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Abstract

The placenta is a dynamic organ that must perform a remarkable variety of functions during its relatively short existence in order to support a
developing fetus. These functions include nutrient delivery, gas exchange, waste removal, hormone production, and immune barrier protection.
Proper placenta development and function are critical for healthy pregnancy outcomes, but the underlying genomic regulatory events that
control this process remain largely unknown. We hypothesized that mapping sites of transcriptional enhancer activity and associated changes
in gene expression across gestation in human placenta tissue would identify genomic loci and predicted transcription factor activity related to
critical placenta functions. We used a suite of genomic assays [i.e., RNA-sequencing (RNA-seq), Precision run-on-sequencing (PRO-seq), and
Chromatin immunoprecipitation-sequencing (ChIP-seq)] and computational pipelines to identify a set of >20 000 enhancers that are active at
various time points in gestation. Changes in the activity of these enhancers correlate with changes in gene expression. In addition, some of
these enhancers encode risk for adverse pregnancy outcomes. We further show that integrating enhancer activity, transcription factor motif
analysis, and transcription factor expression can identify distinct sets of transcription factors predicted to be more active either in early pregnancy
or at term. Knockdown of selected identified transcription factors in a trophoblast stem cell culture model altered the expression of key placental
marker genes. These observations provide a framework for future mechanistic studies of individual enhancer–transcription factor–target gene
interactions and have the potential to inform genetic risk prediction for adverse pregnancy outcomes.

Summary Sentence
Mapping sites of transcriptional enhancer activity and associated gene expression in human placenta across gestation identifies genomic loci
and predicted transcription factor activity related to critical placenta functions.
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Introduction

The placenta is a dynamic organ that performs a remarkable
variety of functions, including nutrient delivery, gas exchange,
waste removal, hormone production, and immune barrier
functions [1, 2]. Many of these functions take place within the
floating villi of the placenta where maternal blood comes into
direct contact with the syncytiotrophoblast (ST) [3, 4] The
ST is formed as underlying cytotrophoblasts differentiate and
fuse to form this multinucleated layer that increases in surface
area over the course of pregnancy [5]. As villi develop into
their highly branched mature forms, the relative proportion
of cytotrophoblasts and their trophoblast stem cell (TSC)
precursors decreases [3, 4]. Altered villous maturation has
been associated both with preterm birth and stillbirth [6,
7]. Furthermore, release of soluble vasoactive factors from
the placenta plays a role in the development of preeclampsia
[8, 9].

While proper placenta development and function is criti-
cal for healthy pregnancy outcomes, the underlying genomic
regulatory events that control this process are only beginning
to be understood [10–12]. In this regard, a number of studies
using microarrays [13–16], bulk RNA-seq [17–19], and single
cell RNA-seq (scRNA-seq) [20–27] have examined aspects
of how gene expression in the placenta changes over time
in normal or pathologic pregnancies [10, 12, 28]. A number
of studies have focused on differences in gene expression
in placenta tissue in response to disease [12, 22, 27–33],
while others have used genomic profiling to define distinct
cell types in the placenta [10, 11, 21, 33–37]. Fewer stud-
ies, however, have examined how diverse genomic features

[e.g., transcription, histone modification, DNA methylation,
transcription factor (TF) binding, chromatin accessibility, and
chromatin interactions] change over the course of normal
development. This is partly due to the limited accessibility of
placenta tissue from early pregnancy samples, which results
in an incomplete picture of gene regulation, and its associated
epigenomic events such as enhancer formation. Nonetheless,
current genomics technologies can facilitate the analysis of
these genomic features in available tissues, including those
features that define transcriptional enhancers [11, 38–40].

Enhancers are genomic regulatory elements that function
as nucleation sites for the binding of sequence-specific TFs
and the formation of regulatory complexes that can commu-
nicate with the promoters of target genes [41]. Enhancers are
characterized by common molecular features such as (1) an
open or accessible chromatin environment; (2) enrichment of
a common set of histone modifications, such as histone H3
lysine 4 (H3K4) monomethylation and histone H3 lysine 27
(H3K27) acetylation; (3) binding of TFs, coregulators, and
chromatin remodeling enzymes; and (4) looping to target gene
promoters [41, 42]. Enhancers are also actively transcribed,
producing enhancer RNAs (eRNAs) [42]. Differential accu-
mulation of these molecular features defines distinct classes
of enhancers that specify distinct gene regulatory mechanisms
and biological outcomes. Enhancer transcription and eRNAs
are thought to function by (1) promoting the recruitment
of TFs and coregulators and regulating their activities; (2)
facilitating RNA polymerase II (RNAPII) pause-release to
promote transcription elongation; and (3) driving enhancer–
promoter looping [42]. The NIH ENCODE and Roadmap
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epigenomics projects have annotated enhancer elements from
a limited set of placenta samples on the basis of chromatin
accessibility (Deoxyribonuclease-sequencing; DNase-seq) or
histone modifications.

Our lab and others have shown that enhancer transcription
and the production of eRNAs are the most specific marker of
active enhancers [43–45]. The sites of enhancer transcription
can be identified by mapping short unstable eRNA transcripts
from nuclear run-on assays, such as precision run-on sequenc-
ing (PRO-seq) data. This technique uses biotinylated ribonu-
cleotides in an in vitro transcription reaction from isolated
nuclei followed by pull-down and sequencing to identify sites
of active transcription. This approach, however, has not yet
been applied to the study of enhancers in human placenta
tissue. In this work, we used a multi-faceted approach combin-
ing genomic and computational analyses to define changes in
the enhancer landscape and gene expression across gestation
in normal pregnancy, using samples from all three trimesters.
While machine learning approaches have been applied to pre-
dict new placenta-specific enhancers from existing genomic
data [46], our work approximately doubles the number of
available samples with experimentally determined enhancer
annotations and does so using enhancer transcription, a more
stringent marker of enhancer activity.

Materials and methods

Source of placenta tissue

Placenta tissue was collected from patients who provided
informed consent; it was obtained in a de-identified manner
from a tissue bank at UT Southwestern under an approved
IRB protocol (term samples) or from Advanced Bioscience
Resources, Alameda, CA (early pregnancy samples). The latter
was obtained prior to January 1, 2019. Tissue was from
otherwise normal, uncomplicated pregnancies collected at the
time of scheduled cesarean delivery or elective pregnancy
termination. Samples were taken from multiple sites for each
placenta, using four quadrant biopsies from term placenta and
approximating this strategy to the extent permitted from early
pregnancy tissues. The maternal decidual surface and fetal
amnionic surfaces were excluded or removed, with sampling
performed from the region of floating villi in the interior of the
placenta. Tissue was rinsed in PBS, flash-frozen, and stored at
−80◦C until processed. Multiple tissue samples were pooled
from an individual placenta for extraction of RNA, nuclei, or
chromatin in order to achieve more representative sampling
across multiple locations in a single placenta.

RNA extraction and RNA-seq library construction

Frozen tissue was pulverized using a liquid nitrogen–chilled
hammer mill and then homogenized in Trizol. Following
chloroform-mediated phase separation, the total RNA was
purified from the aqueous phase using RNeasy columns (Qia-
gen, 74104) according to the manufacturer’s protocol. The
RNA concentration was quantified using a NanoDrop, and
the quality was assessed by RNA ScreenTape (Agilent). The
total RNA was stored at −80◦C until processed. Following
standards defined by the Genome-Tissue Expression (GTEx)
project [47], only samples with an RNA integrity number
(RIN) score > 6 were used for library construction. Ten micro-
grams of total RNA were used as input for polyA RNA-seq
library construction as previously described [48].

Nuclei extraction and PRO-seq library construction

Frozen tissue was pulverized using a liquid nitrogen–
chilled hammer mill, homogenized in ice-cold Swelling
Buffer [10 mM Tris–HCl pH 8, 2 mM magnesium acetate,
3 mM calcium chloride, 0.25 mM DTT, and 1x cOmplete
protease inhibitor cocktail (Roche, 11697498001)], and
passed through a 40 micron filter. The nuclei were released
from the pulverized tissue in Lysis Buffer (Swelling Buffer
containing 10 mM NaCl, 300 mM sucrose, and 0.5% NP-40),
washed three times in Lysis Buffer, and flash-frozen in Nuclei
Freezing Buffer (50 mM Tris–HCl pH 8.3, 5 mM magnesium
chloride, 0.1 mM EDTA, 40% glycerol) in aliquots of 5 × 106

nuclei. Nuclear run-on was performed at 37◦C for 5 min using
biotin-labeled CTP [49]. PRO-seq libraries were constructed
following the protocol of Mahat and colleagues [49].

Chromatin preparation and ChIP-seq library
construction

Frozen tissue was pulverized using a liquid nitrogen–chilled
hammer mill, crosslinked with 1% formaldehyde in a volume
of 10 mL, quenched by addition of 5 mL of 2.5 M glycine
for 5 min at 4◦C, washed generously in ice-cold PBS, and
homogenized in Farnham Lysis Buffer (5 mM PIPES pH 8,
85 mM KCl, 0.5% NP-40, 1 mM DTT, 1x cOmplete protease
inhibitor cocktail), as described [50]. The nuclei were collected
by brief centrifugation and resuspended in SDS Lysis Buffer
(50 mM Tris–HCl pH 7.9, 1% SDS, 10 mM EDTA, 1 mM
DTT, 1x cOmplete protease inhibitor cocktail) by pipetting
and incubating on ice for 10 min. The chromatin was sheared
to ∼200 bp DNA fragments by sonication using a Bioruptor
sonicator (Diagenode) for 24–28 cycles of 30 s on and 30 s
off. Fragment size was verified by agarose gel electrophore-
sis before quantification of protein concentrations using a
BCA protein assay kit (Pierce, 23225). One hundred micro-
grams of soluble chromatin was precleared with Protein A
Dynabeads (Invitrogen, 10001D) before incubation overnight
with 2.5 μg of antibody: H3K4me1 (Abcam, ab8895) or
H3K27ac (Abcam, ab4729). ChIP-seq libraries were con-
structed as described previously [51].

Next-generation sequencing

The genomic libraries with compatible barcodes were pooled
and sequenced on the Illumina NextSeq 500 in a 75 bp single-
end format. The libraries were sequenced to an average depth
as follows: RNA-seq ∼52 M reads per sample; PRO-seq:
∼73 M reads per sample; and ChIP-seq ∼32 M reads per
sample.

Analysis of RNA-seq data
Quality check and preprocessing RNA-seq libraries

The raw data were subjected to QC analyses using the FastQC
tool [52]. The reads were then mapped to the human genome
(hg38) using the spliced reader aligner TopHat version.2.0.13
[53]. Uniquely mappable reads were converted into bigWig
files using BEDTools (version 2.17.0) for visualization in the
Integrative Genomics Viewer (version 2.9.4). Transcriptome
assembly was performed using cufflinks (version 2.2.172)
[54] with default parameters using the aligned reads. The
transcripts were merged into distinct, non-overlapping sets
using cuffmerge, followed by cuffdiff to call the differentially
regulated transcripts.
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Data normalization

Using cuffdiff, FPKMs and fragment counts were scaled via
the median of the geometric means of fragment counts across
all libraries, as described by Anders and Huber [55]. The
resulting normalized FPKM values were used to compare the
genes regulated in the three trimesters with linked enhancer
transcription via statistical methods implemented in R, such
as Pearson correlation analysis, linear regression of FPKM
versus gestational age in weeks, and differences in mean
FPKM value between groups using t-tests with correction
using the Benjamini–Hochberg procedure. The Benjamini–
Hochberg procedure was used to adjust p-values for multiple
hypothesis testing. The normalized FPKM values were also
used in subsequent downstream analyses, including differen-
tial expression by trimester, correlation with gestational age,
and integrated analysis with ChIP-seq and PRO-seq data as
described below.

Gene Ontology enrichment analysis

Pathways associated with genes that increase or decrease in
the placenta across pregnancy were identified using Gene
Ontology (GO) annotations [56] for GO biological process
gene sets and the PANTHER enrichment analysis tool [57].

Analysis of ChIP-seq data

The reads were trimmed using Cutadapt (version 1.9.1) [58]
and mapped to the hg38 reference genome using Bowtie (ver-
sion 1.0.0) [59]. Output files were converted into BED files
using SAMTools (version 0.1.19) [60] and BEDTools (version
2.17.0) [61]. The aligned reads were used to measure library
complexity using BEDTools (v 2.17.0) [61] and met minimum
ENCODE data quality standards [62]. Using aligned reads as
input, we used MACS (version 2.1.0) software [63] to call
peaks from ChIP-seq data using the default p-value and input
condition as a control. Uniquely mapped reads were visualized
on the UCSC genome browser as bigWig files generated using
BEDTools [61].

Analysis of PRO-seq data and prediction of
enhancers using dREG
Quality check and preprocessing PRO-seq libraries using

Proseq2.0

The quality of the data was confirmed using FastQC software
[52]. The PRO-seq libraries were analyzed using Proseq2.0
pipeline [64] and aligned to human reference genome hg38
with ∼72% average alignment percentage. The aligned bam
files were converted into bigwig format using deeptools
(v2.3.5) [65] and bedGraphToBigWig [66] program to
visualize in the UCSC genome browser [67].

Identification of enhancers using dREG

The unnormalized bigwig files generated from Proseq2.0 were
used to predict enhancers/transcription regulatory elements
(TREs) using the dREG package on the dREG computational
gateway [68]. We then built a universe of transcripts by
merging the dREG peak calls from individual samples across
each gestational age and stratifying the boundaries to remove
overlaps/redundancies occurring from the union of all the
dREG peak calls using BEDtools merge (v2.17.0) [61]. Next,
we calculated the RPKM of the union of TREs or peak
calls by collecting the read counts from bedtools multicov
[61] and filtering the results to identify a subset of short

intergenic transcripts >5 kb away from the 5′ or 3′ ends
of annotated genes using bedtools intersect [61]. The final
universe of expressed distal TREs (n = 20 502) combined from
all samples was determined from the PRO-seq data using an
RPKM cutoff ≥2 in at least 1 out of the 36 samples across the
gestational age.

Identification of TF motifs using MEME

We performed de novo motif analyses on a 1 kb region
(±500 bp) surrounding the TRE summit for expressed TREs
in each sample using the command-line version of MEME
[69]. The following parameters were used for motif predic-
tion: (1) zero or one occurrence per sequence (− mod zoops);
(2) number of motifs (−nmotifs 15); (3) minimum, maximum
width of the motif (− minw 8, −maxw 15); and (4) search
for motif in given strand and reverse complement strand (−
revcomp). The predicted motifs from MEME were matched
to known motifs using Tomtom [70] using the Jaspar 2018
database [71].

Predicting trimester-specific TFs using Total
Functional Score of Enhancer Elements

We used the Total Functional Score of Enhancer Elements
(TFSEE) algorithm as described previously [72, 73] to
combine PRO-seq, RNA-seq, and ChIP-seq data with TF
motif information to predict the TFs that drive the formation
of active enhancers in placenta across gestation. In order to use
the TFSEE pipeline, we obtained the following information
for the final universe of expressed distal TREs (n = 20 502)
in 15 samples that had PRO-seq, RNA-seq, and ChIP-
seq data available: (1) enhancer transcription values using
PRO-seq; (2) histone modification enrichment values at the
enhancers using ChIP-seq (H3K4me1 and H3K27ac); (3)
motif search results; and (4) TF expression values using RNA-
seq. The TFSEE algorithm was then applied to determine the
enhancer activity by normalizing the enhancer transcription
and histone modification enrichment and then integrating
with the motif predictions and TF expression to calculate the
final TFSEE score [72, 73]. To identify trimester-specific TFs,
we performed hierarchical clustering by Pearson correlation
and the average linkage method. The rank order of the TFs
that were enriched between the clades comprising trimesters
I and II versus trimester III was calculated as described
[72, 73].

Enhancer single-nucleotide polymorphism analysis

The NHGRI-EBI genome-wide association study (GWAS)
catalog was downloaded on 9/1/2020 and contained 130 789
single-nucleotide polymorphisms (SNPs) associated with any
outcome by GWAS. The bedtools intersect function [61] was
used to count the number of SNPs overlapping either the
annotated genes (GENCODE transcripts) or the placenta
enhancers identified in this study. SNP density was calculated
by dividing the entire SNP catalog by the total genome size or
the resulting overlapping SNPs by the size of these regions in
base pairs to generate SNPs per million base pairs.

Data visualization

Data from the different sequencing methodologies were visu-
alized and compared in browser track representations using
the Integrative Genomics Viewer (IGV; Broad Institute). After
data analysis using the relevant statistical tools or packages in
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R, visual representations in the form of boxplots, bar graphs,
and dot plots were generated in R using the ggplot2 package
[74]. Heatmaps were generated using Java Tree View [75] or
the heatmap function in R.

Trophoblast stem cell culture and differentiation
Growth and differentiation

A TSC line developed by Okae et al. [76] was cultured under
conditions that they optimized. For TSC propagation, the
cells were grown on collagen-coated plates in basal medium
[DMEM/F12 supplemented with 0.003% BSA, 1x ITS-X
(Wako Chemicals, 094–06761), 0.1 mM β-mercaptoethanol]
supplemented with 0.05 μg/mL EGF (Sigma, E9644), 0.002%
FBS, 1.5 μg/mL ascorbic acid, 0.0125% valproic acid (HDAC
inhibitor; Wako Chemicals, 227–01071), 5 μM Y27632
(ROCK inhibitor; Stemcell Technologies, 72,304), 2 μM
CHIR99021 (Wnt activator; Wako Chemicals, 034-23103),
0.5 μM A83-01 (TGF-β inhibitor; Wako Chemicals, 035-
24113), and 1 μM SB431542 (TGF-β inhibitor; Wako
Chemicals, 031-24291). Differentiation toward the ST
lineage was performed in 2D culture using basal medium
supplemented with 4% KnockOut Serum Replacement
(ThermoFisher, 10828010), 2.5 μM Y27632, and 2 μM
forskolin (Sigma, F6886).

Marker analyses, morphologic visualization, and

confirmations

Gene markers of ST differentiation (CGB, ERVW-1, CYP19A1,
GCM1) were assessed following 1–5 days of culture in
differentiation medium using Taqman probes as described
below. For visualization of morphology changes, TSCs
were plated in collagen-coated chamber slides and grown
under TSC propagation or ST differentiation conditions
as described above. Membranes were stained with Di-8-
ANNEPPS (ThermoFisher, D3167) and nuclei visualized
with DAPI. Fresh cell stocks were regularly replenished from
the original stocks every few months, verified for cell type
identity using the GenePrint 24 system (Promega, B1870),
and confirmed as mycoplasma-free every 3 months using a
commercial testing kit.

RNAi-mediated TF depletion in TSCs

We used two approaches to knockdown TFs in the TSCs
and SCs: (1) lentiviral-mediated delivery of shRNA constructs
(to knockdown ZBTB7C and SNAI2) and (2) lipofectamine-
mediated delivery of siRNAs (to knockdown GCM1).

Lentiviral-mediated delivery of shRNA constructs

For the former, we used shRNA constructs targeting human
SNAI2 mRNA (TRCN0000284362) or human ZBTB7C
mRNA (TRCN0000235012), or a control shRNA (SHC002),
all of which were purchased from Sigma. We generated
lentiviruses by transfection of the constructs described
above, together with (i) an expression vector for the VSV-
G envelope protein (pCMV-VSV-G, Addgene plasmid no.
8454); (ii) an expression vector for GAG-Pol-Rev (psPAX2,
Addgene plasmid no. 12260); and (iii) a vector to aid with
translation initiation (pAdVAntage, Promega) into 293 T cells
using Lipofectamine 3000 Reagent (Invitrogen, L3000015)
according to the manufacturer’s protocol. The resulting
viruses were collected in the culture medium, concentrated
by using a Lenti-X concentrator (Clontech, 631231), and
used to infect TSC cells seeded at a density of 2 × 105. Stably

transduced cells were selected with puromycin (Sigma, P9620;
2.5 μg/mL) in cell culture medium.

Lipofectamine-mediated delivery of siRNAs

In a 6-well plate, 0.5 × 106 TSCs were seeded. After
attachment, the cells were transfected using Lipofectamine
RNAiMAX reagent (Invitrogen,13778150) according to the
manufacturer’s instruction. Briefly, 30 pmole of siRNA in
150 μL optiMEM and 9 μL of RNAiMAX in 150 μL
optiMEM were combined, incubated for 5 min, and dispensed
into a single well. Seventy-two hours after transfection, the
cells were collected for analysis.

Reverse transcription-quantitative PCR

Total RNA was extracted from cultured cells using an
RNAeasy kit (Qiagen, 74104), quantified by using a Nan-
oDrop; mRNA expression was analyzed using the following
approaches.

Standard reverse transcription-quantitative PCR

Complementary DNA pools were prepared from TSCs using
the RNeasy kit (Qiagen), followed by reverse transcription
using MMLV reverse transcriptase (Promega, M150B) with
oligo(dT) primers (Sigma-Aldrich). The cDNA was treated
with 3 units of RNase H (Ambion) for 30 min at 37◦C and
then analyzed by qPCR using the primer sets listed below
and a LightCycler 480 real-time PCR thermocycler (Roche)
for 45 cycles. The delta–delta Ct (2–��Ct) method was used
to analyze comparative fold changes in the gene expression
level [77].

MAFK Forward 5’-CTGCGCTCCAAGTACGAGGCG-3’
MAFK Reverse 5’-TCGGTGGACTTGACGATGGTGA-3’
MAFB Forward 5’-AGACGCCTACAAGGTCAAGTGC-3’
MAFB Reverse 5’-CGACTCACAGAAAGAACTCGGG-3’
SNAI2 Forward 5’-TTTTCCAGACCCTGGTTGCTT-3’
SNAI2 Reverse 5’-GAGCCCTCAGATTTGACCTGT-3’
IRF1 Forward 5’-GAGGAGGTGAAAGACCAGAGCA-3’
IRF1 Reverse 5’-TAGCATCTCGGCTGGACTTCGA-3’
ZBTB7C Forward 5’-GGAGAAGCCATACATGTGCAC

C-3’
ZBTB7C Reverse 5’-ACGAACTTGGCGTTGCAGTGG

A-3’
TFAP2A Forward 5’-GACCTCTCGATCCACTCCTTA

C-3’
TFAP2A Reverse 5’-GAGACGGCATTGCTGTTGGAC

T-3’

Taqman assay

RNA was reverse-transcribed using the High Capacity cDNA
Reverse Transcription kit (ThermoFisher, 4368814). Quanti-
tative PCR was performed using Taqman probes listed below
(ThermoFisher), Taqman Fast Advanced Master Mix (Ther-
moFisher, 4444554), and 10 ng cDNA template in a 384-well
format. Amplification and detection were performed using
a LightCycler 480 real-time PCR thermocycler (Roche), and
fold changes in expression were calculated using the delta–
delta Ct (2–��Ct) method [77].

Taqman CGB3 assay Hs00361224 gH
Taqman CYP19A1 assay Hs00903411 m1
Taqman ERVW-1 assay Hs00205893 m1
Taqman GCM1 assay Hs00172692 m1
Taqman HLA-G assay Hs00365950 g1
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Western blotting

Nuclear extracts were prepared from either undifferentiated
or differentiated trophoblast as described previously [78].
The protein concentrations of the extracts were quantified
using a Bradford assay (Biorad, 500-0006). Ten micrograms
of total protein were run on 12% acrylamide SDS-PAGE gels
and transferred to nitrocellulose membranes by wet trans-
fer for 120 min. Blocking, incubation with antibodies, and
washing of blots were done in TBST buffers, with block-
ing for 1 h in 3% milk, incubation with primary antibody
overnight, and HRP-conjugated secondary antibody (Bethyl
Labs; 1:6 000 dilution) for 1 h. Signals were visualized by
chemiluminescence with SuperSignal Pico Plus regent (Ther-
moFisher, 1863096) and imaged on the ChemiDoc system
(BioRad).

Genomic data set availability

The following new data sets generated for this study are
available from the NCBI’s Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/) using accession
number GSE222035.

Results

Collection and processing of normal placenta
samples for genomic analyses

In order to identify changes in gene expression and associated
changes in the enhancer landscape during normal pregnancy,
we prepared multidimensional genomic libraries from a set
of placenta samples representing normal development across
all three trimesters of pregnancy. The 12 samples collected
per trimester were balanced for fetal sex (Figure 1A and B).
Samples were obtained with informed consent from patients
with otherwise uncomplicated pregnancies undergoing sched-
uled cesarean delivery (not in labor) or from patients under-
going elective termination (without known fetal anomalies).
As reflected in the sample characteristics (Figure 1B), our
intention to model placenta development across “normal”
pregnancy resulted in a gap of accessible tissue from the time
of viability to term.

We isolated RNA, chromatin, or nuclei (Figure 1A) from
bulk placenta tissue samples due to the input requirements
for the nuclear run-on reactions used in our enhancer map-
ping strategy. This represents a tradeoff between the ability
to assign findings to specific cell types (as with single-cell
methodologies) and the types of assays and information that
can be obtained with limiting amounts of starting material.
As many critical placenta functions occur at the maternal–
fetal interface of the ST surface, we focused on the float-
ing villi in the interior of the placenta, which make up the
greatest portion of the placenta by volume and surface area.
Although this sampling generates a composite signature from
multiple cell types (primarily trophoblasts, fetal vessels, and
placental macrophages), complexity was reduced by excluding
the fetal surface and associated membranes, as well as the
decidual surface with associated maternal tissue, extravillous
trophoblasts, and decidual immune cell populations.

Determining gene expression and enhancer
landscapes in normal placenta

To determine changes in gene expression in placental villi,
RNA-seq and precision run-on sequencing [49] libraries were

constructed from all 36 samples and sequenced to an average
depth of ∼52 and ∼ 73 M million mapped reads, respec-
tively. We identified transcription units from the PRO-seq
data using dREG [79]. We then defined active enhancer
regions for all samples based on enhancer transcription from
PRO-seq, which we and others have shown to be a highly
specific marker of active enhancers [72]. To isolate likely
enhancers from other transcription units, the transcripts were
filtered for location in intergenic regions >5 kb away from
the transcription start sites (TSSs) of known genes as anno-
tated by GENCODE [80]. An RPKM threshold cutoff of
>2 in at least 1 sample was applied to reduce background
noise and false positives. This filtering resulted in a uni-
verse of 20 502 enhancers across all samples, with between
∼2 500 and ∼ 10 000 enhancers identified in each of the 36
samples (Supplementary Table S1). We further characterized
the predicted enhancers using chromatin immunoprecipita-
tion (ChIP-seq) for H3K27ac and H3K4me1 in a repre-
sentative subset of five samples per trimester. The multiple
layers of genomic information facilitated the identification
of enhancers located near genes related to placenta function,
such as the gene encoding placenta growth factor (PGF)
(Figure 1C).

Placenta gene expression is dynamic across
pregnancy

Next, we sought to explore changes in gene expression
across gestation using two different approaches. In the
first approach, we identified genes whose expression (in
RPKM) was either positively or negatively correlated with
gestational age in weeks, using Pearson R > 0.7 or < −0.7,
and a significant p-value for the correlation after Bonferroni
correction for multiple hypothesis testing (p < 2.17 × 10−6

for 23 000 tested associations) (Supplementary Table S2). This
analysis resulted in 1152 genes with decreased expression
across gestation and 2482 genes that increased across
gestation. Examples of such genes are shown in Figure 2A and
B (MTHFD1 and CYP19A1). MTHFD1 encodes an enzyme in
the DNA synthesis pathway downstream from folate, whereas
CYP19A1 encodes the aromatase enzyme involved in estrogen
synthesis in STs. To visualize overall trends in gene expression
that increased or decreased across gestation, the expression
of individual genes within a sample were z-score-normalized,
binned into five groups of increasing gestational age, and
plotted as box plots (Figure 2C and D).

We performed GO analyses for genes correlated with ges-
tational age (Figure 2E and F; Supplementary Table S3). For
the set of genes more highly expressed early in pregnancy,
there was enrichment for terms associated with DNA syn-
thesis, DNA replication, and cell division. This period of
cell proliferation in early pregnancy may be associated with
a pool of self-renewing TSCs that decreases in proportion
or activity later in pregnancy. In support of this idea, we
observed that the gene encoding telomerase (TERT) was
expressed in 10 out of the 12 first-trimester samples (0.1–
0.4 RPKM) and absent in later samples. Interestingly, for
the set of genes more highly expressed later in pregnancy,
GO analysis identified terms related to vasculogenesis and
TGFβ signaling (Figure 2F). Vasculogenesis is required for
the dramatic expansion of the fetal capillary network in
mature villi [81]. Moreover, inhibition of TGFβ is critical for
maintaining the TSC phenotype in culture, and thus, signaling
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Figure 1. Multidimensional placenta genomic profiling across gestation enables enhancer annotation linked to gene expression. (A) Schematic
representation of placenta tissue sample processing for genomic assays. We collected first-, second-, and third-trimester placenta tissue from
otherwise normal, uncomplicated pregnancies at the time of elective pregnancy termination or scheduled cesarean delivery. Samples were taken from
multiple sites for each placenta and multiple tissue fragments were pooled on a per-sample basis for extraction of RNA, nuclei, or chromatin to prepare
genomic libraries for deep sequencing assays (RNA-seq, ChIP-seq, PRO-seq). (B) Gestational age, sex, and libraries constructed from the placenta
tissues collected. Sex was determined based on Y chromosome markers from RNA-seq. EGA, estimated gestational age in weeks. Exact gestational
ages for the third-trimester placentas are as follows: P08 - 39w1d; P09 - 39w1d; P10 - 39w0d; P11 - 39w2d; P12 - 39w0d; P13 - 39w0d; P21 - 39w0d;
P32 - 39w0d; P47 - 39w1d; P48 - 39w3d; P49 - 39w0d; P50 - 39w0d, where “w” is weeks and “d” is days. Due to the nature of the collections for the
first and second trimester placental samples, we do not have data more granular than gestational age in weeks. (C) Genome browser tracks showing
ChIP-seq (H3K27ac, H3K4me1), PRO-seq, and RNA-seq from a 39-week placenta sample showing the promoter region and a putative enhancer (both
marked with hatched boxes) near the placenta growth factor (PGF ) gene (the gene schematic is shown).

through this pathway may be important for differentiation.
Indeed, TGFβ has been implicated in both syncytium forma-
tion and regulating invasiveness of extravillous trophoblasts
[82].

We also performed pairwise comparisons of samples
grouped by trimester as an alternate approach for determining
gene expression changes across pregnancy. Figure 2G–I
shows genes whose expression exhibits greater than a 2-
fold difference (vertical lines) between trimesters based on a
significant t-test p-value with Benjamini–Hochberg correction
(see also Supplementary Table S4). These data again show
that the most substantial differences in gene expression are
between term and early pregnancy.

Finally, we explored the possibility that the relative pro-
portion of cell types, as well as changes in gene expression
within a given cell type, could change across gestation and that
both processes might contribute to the signal obtained from
bulk tissue analysis. We used gene signatures from single-cell
RNA-seq obtained from The Human Protein Atlas database
enriched in cytotrophoblasts (420 genes), STs (790 genes),
and extravillous trophoblasts (680 genes). By comparing the
average expression of these gene sets in our RNA-seq datasets
from the gestational age epochs defined in Figure 2C and D,
we observed that the extravillous trophoblast and cytotro-
phoblast signals do not significantly change between gesta-
tional age groups, while the ST signal is significantly increased
in the third trimester, as would be expected (Supplementary
Fig. S1).

Linking placenta gene expression to enhancer
activity across pregnancy

After demonstrating that gene expression in the placenta is
dynamic and reflects known placenta functions, we sought to
link placenta gene expression with the enhancer landscape.
We associated the 20 502 enhancers that we defined by their
PRO-seq transcription signature with the nearest neighboring
gene (Figure 3A). To assess whether the genes identified in
this analysis are the same as those identified in Figure 2
using only RNA-seq, we determined the relationship between
nearest neighboring genes and the enriched enhancers deter-
mined by both approaches. Although only a minority of the
genes overlap, in all cases where overlap exists, the number
of genes overlapping (i.e., identified independently by both
differential RNA-seq and nearest neighbor enhancer activity)
is significant by the hypergeometric distribution test (i.e.,
when compared to the probability of overlap for randomly
selected gene lists in sets of the same size) (Supplementary
Table S5 and Supplementary Figure S2). We then determined
gene ontologies for the associated genes using the Genomic
Regions Enrichment of Annotations Tool (GREAT) [83]. As
shown in Figure 3B, the top GO bioprocesses for the nearest
neighboring genes were terms related to placenta develop-
ment. In a more detailed analysis, we overlapped the 20 502
enhancers in our data set with the 961 227 cis-regulatory
elements (cCREs) annotated by ENCODE and found that our
data set still contains 3 550 unique enhancer regions. GREAT
analysis for this subset, like the entire set (Figure 3B), shows

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioad119#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioad119#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioad119#supplementary-data
https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioad119#supplementary-data


972 Enhancers during placental development, 2023, Vol. 109, No. 6

Figure 2. Gene expression is dynamic across pregnancy. RNA-seq analysis of placenta gene expression across gestation. Differential expression
analyses identified 3634 genes whose expression correlated with gestation age in weeks. (A–D) Analysis of individual genes whose expression
decreases (MTHFD1; A) or increases (CYP19A1; B) across gestation shown as scatter plots with linear regression. Box plots (C and D) show trends for
all genes where expression is negatively correlated (C) or positively correlated (D) with increasing gestational age. (E and F) Gene ontology analysis for
sets of genes whose expression decreases (E) or increases (F) across gestation. (G–I) Pairwise analyses of gene expression between trimesters
identifies more significant gene expression differences for the third trimestercompared to the first or second trimesters than between the first and
second trimesters.

GO terms related to placenta development (Supplementary
Table S6). This suggests that our transcription-based enhancer
analysis efficiently identifies genomic regions relevant to the
control of placenta-specific gene expression.

Next, we determined if the enhancer landscape, like the
gene expression landscape, is dynamic across gestation. We
examined changes in enhancer transcription in pairwise com-
parisons between trimesters similar to the analyses we did for

gene expression above. As we observed for gene expression,
the biggest differences in the active enhancer landscape were
between early and late pregnancy (Figure 3C–E; Supplemen-
tary Table S7). When we focused on genes with placenta-
enriched expression relative to other tissues, we observed
dynamic changes in enhancer activity that correlated with
changes in nearest neighboring gene expression by trimester.
This was evident for the genes encoding placenta growth
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Figure 3. Enhancer activity is dynamic across pregnancy, and associates with genes related to placenta function and disease. Analysis of the
transcription of putative placenta enhancers defined by PRO-seq across gestation. This analysis identified a total of 20 502 enhancers. (A) Schematic
analysis of the “nearest neighboring gene” analysis used to associate enhancers with target genes. (B) Gene ontology analysis of the nearest
neighboring genes to the putative placenta enhancers defined by PRO-seq. (C–E) Pairwise analyses of enhancer transcription between trimesters
identifies more significant enhancer transcription differences for the third trimester compared to the first and second trimesters. (F–I) Examples of
genes whose enhancer transcription (F and H) correlates with nearest neighboring gene expression (G and I) across gestation. PGF (F and G), both
enhancer transcription and nearest neighboring gene expression increase; GPR32 (H and I), both enhancer transcription and nearest neighboring gene
expression decrease. (J and K) Enhancers per gene analysis. (J) Rank order plot of the number of putative placenta enhancers per differentially
expressed gene across gestation. Most genes had only one or two potential enhancers identified from nearest neighboring gene analysis. (I) Genes with
the highest potential for enhancer-mediated regulation include TFs and cell signaling molecules associated with trophoblast differentiation (TFAP2C,
EGFR) and disease (FLT1).

factor (PGF; Figure 3F and G) and GPR32 (GPR32, a G-
protein coupled receptor enriched in trophoblasts; Figure 3H
and I) (for additional genes, see Supplementary Tables 1–3 and
7).

Enhancers act in cell type– and tissue type–specific manners
to fine tune the expression of genes important for those

systems. We hypothesized that genes particularly important
for placenta function may be linked to multiple enhancer
elements. We determined the number of enhancers per gene
for the ∼6 000 genes linked to a nearest neighboring enhancer
from above. While the majority of linked genes have only
one or two nearby enhancers, a small number of genes are
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linked to dozens of enhancers (Figure 3J). Notably, the gene
with the most linked enhancers, encoding epidermal growth
factor receptor (EGFR) (Figure 3K), is important for tro-
phoblast function and is altered in cases of intrauterine growth
restriction [84]. Likewise, FLT1 (encoding vascular endothe-
lial growth factor receptor 1), another gene linked to many
enhancers, is dysregulated in preeclampsia [85]. These find-
ings suggest the possibility that enhancer dysfunction could
play a role in adverse pregnancy outcomes.

Placental enhancers and disease associations

Genome-wide association studies have identified many
thousands of SNPs associated with disease outcomes or
other population variants. About half of these SNPs map
to genomic regions outside of annotated transcripts, often
corresponding to enhancer regions. To explore the possibility
that enhancer loci identified in our analyses could be
linked to disease phenotypes, we mapped disease-associated
SNP density within enhancer elements relative to genes
(GENCODE transcripts) using SNPs from a publicly available
catalog [86]. We found that GWAS SNPs are enriched in the
placental enhancers that we identified (Figure 4A), including
one located upstream of FLT1, a gene whose expression
increases in the second and third trimesters versus the
first trimester (Figure 4B). Although GWAS associations are
understudied in pregnancy relative to other disease states,
the most robust GWAS SNP association for preeclampsia,
rs4769613 (replicated in two studies [87, 88]), maps to
the FLT1 enhancer region (Figure 4C–E; enhancer number
22). Interestingly, activity at the rs4769613-containing
enhancer (determined by transcription levels), like FLT1
expression varies with gestational age (Figure 4B and C)
and is positively correlated (though weakly) with FLT1 gene
expression (Figure 4D; Supplementary Table S8). Similar
results were observed with another preeclampsia-associated
SNP, rs7318880 (Figure 4C–E; also in enhancer number
22) [89], providing independent identification of additional
genetic variation at this enhancer associated with placenta-
related disease and strengthening the biological plausibility of
this enhancer serving a functional role in the placenta.

To further explore the link between genetic variation in
enhancer regions and placenta function, we overlapped the
location of eQTLs for gene expression in placenta tissue
reported by Peng et al. [90] with the enhancers that we
defined. Of the 1216 eQTLs from extragenic regions of the
genome reported in that study, 80 of these map to enhancer
regions we identified. These 80 enhancers and the cognate
genes linked to the eQTLs are listed in Supplementary Table
S9. Additional GWAS SNPs associated with pregnancy out-
comes mapping within our enhancer data set are summarized
in Figure 4F [87, 91–94]. Of note, these associations are
between the fetal genome and the outcome of interest. Mater-
nal GWASs linked to pregnancy outcomes via the placenta
are more difficult to detect since only half of the SNPs in
the placenta would be expected to derive from the maternal
genome.

Predicting the transcription factors that promote
enhancer formation and drive placental biology

Enhancer formation and activity is due to the binding of
TFs at these loci. We sought to integrate enhancer activity
(enhancer transcription by PRO-seq; H3K27ac and H3K4me1

enrichment by ChIP-seq), TF motif sequence information, and
TF expression (by RNA-seq) to identify the TFs most likely
mediating enhancer formation and biological outcomes in the
placenta (Figure 5A). To accomplish this, we used a compu-
tational model developed in our lab, the TFSEE [72, 73].
Using the subset of 15 samples (5 per trimester) for which the
required input data were available (PRO-seq, H3K27ac and
H3K4me1 ChIP-seq, and RNA-seq), we determined enhancer
activity scores for each enhancer in each sample (Figure 5A).

For each enhancer, the top 20 conserved motifs were iden-
tified and linked to TF binding motifs with an associated
p-value using MEME [69]. Finally, TF expression was mul-
tiplied by this matrix to yield a TFSEE score for each TF
identified on a per-sample basis. Unsupervised hierarchical
clustering of TFSEE scores largely grouped early pregnancy
(first and second trimester) samples together, distinct from
term pregnancy samples (Figure 5B). Given this empirical
clustering pattern, we then identified TFs with statistically
different TFSEE scores between early and late pregnancy (t-
test, p < 0.05). We ranked the TFs by the differential TFSEE
score (TFSEElate – TFSEEearly) to identify those most likely to
function at specific times during pregnancy, including MAFB,
SNAI2, and ZBTB7C active in early pregnancy, as well as
IRF1, MAFK, and TFAP2A active at term (Figure 5C; Sup-
plementary Table S10). Interestingly, pairs of TFs were identi-
fied on opposite ends of the TFSEE differential (MAFK vs.
MAFB; SREBF1 vs. SREBF2), suggesting possible competi-
tion between related TFs for binding to common enhancer
elements at different times during gestation.

Exploring the expression, activity, and function of
TFSEE–identified transcription factors in
trophoblast stem cells

To explore the expression, activity, and function of selected
TFSEE-identified TFs in a defined cell system, we used the
TSC culture protocol developed by Okae and colleagues [76]
under stem cell propagation conditions [e.g., in the presence of
EGF, ascorbic acid, valproic acid, ROCK inhibitor (Y27632),
Wnt activator (CHIR99021), ALK-5 inhibitor (A83–01), and
TGFβ inhibitor (SB431542)]. In some cases, we also stimu-
lated differentiation of the TSCs toward the ST lineage (e.g.,
in differentiation medium including Y27632 and forskolin for
1–5 days, replacing the medium every 2 days). We verified
the differentiation of TSCs to STs by (1) morphology (loss
of mononuclear cell membranes staining due to cell fusion)
(Figure 6A), (2) appropriate expression of ST-specific marker
genes (including CG3B, CYP19A1, ERVW-1, and GCM1)
(Figure 6B and C), and (3) minimal expression of an extravil-
lous trophoblast (EVT) marker gene (HLA-G) (Figure 6C and
D).

In further analyses, we examined the expression of the
TFSEE-identified TFs in the published RNA-seq data sets
from the Okae et al.’s paper [76]. The heatmap in Figure 6E
shows the expression of selected TFs from that study for multi-
ple cell lines and replicates under TSC propagation conditions
(two replicates each of two cell lines) or ST differentiation
conditions (two or three replicates each of two cell lines),
focusing on the TFs highlighted in Figure 5C. The TFSEE
scores from our analyses (Figure 5C) and the TF mRNA
expression from the RNA-seq data (Figure 6E) trended simi-
larly in some cases (i.e., early pregnancy vs. term; TSC vs. STs),
but overall, the relationships were modest. This observation
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Figure 4. Placenta enhancers associate with risk for disease and pregnancy outcomes. (A) Single-nucleotide polymorphisms associated with disease in
genome-wide association studies (GWASs) are enriched in enhancers relative to genomic background. Single-nucleotide polymorphisms in placenta
enhancers defined by PRO-seq versus all GENCODE coding genes and the whole genome. (B) Expression across gestation of Fms related receptor
tyrosine kinase 1 (FLT1), a gene that is linked to enhancers and is dysregulated in preeclampsia, from RNA-seq data. (C) Transcription levels of 30
putative enhancers located near the FLT1 gene determined by PRO-seq. Two previously reported SNPs associated with preeclampsia (rs4769613 [87,
88]; rs7318880 [89]) map to a putative FLT1 enhancer (e22). (D) Correlation of the transcription of putative FLT1 enhancers with FLT1 expression. A scale
bar is shown. (E) Schematic diagram of the FLT1 gene and 30 putative enhancers (e1 through e30). (F) Additional SNPs associated with pregnancy
outcomes, which map to enhancers identified in this study.

is unsurprising since TF mRNA expression is only one of a
number of parameters that drives TFSEE score (Figure 5A).

Next, we examined the expression (protein and mRNA)
of the selected TFs noted above (i.e., MAFB, SNAI2, and
ZBTB7C active in early pregnancy, as well as IRF1, MAFK,
and TFAP2A active at term) during a time course of differ-
entiation from TSCs to STs by Western blotting and reverse
transcription-quantitative PCR (RT-qPCR), respectively. The
nuclear levels of IRF1, MAFK, and TFAP2A protein were
low in TSCs, maximal by Day 3 of differentiation, and then
tapered off by Day 5 (Figure 6F). In contrast, the nuclear
levels MAFB, SNAI2, and ZBTB7C protein were elevated
in TSCs and continued to increase during differentiation,
but less dramatically than for IRF1, MAFK, and TFAP2A
(Figure 6F). The expression levels of the IRF1, MAFK, and

TFAP2A mRNAs from RNA-seq and RT-qPCR followed the
expression levels of the proteins, but the expression levels of
the MAFB, SNAI2, and ZBTB7C mRNAs exhibited some
variability and disconnect between the mRNA and protein
levels for some TFs (Supplementary Figure S3). Nonetheless,
the protein and mRNA expression data tracked with and
segregated the “more active in early pregnancy” (i.e., MAFB,
SNAI2, and ZBTB7C) and “more active at term” (i.e., IRF1,
MAFK, and TFAP2A) TFSEE-defined TFs, as expected.

Finally, we explored the activity and function of two TFs,
ZBTB7C and SNAI2, which are predicted by TFSEE to
be more active in early pregnancy, but are expressed both
in TSCs and throughout the time course of differentiation
(Figure 6F). To do so, we used an RNAi-mediated knock-
down perturbation-response assay in undifferentiated TSCs.
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Figure 5. Integrated genomics predicts TF activity at enhancers across gestation. (A) Schematic for determination of TFSEE scores from
multidimensional genomic datasets. For each enhancer, the top 20 conserved motifs were identified and linked to TF binding motifs with an associated
p-value using MEME [69]. Transcription factor expression was multiplied by this matrix to yield a TFSEE score for each TF identified on a per sample
basis. (B) Unsupervised hierarchical clustering identifies TFs where the TFSEE score is increased at term (top-right black box) or early pregnancy
(bottom-left black box). (C) Differential TFSEE scores for individual TFs at term relative to early pregnancy. We identified TFs with statistically different
TFSEE scores between early and late pregnancy (t-test, p < 0.05). We ranked the TFs by differential TFSEE score (TFSEElate − TFSEEearly) to identify
those most likely to function at different times in pregnancy (“active in early pregnancy” and “active at term” as indicated).

Knockdown of ZBTB7C reduced the expression of a number
of ST marker mRNAs, including GCM1, but had no effect
on the expression of HLA-G mRNA, a marker of EVTs
(Figure 7A). In contrast, knockdown of SNAI2 had little effect
on most of the same markers, but it did cause a reduction
in the levels of GCM1 mRNA (Figure 7A). As a control,
we knocked down GCM1 and assayed for the expression
of marker genes. We observed a significant reduction in
the levels of CGB3 and ERVW-1 mRNA, markers of the
ST lineage (Supplementary Figure S4). Our results indicate
that TFSEE can identify functionally relevant TFs in placenta
whose perturbation can alter the expression of marker genes
in TSCs.

Discussion

In this work, we have provided a detailed analysis of the
normal human placental transcriptome—both for steady-state
RNA and active transcription—across gestation. In addition,
we have used a computational algorithm called TFSEE to
define the TFs that are likely to drive key aspects of placental
biology during each trimester. Specifically, we have shown that

(1) gene transcription and mRNA expression in the placenta
across gestation is dynamic; (2) enhancer activity defined by
enhancer transcription is also dynamic; (3) active enhancers
in the placenta are located near genes relevant to placenta
function; (4) placental enhancers are subject to genetic vari-
ation associated with disease; (5) integrated genomic data
analysis using TFSEE identifies TFs that are predicted to
change in activity across gestation, which may be missed
by solely focusing on TF expression; (6) the expression of
TFs predicted from TFSEE analysis are altered during the
differentiation of TSCs to STs; and (7) knockdown of selected
identified TFs in a TSC culture model altered the expression
of key placental marker genes. These observations provide
a framework for future mechanistic studies of individual
enhancer–TF–target gene interactions and have the poten-
tial to inform genetic risk prediction for adverse pregnancy
outcomes.

Connecting enhancer activity and gene expression
to placenta function through gene ontology

Our analyses demonstrate how enhancer activity and gene
expression can be used to understand placenta biology using

https://academic.oup.com/biolreprod/article-lookup/doi/10.1093/biolre/ioad119#supplementary-data


D.M. Owen et al., 2023, Vol. 109, No. 6 977

Figure 6. Expression of TFSEE-identified TFs from placenta in TSCs and STs. In vitro differentiation of TSCs to STs using a culture system developed by
Okae and colleagues [76]. (A) Verification of the differentiation of TSCs to STs based on cell morphology. Staining for mononuclear cell membranes and
DNA as indicated. Scale bar = 5 μm. (B–D) Verification of the differentiation of TSCs to STs based on marker gene expression by RT-qPCR. (B) Expression
of ST-specific marker genes (Chorionic gonadotropin subunit beta 3, CG3B; Cytochrome P450 family 19 subfamily A member 1, CYP19A1; Endogenous
retrovirus group W member 1, ERVW-1; and Glial cells missing transcription factor 1, GCM1). (C) Key showing the marker genes representing the ST
lineage and the extravillous trophoblast lineage. (D) Minimal expression of an extravillous trophoblast marker gene (Major histocompatibility complex
class I G, HLA-G) in STs. Significance was determined by Student t-test; ∗ = p < 0.05, n.s. = not significant. (E) Heatmap TF expression for multiple cell
lines and replicates under TSC propagation conditions (two replicates each of two cell lines) or ST differentiation conditions (two or three replicates each
of two cell lines). The TFs are grouped based on their expression (“up in early pregnancy” and “up at term” as indicated). (F) Expression of key TF
proteins during a 5-day time course of differentiation from TSCs to STs determined by Western blotting of nuclear extracts. The results from the TFSEE
analyses are shown for comparison (“active in early pregnancy” and “active at term” as indicated).

the functions of individual genes or the ontologies of sets of
genes. This can provide information that connects specific
TFs to specific functions at different stages of placental
development. For example, we showed that MTHFD1, a
gene encoding an enzyme involved in the pathway of DNA
synthesis downstream from folate, and thymidylate synthase
(not shown) are more highly expressed in early pregnancy,
consistent with the sensitivity of early trophoblasts to
methotrexate [95] and reflected in the gene ontology analysis
for pathways enriched in early pregnancy (Figure 2A, C, and
E). In contrast, CYP19A1 (Figure 2B), a gene encoding the
aromatase enzyme involved in estrogen synthesis in STs,
increases across gestation, consistent with the ∼100 fold
increase in estrogen levels across pregnancy due to production
in the placenta (Figure 2B and D).

Also associated with increased gestational age are genes
related to vasculogenesis (Figure 2F), consistent with the dra-
matic expansion of the fetal capillary network in mature
villi. The “female pregnancy” term in Figure 2F represents the
production of known placenta-derived gene products, such
as the pregnancy-specific glycoprotein (PSG) family members
and hormones including CRH, which peaks in the third
trimester. There were also several terms related to endoplasmic
reticulum (ER) stress and the unfolded protein response. Pla-
cental ER stress has been associated with intrauterine growth
restriction [96]. These findings in normal tissue at term could
reflect the increased stress an aging placenta experiences,
as well as an increased risk for stillbirth when pregnancy
proceeds post-term and fetal demands outstrip the ability of
the placenta to respond.
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Figure 7. Activity and function of TFSEE-identified TFs in TSCs. Perturbation-response assays in undifferentiated TSCs, with shRNA-mediated
knockdown of mRNAs encoding TFSEE-identified TFs, ZBTB7C and SNAI2. The expression of mRNAs encoding the knocked down TFs, as well as a set
of EVT (HLA-G) and ST (CGB3, CYP19A1, ERVW-1, and GCM1) markers was assessed by RT-qPCR. Significance was determined by Student t-test;
∗ = p < 0.05, ∗∗ = p < 0.01, and ∗∗∗ = p < 0.001, n.s. = not significant. (A) Effects of knockdown of ZBTB7C. (B) Effects of knockdown of SNAI2.

Finally, we found evidence for a rapidly dividing population
of cells with active enhancers and the expression of marker
genes associated with stem cells in early pregnancy relative to
term (Figure 5C). These results suggest that genomics analyses
from a mixed cell population can still yield insights about
a limited cell type in that population. In this regard, we
confirmed that TFs identified by our combinatorial genomics
approach from placenta tissue were also altered in a cell
culture model of TSC differentiation. These included TFs
active in early pregnancy (i.e., MAFB, SNAI2, and ZBTB7C)
and at term (i.e., IRF1, MAFK, and TFAP2A) (Figure 6A),
which may define subsets of TFs that control TSC propagation
or differentiation into STs, respectively.

Connecting enhancer activity and gene expression
to specific transcription factors

In gene-specific analyses, we explored the activity and func-
tion of selected TFSEE-identified TFs in TSCs grown in culture
[76]. These included ZBTB7C and SNAI2, TFs that are pre-
dicted by TFSEE to be more active in early pregnancy, but are
expressed both in TSCs and throughout the time course of dif-
ferentiation (Figure 6F). Our results using an RNAi-mediated
knockdown perturbation-response assay in undifferentiated
TSCs indicate that TFSEE can identify functionally relevant
TFs in placenta whose perturbation can alter the expression
of marker genes in TSCs.

Connecting enhancer activity to disease through
GWAS SNPs

Linking enhancer activity and gene expression through cor-
relation analysis can generate testable hypothesis about the
regulation of particular genes important to placenta function.
Many genomic studies rely on combining genomic features
from data sets generated in different samples in order to
generate regulatory predictions. The data sets of enhancer

annotations generated in this study, including both enhancer
activity and gene expression from the same sample, along
with histone modification data from a significant subset of
those samples, will be a rich resource for mining associations
between regulatory regions and predicted target genes.

With regard to understanding disease, we demonstrated
that our enhancer annotations can provide context for the
functional understanding of GWAS SNPs as they emerge.
Such annotations serve to narrow the sequence space of
interest when generating hypotheses about the relationship
between genetic variation and disease outcomes. They could
also suggest functional regions in linkage disequilibrium with
lead SNPs, which might explain the SNPs that are respon-
sible for the effects of the association. These associations
could be tested in future studies using functional genomics
approaches targeting both the enhancer via emerging func-
tionalized dCas9 reagents, and the TFs predicted by motif
analysis and expression patterns in knock out/knock down
approaches.

Limitations of the study

While this study represents an advance over previous studies
with respect to the numbers and types of samples analyzed,
as well as the suite of genomic assays used, it is not without
limitations. Regarding the biological systems that we used, one
obvious limitation is the absence of placenta collections from
gestational age from 22 to 39 weeks for practical, technical,
legal, and ethical reasons. While this limited our ability to fully
examine gene expression across gestation, we were able to
describe general trends by gestational age or trimester within
the limits of available samples, as well as connect enhancer
activity to gene expression in this particular biological system.

Another limitation is the tissue sampling that we used,
especially with the larger, term placentas, which may result
in the sampling of different proportions of cell types. In this
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regard, it was challenging to assign TFs to cell type–specific
processes given the mixed cell population and observational
constraints of using human tissue. Changes in the relative
proportions of cytotrophoblasts (decreasing) and STs (increas-
ing) can be demonstrated histologically over the course of
gestation. Collecting pure populations of trophoblasts could
reduce the heterogeneity associated with bulk tissue samples
that contain multiple cell types, though perhaps at the expense
of losing information about the cell state in vivo.

In addition, we found that making comparisons between
early versus late gestation placentas, and TSCs versus STs was
not straightforward, limiting our ability to model molecular
pathways from the placenta in cultured cells. In this regard,
it is unclear why TFs with greater predicted activity in early
pregnancy (i.e. MAFB, SNAI2, and ZBTB7C) would have
similar or increased expression in STs compared to TSCs,
although the effects could be explained by differences in TF
activity or accessibility of binding sites. Finally, regarding the
application of TFSEE, we note that TF mRNA levels may not
accurately represent protein abundance or activity. As such,
TFSEE may exclude TFs relevant to placenta biology under
these circumstances.

Supplementary data

Supplementary data are available at BIOLRE online.
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