 0.45 and 0.40, respectively. Similarly,

the Murcko scaffold fingerprint coefficient followed this trend

with a mean scaffold similarity of 0.64, 0.33, and 0.30 for RDKit

Atom 0, RDKit Atom n, and OEChem. For RDKit Atom
Patterns 4, 100865, December 8, 2023 3
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Figure 2. Structures of query molecules

All queries were made achiral during canonicalization.

(A) Zidovudine.

(B) Penicillin.

(C) Nirmatrelvir.

(D) LSD.

(E) Fentanyl.

(F) SB-759335-B.

(G) BMS-536924.

(H) 558441-90-0.

(I) Fluticasone furoate.
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0 canonicalized queries, 27.5% of the top 250 results would be

identified using a fingerprint Tanimoto search with a cutoff as

high as 0.80, indicating that nearly a quarter of the results were

1–2 atomic changes aways from the query molecule (Figures 4A

and 4B). In contrast, only 2.8% and 1.8% of the top results for

RDKit Atom n and OEChem would have been found from this

same high-cutoff fingerprint search. This indicates a significant

structural divergence in results when using alternative query

canonicalizations (Figures 4A–4D).
4 Patterns 4, 100865, December 8, 2023
It was found that RDKit Atom 0 canonicalized queries returned

molecules with a high number of shared tokens to the query to-

ken vector (mean ratio of 0.74), whereas this was not the case

with RDKit Atom n and OEChem (means of 0.57 and 0.58).

This indicates that the model’s ability to memorize tokens to

determine embedding similarity was reduced by querying with

different canonicalizations (Figure 4A). Interestingly, it was

observed that the token vector length ratios for all canonicaliza-

tions’ results had mean values around 1.0, indicating that token



Figure 3. Similaritymetrics between the three

canonicalized representations of each query

molecule

String similarity, as measured with gestalt pattern

matching, demonstrates that different canon-

icalizations result in markedly different strings.

Shared token ratio and token length ratio indicate

that these strings were tokenized into different in-

puts to the CLM. Feature similarity demonstrates

that the differently canonicalized queries’ token

vectors were interpreted differently by the model

resulting in increased spread across feature space.

Feature similarity was determined by cosine simi-

larity between ChemBERTa vector embeddings.

Deviations from 1.0 for each metric represent

divergence between canonicalized queries.
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vector length heavily influences feature space location and thus

similarity (Figure 4A). This means that token vector length may

constrain CLM-based similarity searches to confined regions

of chemical space, with alternative canonicalizations acting as

ways to bypass this predominant search criteria through varia-

tions in token vector length, thereby allowing exploration of

distant regions of chemical space to createmore comprehensive

and far-reaching similarity searches (Figures 4C and 4D).

Large language model-assisted patent search reveals
functional analogues
Thedatadiscussed thus fardemonstrates thatalternativelycanon-

icalized queries find structurally distinct compounds but does not

confirmwhether the returnedmoleculesare functionally relevant to

the query. Patent literature represents a rich source of information

on molecular functionality. Summarizing patents into brief and

relevant functional descriptors is a tedious task that would take

an intractable amountof timeover the9,750CheSSsearch results’

17,980 unique associated patents. This limitation was bypassed

with the creation of an automated large languagemodel (LLM)-as-

sisted patent summarization and functional determination

pipeline.

This workflow takes a SMILES string, finds PubChem com-

pound IDs (CIDs) with the same connectivity, obtains linked pat-

ent IDs (limited to 10 per molecule), and scrapes Google Scholar

to obtain the patent title, abstract, and description (Figure 5). This

information is then combined with a prompt and passed into

GPT-3.5-turbo to obtain a set of brief one- to three-word func-

tional descriptors (Figure 5). The descriptors are aggregated

per molecule and combined into a second prompt alongside

pre-defined descriptors of the relevant query molecule’s func-

tionality, which is then passed into GPT-4 to determine whether

the two molecules have similar functionality (Figure 5). This

method was manually validated for performance on a random

100molecules from the 9,750 search results, analyzing both label

accuracy per patent (n = 1,028 labels) and functional similarity to

the relevant query (n = 100molecules) (Tables 2, 3, and 4). The re-

sults of this validation demonstrated 95% accuracy, 94% preci-

sion, and 96% recall on functional similarity determination, with

the limiting factor being that some of the molecules had been

linked to patents in which they served as intermediates rather

than the patent product itself.
Functional similarities of the top 250 results for their respective

nine query molecules were analyzed (Figure 6). Seventy-five

percent of the RDKit Atom 0 results were functionally similar to

their query, 42% for RDKit Atom n, and 27% for OEChem. How-

ever, the alternative canonicalizations returned molecules that

contained significantly dissimilar structures and scaffolds from

the query, with mean whole-molecule fingerprint Tanimoto sim-

ilarities of 0.72, 0.54, and 0.51 for RDKit Atom 0, RDKit Atom n,

and OEChem, respectively, and mean scaffold fingerprint

Tanimoto similarities of 0.69, 0.43, and 0.41 (Figure 5).

Uponcloser inspectionof thestructurallydissimilar functional an-

alogues from the alternatively canonicalized CheSS queries, it was

found thatmany of thesemolecules represented structural classes

distinct from the query. These are illustrated with the nirmatrelvir,

LSD, and fentanyl OEChem-canonicalized searches (Figure 7).

Nirmatrelvir, a peptidomimetic severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) main protease inhibitor, returned a

wide range of non-peptidomimetic protease and peptidase

inhibitors (Figure 7A). LSD, an ergoline 5-HT2A agonist, returned

many non-ergoline 5-hydroxytryptamine (5-HT, serotonin)

receptor ligands not obviously derivable from LSD (Figure 7B).

Fentanyl, an elongated piperidine opioid agonist, returned several

morphinan and non-fentanyl opiates (Figure 7C).

One artifact of determining functional similarity from patent

literature is that the true positive rate for functionally relevant

molecules may be higher than the value obtained in this study,

as the relevant assay is not guaranteed to have been conducted

and reported for a given molecule. As a consequence, the mol-

ecules deemed to have irrelevant functionality are curiously the

most desirable leads for novel drug discovery and repurposing.

Taken together, these hits provide support for the hypothesis

that changing query canonicalization for a transformer-based

chemical similarity search can lead to the discovery of structur-

ally novel, yet functionally relevant, chemical compounds.

DISCUSSION

Explanation of search behavior
We find that alternative canonicalizations influence CheSS

behavior through changes in the token vectors, which appear to

cause higher-order token relationships to dominate in the embed-

dings. There are stark differences between RDKit and OEChem
Patterns 4, 100865, December 8, 2023 5



Figure 4. Search behavior depends on canonicalization

(A) Similarity metrics for all CheSS searches between each canonicalized query and its respective top 250 results. Compared to consistent canonicalization, the

top 250 results from alternative canonicalizations were significantly more dissimilar in structural, scaffold, string, and shared token similarity. Structural similarity

measured bywhole-molecule fingerprint Tanimoto similarity, scaffold similarity measured by scaffold fingerprint Tanimoto similarity, string similarity measured by

gestalt pattern matching. Asterisks indicate the level of statistical significance for two-sided independent t tests (ns, p < 1.0; *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001).

(B–D) The index rank of each canonicalization’s top 250 results for zidovudine compared to the index rank that these same molecules scored in a fingerprint

Tanimoto search. Black dot indicates molecules functionally similar to the query, as determined by the LLM-assisted patent search. Rank plots for all queries are

listed in Figure S7.
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canonicalizations, notably their differences in the representation of

aromatic rings.Forconjugatedstructures,OEChemprefers theKe-

kulé form (C1 = CC = CC = C1), while RDKit prefers to use lower-

case with assumed aromaticity (c1ccccc1). These differences,

among others, result in markedly different tokenization, both in

the composition and the length of the tokenized vectors (Figure 3).

SMILES strings generated from alternative canonicalizations

can be viewed as out-of-distribution queries, not in the token

identities (as no new tokens were created by changing canonic-

alization) but in the low-level token relationships for a givenmole-

cule. This relaxation of embedding the immediate token relation-

ships can be seen in the diminished shared token ratios of

alternatively canonicalized queries’ results as low-level pattern

matching can no longer occur (Figure 4A). However, higher-order

token relationships are still maintained across all searches reg-

ardless of canonicalization, as demonstrated by the constraint

on token vector length (Figure 4A). It is the other opaque high-or-
6 Patterns 4, 100865, December 8, 2023
der token relationships that we believe to be causing the lan-

guage model to embed functionally similar molecules, indepen-

dent of structure, close together in feature space when

alternative canonicalizations are used (Figure 5).

When CLMs are forced to go beyond simple token patterns to

determine similarity, more nuanced relationships take hold. Given

the current understanding of transformers, it is indiscernible what

these relationships are, but, based on our analysis, we find it

possible that the CLM may, for example, key in on the apposition

of functional groups in space similar to how receptors perceive

ligands.

Drawbacks, future improvements, and potential for
misuse
Molecules with a small number of atoms differ only minimally in

their canonicalized representations. This leads to homogeneity

between query representations, reducing the applicability of



Figure 5. Patent summarization and functional determination pipeline

Chemical SMILES strings are converted to PubChem CIDs based on same connectivity, then associated patent IDs are obtained. These are then used to obtain

the patent title, abstract, and description from Google Scholar. The patent information is then passed into GPT-3.5-turbo with a prompt to obtain summarized

functional labels. These labels are then passed into GPT-4 with pre-defined labels to determine functional similarity between the query and molecule in question.

Figure created with BioRender.com.
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CheSS. The top results for OEChem-canonicalized queries with

a high number of double bonds included many porphyrin and

phthalocyanine derivatives, even though they were functionally

irrelevant to the query. The likely reason for this is that the query

contained many double-bond characters, which resulted in un-

usually long vectors during tokenization. This caused the model

to interpret the query similarly to the large conjugated molecules

that RDKit canonicalized using explicit double bonds rather than

assumed aromaticity. This behavior could be avoided through

pruning the database or results of large conjugated molecules.

The language model used herein, ChemBERTa, has been

outperformed bymoremodern languagemodels such asMolFor-

merXL.18,26 CheSS could be improved by utilizing these state-of-

the-art models to generate a richer feature space, presumably

allowing for better similarity searches. Further, the models dis-

cussed herein are self-supervised, resulting in broad functional

similarity comparisons. The use of fine-tuned models to generate

the embeddings would result in more specific functional compar-

isons, examples being implicit comparisons of lipophilicity, spe-

cific receptor binding, and drug-likeness. Further, the similarity

metric used to compare embeddings herein was cosine similarity,

but Euclidean distancewould bean equally valid, or potentially su-

perior, metric. The CheSS framework is extensible to any dataset,

CLM, SMILES representation, and similarity metric, and we invite

discussions toward optimal configurations.

We also note the threat of dual use for chemical machine

learning models.49 While the model used in our implementation

of CheSS was self-supervised and has not been trained for iden-

tifying toxicmolecules, any successful chemical similarity search

tool carries inherent risks. We therefore advise caution in consid-

ering public implementations of these tools and recommend
Table 2. Validation for LLM-assisted patent summarization

Label relevant

to patent

Labe

of M

effec

Patent summarization

(n = 1,028)

1.00 0.81

Achiral SMILES for the MOI were converted to same-connectivity PubChem

for summarization into brief labels. Manual validation was performed on 1

results.
restricting searches to avoid queries with the potential for mali-

cious use.
Conclusions
In this study, we created a chemical similarity search utilizing a

transformer-based encoder chemical languagemodel to generate

embeddings uponwhich similarity scores can be computed. From

this, we designed a query strategy that expands upon the notion of

chemical semantic searches by creating a method able to identify

structurally dissimilar molecules with similar function. We demon-

strate the success of thismethod through the identificationof com-

pounds that bind the same receptor, or family of receptors, as that

of the query molecule despite significant structural dissimilarity.

This methodmay aid in drug repurposing efforts and the discovery

of new structural classes of molecules with desired function. In

addition to thechemical similarity search,wedevelopedaLLM-as-

sistedpatentsummarizationandfunctional similaritydetermination

pipeline that has been shown to determine molecular functionality

with very high accuracy. We believe that CheSS and the canonic-

alization-based prompt engineering method discussed herein will

be of broad interest to the chemical community, as it provides an

example forhowSMILES-basedpromptengineeringcanmodulate

chemical languagemodel embeddings to discover newmolecules

with desired function.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information should be directed to and will be fulfilled by the lead con-

tact, Claus Wilke (wilke@austin.utexas.edu).
l refers to MOI, target

OI, or downstream

ts of MOI

Label refers to MOI, target

of MOI, downstream effects

of MOI, or molecules of which

MOI is an intermediate

0.94

CIDs, and associated patents were retrieved and fed into GPT-3.5-turbo

00 molecules randomly selected from the 27 CheSS searches’ top 250
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Table 3. Validation for LLM-assisted functional similarity

Accuracy Precision Recall Correct reasoning

Functional similarity (n = 100) 0.95 0.94 0.96 0.91

Patent summarization labels were fed into GPT-4 alongside labels for the query, and the model was prompted to determine if the two sets of labels

describe molecules with similar functionality. Manual validation was performed on 100molecules randomly selected from the 27 CheSS searches’ top

250 results.
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Materials availability

This study did not generate new unique materials.

Data and code availability

The top 250 results from each query, as well as the project code used to

generate search results, have been deposited at Zenodo50 and are publicly

available as of the date of publication. The code is also available at https://

github.com/kosonocky/CheSS. This paper utilizes the existing, publicly avail-

able, SureChEMBL database.51 Any additional information required to reana-

lyze the data reported in this paper is available from the lead contact upon

request.

CheSS overview

CheSS is a molecular search framework that uses language model-encoded

embeddings to compute similarity scores acrossmolecular space. A database

of molecules is encoded as strings using the SMILES format.17 A chemical lan-

guage model is used to generate an embedding for each molecule in the data-

base as well as the query molecule. The cosine similarity between the query

vector and each database vector is computed, resulting in a vector of embed-

ding similarities.

Language model

ChemBERTawas used as the languagemodel to generate embeddings.26 This

was aBidirectional Encoder Representations from Transformers (BERT)model

with 12 hidden layers of size 768, and was trained on 10 million random non-
Table 4. Functional descriptors of query molecules

Molecule Descriptors

Zidovudine reverse transcriptase inhibitor,28 antiviral,29

albumin ligand,30 phosphorylase ligand31

Penicillin antibiotic,3 antibacterial,3 beta-lactamase

ligand,32 penicillin-binding protein ligand3

Nirmatrelvir SARS-CoV-2 inhibitor,33 antiviral,33

protease inhibitor,33 peptidase inhibitor33

LSD dopaminergic,34 serotonergic,35 histamine

receptor ligand,36 psychoactive34,35,37

Fentanyl opioid receptor ligand (mu, kappa,

delta),38,39 analgesic,38 anesthetic38

SB-759335-B serine-threonine kinase inhibitor,40 kinase

inhibitor,40,41 MSK inhibitor,41 AKT

inhibitor,40,41 YES inhibitor42

BMS-536924 IGF inhibitor,43 INSR inhibitor,44 CYP

inhibitor,43 MEK inhibitor,45 FAK inhibitor,45

LCK inhibitor,45 kinase inhibitor45

558441-90-0 anti-HIV,46 GPCR ligand,40,46 CXC

chemokine receptor ligand46

Fluticasone furoate nuclear hormone receptor ligand,40,47

glucocorticoid receptor ligand,40,47

anti-inflammatory,48 anti-allergic48

Functional descriptors were initially chosen to represent well-docu-

mented specific protein targets (e.g., reverse transcriptase inhibitor,

AKT inhibitor). Vague patents necessitated the use of broader functional

descriptors including specific protein target classes (e.g., protease inhib-

itor, serotonergic) and downstream effects (e.g., analgesic, antiviral).
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redundant achiral SMILES strings selected from PubChem.52 ChemBERTa

was chosen over newer, higher-parameter BERT models due to the ease

of implementation and publicly available dataset. ChemBERTa does not sup-

port isomeric SMILES (chirality), and all SMILES were canonicalized

before input.

Database

The CheSS molecular embedding database was built from the SureChEMBL

database to ensure high patent coverage for functional validation. This data-

base was made achiral for compatibility with ChemBERTa, then duplicates

and molecules with complexes were removed to reduce search redun-

dancy.26,51 For each molecule, the SMILES string was canonicalized using

RDKit.27 We reduced this dataset to exclude all SMILES strings that tokenized

to more than 512 tokens, the maximum supported by ChemBERTa. This re-

sulted in a database of 18,931,234 molecules. The database SMILES strings

were embedded with ChemBERTa. The [CLS] token vector representations

of the final layer were chosen to be the embeddings, as described in the orig-

inal BERT paper.52 These embeddings were then L2 normalized and stored in

chunks of 100,000 SMILES string-embedding pairs for future cosine similarity

calculations.

Canonicalization query types

ChemBERTa was trained on SMILES strings canonicalized using RDKit.26,27

Different canonicalization algorithms result in different, but equally valid, stan-

dardized strings representing the same molecule, which we utilize to create

three highly different queries for the same molecule. The first query type used

RDKit with its default Python implementation settings. This algorithm was

used to canonicalize the database and train the model. When converting mol-

ecules to SMILES, RDKit allows specification of which atom number to root the

SMILESstring to. Thedefault is Atom0, andeach atom results in adifferent rep-

resentation. The embedding cosine similarity was calculated between the

default RDKit SMILES and the ‘‘Atom n’’ RDKit SMILES for each atom in the

query molecule, as demonstrated in Figure S2. From these, we took the most

dissimilar Atom n SMILES strings to be the second query type for each

molecule (different atom depending on the specific molecule). To obtain a

third dissimilar SMILES representation, OEChem 2.3.0, a markedly different

canonicalization algorithm than RDKit, was used.53 These SMILES strings

were obtained from the PubChem website.

Similarity metrics

Various similarity metrics were used throughout, which include embedding

cosine similarity, gestalt pattern matching similarity, fingerprint Tanimoto sim-

ilarity, token vector length similarity, and token similarity.54,55 Cosine similarity

is a distance metric that calculates the angle between two vectors A and B:

Cosine Similarity =
A$B

kAk kBk : (Equation 1)

A cosine similarity of 1 indicates the normalized vectors are the same,

0 means they are orthogonal to one another, and �1 means they are opposite

of one another.

Gestalt pattern matching was chosen to calculate string similarity. This

metric is calculated by dividing twice the number of matching characters

(Km) by the total number of characters in both strings (S1, S2):

Gestalt Similarity =
2Km

jS1j+jS2j : (Equation 2)

Matching characters are identified first from the longest common substring,

with recursive counts in non-matching regions on both sides of the substring.

https://github.com/kosonocky/CheSS
https://github.com/kosonocky/CheSS


Figure 6. Structural and scaffold similarity

between each query and its functionally

similar search results

The functionally similar molecules, as determined

from the LLM-assisted patent search, from the

alternate canonicalization search results contain

significantly more dissimilar structures and scaffolds

compared to when the canonicalization is the same

as the database. Structural similarity measured by

whole-molecule fingerprint Tanimoto similarity;

scaffold similarity measured by scaffold fingerprint

Tanimoto similarity. Asterisks indicate the level of

statistical significance for two-sided independent t

tests (ns, p < 1.0; *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001).
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Themetric ranges from a perfect match of 1 to a completely dissimilar string of

0. We used the difflib Python implementation of the gestalt pattern matching

algorithm to calculate gestalt similarity. This is occasionally referred to in the

manuscript as string similarity.

Fingerprint Tanimoto similarity was used to calculate the structural similarity

between pairs of molecules. This method encodes substructures into a binary

vector and then calculates the Tanimoto similarity between these encoded

vectors. The Tanimoto/Jaccard similarity is the number of shared elements

(intersection) between two sets A and B over the total number of unique

elements in both sets (union) (Equation 3):

Tanimoto Similarity =
AXB

AWB
: (Equation 3)

This metric ranges from 1 (all elements shared) to 0 (no elements shared).

The RDKit default implementation of fingerprint Tanimoto similarity was used

herein. When fingerprint Tanimoto similarity was performed on the whole

molecule, it was occasionally referred to in the paper as structural similarity,

and when only performed on the scaffold it was referred to as scaffold similar-

ity. Scaffolds were obtained using the Murcko scaffold method in RDKit.27,28

All SMILES were encoded into token vectors before being passed into the

model. These tokenized vectors were used for additional comparisons to better

understand search behavior. The first metric used from these was the ratio of to-

ken lengths between two vectors. The second metric was the token Tanimoto/

Jaccard similarity (Equation 3) between the two molecules’ token vectors and

was used to determine the ratio of shared tokens between the two vectors.

This metric ranges from 1 (all tokens shared) to 0 (no tokens shared).

LLM-assisted patent summarization and functional similarity

determination

Chemical functionalitywasderived fromthepatent literature. To rapidlyparse the

patent literature to allow for a comprehensive analysis, a LLM-assisted patent

summarization pipeline was developed. Using the PubChem database, achiral

SMILES strings are converted to their corresponding same-connectivity

PubChemCIDs (if available), which are then converted into the set of associated

patents. To avoid excess LLM-associated API costs, a limit of 10 patent IDs per

molecule was imposed, randomly selected from the set of linked patent IDs.

The patent IDs were then used as queries to obtain the patent title, abstract,

and description from Google Scholar. The descriptions were capped at 3,500

characters to avoid token overflowsand excessAPI costs. Thesewere then ap-

pended to the following user prompt "Return a short set of three 1–3 word de-

scriptors that best describe the chemical or pharmacological function(s) of the

molecule described by the given patent title, abstract, and partial description

(giving more weight to title and abstract). Be specific and concise, but not

necessarily comprehensive (choosea small numberof great descriptor). Follow

the syntax ’{descriptor_1}/{descriptor_2}/{etc}’, writing ’NA’ if nothing is pro-

vided.DONOTBREAKTHISSYNTAX. The following is thepatent’’:,’’ and input-

ted into OpenAI’s GPT-3.5-turbo (version accessed on July 15, 2023) with

0 temperature and the system prompt "You are an organic chemist summari-
zing chemical patents.’’56GPT-3.5-turbowaschosenoverGPT-4 for the patent

summarization step due to the high API cost per token for the latter model.56,57

The functional labelsdeterminedfromGPT-3.5-turbowereconverted intoaset,

passed intoGPT-4 alongside thepre-determined query functional labels, and ap-

pended to the prompt "The following is a set of functional labels for two different

molecules. Determine if the two molecules have similar functionality. If similar el-

ements are found in both lists, these molecules have similar function. You must

respond in the format ’{yesorno}—{20wordmaximumexplanation}’"with0 tem-

perature and the system prompt ‘‘You are an organic chemistry expert.’’

A random 100 molecules from the 9,750 CheSS search results were used to

validate the patent summarization and functional similarity determination

pipeline. First, the functional labels were consolidated into a set with their

associated patents to assess GPT-3.5-turbo’s ability to summarize patents

into quality functional descriptors. The authors read the 320 patents associ-

ated with the 100 random molecules and determined the following metrics

for each label: label relevant to patent; label refers to molecule of interest

(MOI), target of MOI, or downstream effects of MOI; label refers to MOI, target

of MOI, downstream effects of MOI, or molecules of which MOI is an interme-

diate. These 100 molecules were then used to assess GPT-4’s ability to deter-

mine functional similarity between the MOI and its associated CheSS query.

The CheSS query descriptors were derived from the literature, aiming to be

as specific as possible while taking into account the inherent vagueness of

patents. For each molecule, the authors assessed GPT-4’s success in deter-

mining functional similarity and the validity of its provided reasoning. Accuracy,

precision, and recall were calculated for the former.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100865.
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Figure 7. CheSS queries with alternative canonicalization identify functionally similar molecules with divergent structure

Results from the OEChem-canonicalized queries are shown, although RDKit Atom n also had structurally distinct functional analogues in the top 250 results.

(A) Nirmatrelvir, a peptidomimetic SARS-CoV-2 main protease inhibitor, returned a wide range of non-peptidomimetic protease and peptidase inhibitors.

(B) LSD, an ergoline 5-HT2A agonist, returned many non-ergoline 5-HT receptor ligands.

(C) Fentanyl, an elongated piperidine opioid agonist, returned several morphinan and non-fentanyl opiates.
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