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Abstract
Motivation: Single-cell RNA sequencing (scRNA-seq) technology has enabled discovering gene expression patterns at single cell resolution.
However, due to technical limitations, there are usually excessive zeros, called “dropouts,” in scRNA-seq data, which may mislead the
downstream analysis. Therefore, it is crucial to impute these dropouts to recover the biological information.

Results: We propose a two-step imputation method called tsImpute to impute scRNA-seq data. At the first step, tsImpute adopts zero-inflated
negative binomial distribution to discriminate dropouts from true zeros and performs initial imputation by calculating the expected expression
level. At the second step, it conducts clustering with this modified expression matrix, based on which the final distance weighted imputation is
performed. Numerical results based on both simulated and real data show that tsImpute achieves favorable performance in terms of gene
expression recovery, cell clustering, and differential expression analysis.

Availability and implementation: The R package of tsImpute is available at https://github.com/ZhengWeihuaYNU/tsImpute.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) allows us to analyze
gene expression patterns at a single-cell level and provides valu-
able insights into cell heterogeneity. Although scRNA-seq has
been successfully applied to a variety of research tasks such as
cell population identification (Petegrosso et al. 2019), differential
expression (DE) analysis (Chung et al. 2021), pseudo-time
analysis (Liu et al. 2017), and gene regulatory network inference
(Pratapa et al. 2020), the technical limitations of scRNA-seq
lead to numerous false zeros in the expression matrix, which are
also called “dropouts.” The existence of dropouts distorts the in-
formation in the data and hinders downstream analysis (Wang
et al. 2022), hence it has been recognized as a grand challenge in
single-cell data analysis (Kiselev et al. 2019, Lähnemann et al.
2020).

To address the issue of dropouts, lots of studies have fo-
cused on scRNA-seq data imputation in recent years
(Patruno et al. 2020). One main category of imputation
methods is based on data smoothing or clustering. For ex-
ample, DrImpute (Gong et al. 2018) identifies similar cells
based on clustering and impute the likely dropouts by aver-
aging expression levels of cells from the same cluster, and it
adopts different distance metrics and different numbers of
clusters to generate robust results. MAGIC (Dijk et al.
2018) constructs a Markov affinity matrix, based on which
the “soft clustering” is performed and the original expres-
sion values are replaced by the weighted mean in the same

cluster. ScHinter (Ye et al. 2019) uses an ensemble distance
metric to calculate cell–cell similarities and iteratively com-
putes the imputed values by borrowing information from
similar cells. Another type of imputation methods is based
on some specific statistical distributions. ScImpute (Li and
Li 2018) uses a Gamma–Gaussian mixture model to esti-
mate the dropout probability and imputes likely dropout
values through non-negative least squares regression.
SAVER (Huang et al. 2018) adopts a Poisson–Gamma mix-
ture to model the unique molecular identifier counts and
uses Poisson Lasso regression for imputation. BayNorm
(Tang et al. 2019) assumes that the true gene expression fol-
lows negative binomial distribution and imputes the ob-
served expression matrix through an empirical Bayes
approach. ScDoc (Ran et al. 2020) uses Poisson-negative bi-
nomial mixture model to identify likely dropouts and im-
pute them by borrowing information from similar cells
calculated by weighted cosine similarity. Matrix decomposi-
tion approaches are also used in scRNA-seq data imputa-
tion. scRMD (Chen et al. 2020) models the dropout
imputation problem as robust matrix decomposition and
imputes the data through minimizing the reconstruction loss
regularized by a nuclear norm penalty. ALRA (Linderman
et al. 2022) uses the singular-value decomposition to com-
pute a low-rank approximation of the observed expression
matrix and sets all entries that are smaller than a threshold
to zeros. WEDGE (Hu et al. 2021) imputes gene expression
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matrix by using a biased low-rank matrix decomposition
methods. ScMOO (Jin et al. 2022) decomposes the expres-
sion matrix into three types of structures and performs im-
putation using multi-objective optimization.

Although a series of imputation methods have been devel-
oped from different perspectives, some limitations still re-
main. As is mentioned above, it is straightforward to leverage
information from similar cells and generate imputed results,
which involves identifying similar cells by clustering and ag-
gregating gene expression levels of these cells. However, as
dropouts are prevalent in raw scRNA-seq data, clustering
results based on these noisy raw data are inaccurate and so
are the imputed values (Chen et al. 2020, Xu et al. 2020).
Besides, lots of imputation methods tend to alter all zeros in
the expression matrix without distinguishing dropouts from
true zeros, which may introduce new biases (Li and Li 2018)
and take the risk of over-imputation (Patruno et al. 2020, Jin
et al. 2022). Although some methods use specific statistical
distribution distinguish dropouts from true zeros before impu-
tation, most of them calculate the dropout probabilities
merely for identifying whether some entry is a dropout value
and rarely make full use of the statistical information.

To address issues mentioned above, we propose a novel
two-step method, named tsImpute, to effectively identify and
impute dropouts in scRNA-seq data. As its name implies,
tsImpute performs imputation in a two-step manner: (i) first,
tsImpute distinguishes likely dropouts from true zeros by esti-
mating the parameters of zero-inflated negative binomial
(ZINB) distribution, and then performs initial imputation on
the likely dropouts by combining dropout probability, library
size, and expected expression level; (ii) second, final imputa-
tion is performed on the preliminarily imputed matrix using
inverse distance weighted (IDW) clustering, which avoids the
noise in raw expression matrix. By conducting experiments
on both simulated and real data, tsImpute is compared with
several state-of-the-art imputation methods including ALRA,
scRMD, scMOO, scImpute, SAVER, DrImpute, and MAGIC,
which belong to the three categories mentioned above.
Extensive experiments including data masking, cell clustering,
DE analysis, and GO terms analysis show that tsImpute is
able to recover biological information of scRNA-seq data and
improve downstream analysis.

2 Materials and methods

The flowchart of tsImpute is presented in Fig. 1. First, tsImpute
identifies likely dropouts in the raw expression matrix with

ZINB distribution and performs initial imputation using both
the estimated parameters of each gene and library size of each
cell. Second, tsImpute calculates the Euclidean distance matrix
based on the imputed expression matrix and adopts inverse dis-
tance weighed imputation to conduct the final imputation.
Pseudo-codes of tsImpute are shown in Section 7 of
Supplementary Material.

2.1 Step 1: ZINB imputation

Consider a m by n count matrix X, where m and n are numbers
of genes and cells, respectively. To perform initial ZINB imputa-
tion, we first estimate the dropout probability of each gene with
ZINB distribution which has been successfully applied in the de-
piction of scRNA-seq data (Miao et al. 2018, Risso et al. 2018,
Tian et al. 2019, 2021). ZINB distribution takes the form

fZINBðxjp; r;pÞ ¼ pI0ðxÞ þ ð1� pÞ xþ r� 1
x

� �
prð1� pÞx;

(1)

where p denotes the dropout rate; I0ðxÞ is the indicator func-
tion which equals 1 when x ¼ 0 and 0 otherwise; r and p are
parameters of negative binomial distribution.

Considering the heterogeneity of cells, we first divide the cells
into several groups and estimate the parameters separately.
However, as we have mentioned above, cell clustering based on
original expression matrix tends to be influenced by dropouts.
Since genes with low expression levels are more likely to be
influenced by dropouts, here we use only the information of
highly expressed genes for clustering: for each cell, set the ex-
pression values of the 200 highest expressed genes as 1 and other
genes as 0. By this means, the cells are converted into sparse bi-
nary vectors, and now we are able to divide cells into different
subpopulations according to their co-expressed genes.
Specifically, we achieve this goal by conducting hierarchical clus-
tering based on Jaccard distance: denote highly expressed gene
set in cell a and cell b by Ga and Gb, respectively, then the
Jaccard distance between cell a and cell b can be expressed as

dJða;bÞ ¼
jGa [Gbj � jGa \Gbj

jGa [Gbj
: (2)

After dividing the cells into different groups, tsImpute esti-
mates the ZINB parameters of genes in each cell subpopulation.
As ZINB is a mixture distribution, it is difficult to estimate the
hidden variable, i.e. p, hence we use expectation maximization
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Figure 1. Flowchart of tsImpute. TsImpute first identifies dropouts by estimating the dropout probability of ZINB distribution, then performs initial ZINB

imputation on each dropout by combining dropout probability, expression expectation of the gene, and scale factor of the cell. After initial ZINB

imputation, tsImpute divides the cells into different subpopulations using hierarchical clustering and perform IDW imputation for each cluster, which

borrows information from cells in the same cluster and weight the information according to the distance between the cells.
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algorithm (Dempster et al. 1977) to estimate the parameters in
an iterative manner. Given the estimates of p; r, and p, it is now
possible to estimate the posterior dropout probability of each
gene through a Bayesian approach:

PðdropoutjXij ¼ 0Þ ¼ PðXij ¼ 0jdropoutÞ � PðdropoutÞ
PðXij ¼ 0Þ

¼ 1 � pi

PðXij ¼ 0Þ ;
(3)

in which PðXij ¼ 0Þ can be estimated by the proportion of
zero values in gene i.

To make full use of the information derived from ZINB
estimates, we further take into consideration the expected ex-
pression level of non-zero values in gene i, which can be
expressed as rið1�piÞ

pi
. Besides, as the expression levels of differ-

ent cells vary, tsImpute also uses a scale factor to adjust the
ZINB imputed values, defined as

sj ¼
n �
Pm

i¼1 XijPm
i¼1

Pn
j¼1 Xij

: (4)

Overall, given a dropout threshold t, the ZINB imputation
value of gene i in cell j can be expressed as

Xinit
ij ¼

pi

PðXij ¼ 0Þ �
rið1� piÞ

pi
� sj; if

pi

PðXij ¼ 0Þ � t;

Xij; otherwise:

8>><
>>:

(5)

2.2 Step 2: Inverse distance weighted imputation

After initial ZINB imputation, every likely dropout in the origi-
nal expression matrix is now filled with a preliminarily imputed
value according to both the estimated distribution of genes and
the library size of cells. It is now possible to calculate reliable
similarity metrics based on this modified expression matrix. In
the final imputation step, we first use UMAP (McInnes et al.
2018) to generate low dimension representation of the cells.
After dimension reduction, the initially imputed cells are divided
into several groups through hierarchical clustering. It is straight-
forward that the expression levels of a cell should be more simi-
lar to its neighboring cells and less similar to distant cells, hence
it is necessary to use a weighted scheme instead of simply averag-
ing expression values. In tsImpute, we use a simple but effective
method, i.e. IDW method (Lu and Wong 2008) to further im-
pute the likely dropouts identified in ZINB imputation step: con-
sider the expression sub-matrix Xk which contains nk cells in
some cluster k, we first calculate the Euclidean distance matrix
Dk ¼ ðdijÞnk�nk

, then the inverse distance weight matrix can be
denoted by

Wk ¼

w11 w12 � � � w1nk

w21 w22 � � � w2nk

..

. ..
. . .

. ..
.

wnk1 wnk2 � � � wnknk

2
66664

3
77775; (6)

where wij ¼ 1
ðdijÞa �

P
j

1
ðdijÞa, i; j ¼ 1; . . . ;nk; i 6¼ j;wii ¼ max

fwi�g and a is a weight parameter controlling the decreasing
speed of weight as the distance increases, of which the default

value is set as 2. For each entry in Xk, the final imputed value
can be expressed by

Xfinal
ij ¼

Pnk
j¼1 wijXinit

ij ; if Xij is a dropout;

Xij; otherwise:

8><
>: (7)

2.3 Parameter selection

There are two main parameters in tsImpute, namely the num-
ber of top genes in Jaccard clustering step and dropout quan-
tile in initial ZINB imputation which determines the
proportion of genes to be imputed. The default number of top
genes is set as 200 to retain only the highest expressed genes
and avoid possible dropouts of the genes with a moderate ex-
pression level, but users of tsImpute can also alter this param-
eter to control the sparsity of binary cell vectors. As for the
dropout quantile, it has been pointed out that in bulk-seq
RNA data, the proportion of zeros is about 15%–40% (Jiang
et al. 2022), while in scRNA-seq data, the zero proportion
can be as high as 99% (Andrews et al. 2021), meaning that a
large part of zeros observed in scRNA-seq data are dropouts.
Hence, in tsImpute, the dropout quantile is set as 0.2 in order
to identify most of the possible dropouts. Although tsImpute
with default parameters works well, users of tsImpute can ad-
just parameters according to their own requirements, and a
practical method is to tune parameters by optimizing metrics
such as silhouette coefficient (Rousseeuw 1987).

3 Results

In this article, we compare tsImpute with seven widely used
methods to evaluate its imputation performance, i.e. SAVER
(Huang et al. 2018), DrImpute (Gong et al. 2018), scImpute
(Li and Li 2018), MAGIC (Dijk et al. 2018), scRMD (Chen
et al. 2020), ALRA (Linderman et al. 2022), and scMOO (Jin
et al. 2022). To comprehensively evaluate the imputation ac-
curacy of these methods, we conduct four different experi-
ments to assess the performance: (i) imputation of simulated
data, (ii) real data masking experiment, (iii) cell clustering,
and (iv) DE analysis. In addition, as tsImpute consists of two
steps of imputation, i.e. initial ZINB imputation and IDW im-
putation, we also conduct an ablation study to validate the
significance of each step.

3.1 Simulation analysis

In this section, we first generate several simulated data with the
widely used R package Splatter (Zappia et al. 2017) and com-
pare the imputation performance of different methods. In
Splatter method, the dropout rate is mainly controlled by two
parameters, i.e. “mid” and “shape.” We fix “shape” parameter
at �0.5 and set “mid” as 3, 4, and 5 to generate three datasets,
in which 65%, 74%, and 81% of the entries are dropouts, and
the details are shown in Section 3 of Supplementary Material.
Each simulated dataset contains 2000 genes and 500 cells, con-
sisting of five subpopulations. We first calculate the gene-wise
and cell-wise Pearson correlation between the reference data and
imputed data, then we use root mean-squared error (RMSE)
and mean absolute error (MAE) to measure the imputation ac-
curacy of different methods. Besides, as the information of
ground truth zeros and dropouts are known in simulated data,
we are able to calculate sensitivity and specificity of different
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methods, measuring the proportion of imputed dropouts and
preserved real zeros (Supplementary Table S3). As can be seen,
methods including DrImpute, MAGIC, scMOO, and SAVER
impute all zeros in the expression matrix, leading to high risk of
over-imputation. In contrast, scRMD perfectly avoids over-
imputation with 100% of true zeros unchanged, at the cost of
failing to identify most dropouts. Among all eight methods com-
pared, only tsImpute is able to achieve relatively balanced
performance.

The cell-wise and gene-wise Pearson correlation are shown
in Fig. 2. It can be seen that all imputation methods are able
to improve the cell-wise correlation to different extent
(Fig. 2A), while ALRA and SAVER fail to recover the gene-
wise correlation (Fig. 2B). Among these methods, tsImpute
and MAGIC achieve the highest cell-wise correlation, and
tsImpute outperforms all other methods in terms of gene-wise
correlation. The correlation results within different cell types
of the data are shown in Supplementary Fig. S1. Similar to the
results of overall cell-wise correlation, all imputation methods
considered in our article are able to improve cell-wise correla-
tion within all five cell types of simulated data, among which
tsImpute and MAGIC still achieved the best performance. As
for gene-wise correlation, tsImpute is still the only method
that can consistently enhance gene-wise correlation within dif-
ferent cell types. Besides, to investigate whether tsImpute is
able to recover the gene co-expression patterns of the data,
we adopted the R package ESCO (Tian et al. 2021) to visual-
ize the gene–gene correlation of ground truth expression, ob-
served expression, and imputed results of tsImpute
(Supplementary Fig. S2). As can be seen, tsImpute is able to
recover the co-expression patterns even when most entries of
the data are dropouts. We then compare the imputation accu-
racy with MAE and RMSE (Supplementary Fig. S3). In all
three cases, tsImpute consistently achieves the lowest RMSE
and MAE, indicating that tsImpute provides highest imputa-
tion accuracy. Overall, tsImpute is able to impute the simu-
lated data and recover its information.

3.2 Imputation accuracy in real data

After testing the imputation performance on simulated data,
we now evaluate the imputation accuracy with several real
datasets. Datasets used for comparison include four small
datasets, i.e. Ting (Ting et al. 2014), Darmanis (Darmanis
et al. 2015) Pollen (Pollen et al. 2014), and Huarte(Uriarte
Huarte et al. 2021) data, which contain less than 500 cells,
and four large datasets, namely PBMC (Zheng et al. 2017),
Klein (Klein et al. 2015), Baron (Baron et al. 2016), and
Domingo data (Domingo-Gonzalez et al. 2020), which con-
tain approximately 3000–4000 cells, and a more detailed de-
scription of these datasets is shown in Supplementary Table
S1. Specifically, we randomly mask 5% and 10% non-zero
entries of these data to generate artificial dropouts, then all
imputation methods are used to recover the masked data.
After imputing the masked data, we calculate RMSE and
MAE between the imputed data and ground true values of the
masked data, which is similar to the simulation study.
However, as the information of true zeros in real data is
unavailable, the calculation of correlation coefficient will be
biased, hence we do not calculate the cell-wise or gene-wise
correlation. Each imputation method is implemented for 10
times. Figure 3 shows the results of different imputation meth-
ods on all datasets with 5% artificially masked values. It can
be seen that tsImpute achieves lowest RMSE in seven of eight
datasets, the only exception is Pollen data, in which MAGIC
generates the lowest RMSE and tsImpute takes the second
place. In terms of MAE, tsImpute outperforms its competitors
in six of eight datasets, while DrImpute and ALRA generate
the lowest MAE in Ting and PBMC data, respectively, fol-
lowed by tsImpute. The results with masking rate equal to
10% are shown in Supplementary Fig. S4. As more non-zero
entries are masked, the imputation accuracy of all methods
declines. Still, tsImpute outperforms other methods in six of
eight datasets in terms of both MAE and RMSE, and only
MAGIC is able to outperform tsImpute in Pollen and Klein
data.
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Figure 2. Pearson correlation between the real and imputed values of the simulated data under different dropout rates. Higher correlation coefficients

indicate better imputation performance. (A) Cell-wise correlation. (B) Gene-wise correlation.
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3.3 TsImpute improves identification of cell

subpopulations

We now investigate the performance of different imputation
methods for clustering analysis. We use the same eight data-
sets as in Section 3.2 for evaluation. Before imputation starts,
2000 highly variable genes are selected with Seurat (Butler
et al. 2018) package and all imputation methods are per-
formed on the filtered data. We adopt the shared nearest
neighbor (Waltman and van Eck 2013) based method for cell
clustering, which is also the default clustering method of
Seurat package. The first 10 principal components of the data
are used for clustering. Adjusted Rand index (ARI) (Hubert
and Arabie 1985) and normalized mutual information (NMI)
(Strehl and Ghosh 2002) are used to evaluate the clustering
results, of which larger values indicate better clustering
results. Each method is run for 10 times to avoid the influence
of stochasticity. Figure 4 illustrates the clustering results. As
can be seen, in Darmanis, Ting, Pollen, Huarte, Baron, and
Domingo datasets, tsImpute achieves the highest ARI among
all eight imputation methods. In PBMC data, tsImpute takes
the second place, while in Klein data scRMD and scMOO
have higher ARI than tsImpute. In terms of NMI, the perfor-
mance of tsImpute is similar to that of ARI: tsImpute takes
the lead in four of eight datasets and has the second-best NMI
in PBMC, Huarte, and Domingo data. In Klein data, scRMD,
SAVER, and scMOO generates higher NMI than tsImpute.
Nevertheless, tsImpute outperforms its competitors in most
cases, and it is the only method that consistently improves the
clustering performance compared to raw data in all eight
datasets. Overall, tsImpute effectively improves identification
of cell subpopulations, which indicates that tsImpute accu-
rately imputes the dropouts and recovers the biological
information.

3.4 TsImpute improves differential expression

analysis

DE analysis is one of the main downstream tasks of scRNA-seq
analysis, which aims to define the sets of genes that best discrimi-
nate different subpopulations of cells. However, the prevalence
of dropouts in scRNA-seq data will deteriorate the performance
of DE analysis. In this section, we evaluate the efficacy of impu-
tation methods by comparing the performance between DE
analysis on raw data and imputed data. We consider the Chu
data (Chu et al. 2016), which is a human embryonic stem cell
dataset consisting of both scNRA-seq data and bulk RNA-seq
data. We construct two datasets from the single-cell Chu data,
one contains 138 definitive endoderm cells (DEC) and 212 hu-
man embryonic stem cells (H1 ESC), while the other consists of
105 endothelial cells (EC) and 212 H1 ESC cells. As bulk RNA-
seq data is less likely to be influenced by dropouts, we use the
DE genes identified from bulk Chu data as the reference.

We first consider the dataset comprised H1 and DEC cells.
The popular R package edgeR (Robinson et al. 2009) is used to
identify DE genes. With the maximum false discovery rate of
0.01 and minimum log fold-change of 2, edgeR identified 776
DE genes from the bulk data. We choose the top 200 genes
ranked by adjusted P values as the gold standard reference, then
compare them with the genes detected from raw and imputed
single-cell data to evaluate the performance of different methods.
Figure 5A shows the overlap between reference DE genes gener-
ated from bulk data and those identified from raw and imputed
data. It can be seen that scImpute, tsImpute, and DrImpute are
the top 3 methods that identify the most gold standard DE
genes, while SAVER and ALRA do not improve the perfor-
mance of DE analysis over raw data. We then draw the receiver
operating characteristic (ROC) curves and calculate the corre-
sponding area under curve (AUC) values of different methods.
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between the imputed values and real values. (B) MAE between the imputed values and real values.
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Figure 4. Clustering results of raw data and different imputation methods on eight real datasets. The performance is measured by ARI and NMI, higher

ARI and NMI mean better clustering performance. (A) ARI scores of different methods. (B) NMI scores of different methods.
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As can be seen in Fig. 5B, tsImpute achieves the highest AUC
score, followed by scImpute and scMOO, indicating that these
three methods are most likely to assign significant adjusted P
values to ground true DE genes, while ALRA, MAGIC, and
SAVER do not generate higher AUC scores than that of raw
data. Figure 5C displays the Spearman correlation coefficients
between adjusted P values generated from bulk data and im-
puted (raw) data, and the results indicate that DE genes identi-
fied by tsImpute are the most consistent with the gold standard
DE genes identified from bulk data. To further investigate
whether tsImpute can retain and recover the biological informa-
tion of the scRNA-seq data, we conduct gene ontology (GO)
term enrichment analysis on the 170 overlapped genes identified
by both tsImpute and the bulk data. The R package
clusterProfiler (Wu et al. 2021) is used to generate the GO en-
richment analysis results in Fig. 5D. It can be observed that the
most enriched GO terms are highly relative to the differentiation
from embryonic cells to DEC, such as endoderm formation
(GO:0001706), endoderm development (GO:0007492), endo-
dermal cell differentiation (GO:0035987), etc. The results of GO
term enrichment analysis are consistent with the description of
the datasets, indicating that tsImpute can effectively impute
dropouts while preserving the biological information of the
data. We then focus on the second dataset consisting of DEC
and EC cells. As is shown in Supplementary Fig. S5, tsImpute
outperforms all other competitors in terms of overlap with refer-
ence DE genes, AUC scores, and Spearman correlation. Besides,
the GO terms derived from DE genes identified by tsImpute also
reflect the biological information of the dataset (Supplementary
Fig. S6), e.g. EC migration (GO:0043542), endothelial develop-
ment (GO:0003158), and so on.

3.5 Ablation study

As is mentioned above, tsImpute consists of two steps of im-
putation, i.e. ZINB imputation and IDW imputation. Besides,
before the initial ZINB imputation, tsImpute adopts Jaccard
clustering based on highly expressed genes. To validate the
significance of these components, in this section, we perform
ablation tests on all real datasets used in clustering analysis.
We remove ZINB imputation, IDW imputation, and replace
the Jaccard clustering with Seurat clustering respectively, then
use these ablated models for cell clustering. ARI and NMI are
used as evaluation metrics and each experiment is repeated
for 10 times. The numerical results of the ablation tests mea-
sured by ARI are shown in Table 1 and the results of NMI are
shown in Supplementary Table S4. It can be seen that in most
cases removing or altering any part of tsImpute deteriorates
its performance. Besides, removing ZINB imputation drasti-
cally declines the clustering performance, indicating that di-
rectly conducting imputation on raw expression data with
dropouts may introduce extra noises and hence impair the im-
putation performance. It is noteworthy that retaining ZINB
imputation while removing IDW imputation has relatively
less influence on the clustering results, in some cases it may
even generate better results than the complete model, which
further demonstrates the efficacy of ZINB imputation. Still,
only the complete model can consistently improve clustering
results over raw data, which validates the significance of
tsImpute. In addition, to test whether Jaccard clustering is ro-
bust to changes of clustering method, we replace hierarchical
clustering with partitioning around medoids clustering
method and compare their clustering performance. Results
are shown in Supplementary Table S5. It can be seen that

0

50

100

150

0 100 200 300 400 500
Number of genes

A Overlap with reference
O

ve
rla

p

ALRA

DrImpute

MAGIC

raw

SAVER

scImpute

scMOO

scRMD

tsImpute

0.0 0.2 0.4 0.6
Correlation

M
et

ho
ds

Spearman correlation
C

regulation of cell morphogenesis
positive regulation of MAPK cascade

synapse organization
positive regulation of epithelial cell proliferation

positive regulation of nervous system development
gliogenesis

glial cell differentiation
forebrain development

mesenchymal cell differentiation
stem cell differentiation

response to mechanical stimulus
positive regulation of cell development

gastrulation
regulation of neurogenesis

formation of primary germ layer
regulation of nervous system development

endodermal cell differentiation
mesenchyme development

endoderm development
endoderm formation

Wnt−protein binding
amide binding

glycosaminoglycan binding
protein tyrosine kinase activity

peptide binding
heparin binding

signaling receptor activator activity
receptor ligand activity

growth factor activity
transmembrane receptor protein kinase activity

growth factor receptor binding
proteoglycan binding

transmembrane receptor protein tyrosine kinase activity
cytidine deaminase activity

integrin binding
platelet−derived growth factor binding

cytokine binding
growth factor binding

extracellular matrix structural constituent

G
o 

te
rm

s

Biological process
D

B

Molecular function

-log pvalue

secretory granule membrane
endocytic vesicle membrane

microvillus membrane
microvillus

actin−based cell projection
extrinsic component of plasma membrane

complex of collagen trimers
neuronal cell body

plasma membrane raft
platelet alpha granule membrane

endocytic vesicle
cell−substrate junction

focal adhesion
collagen trimer

basement membrane
platelet alpha granule

membrane microdomain
membrane raft

endoplasmic reticulum lumen
collagen−containing extracellular matrix

Cellular component

-log pvalue -log pvalue

extracellular matrix structural constituent conferring tensile strength

0 10 20 300 10 20 30 0 3 6 9 12

Figure 5. DE analysis results of raw data and different imputation methods. (A) Overlap of the single-cell DE genes and reference bulk DE genes. (B) ROC

curves and corresponding AUC values of different imputation methods. (C) Spearman correlation between adjusted P values derived from bulk data and

single cell data. (D) Statistically significant GO terms identified with ClusterProfiler, which are divided into three categories, i.e. biological process, cellular

component, and molecular function.

6 Zheng et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad731#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad731#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad731#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad731#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad731#supplementary-data


replacing clustering method in the Jaccard clustering step
does not significantly decrease the performance of tsImpute,
indicating that tsImpute is robust to the changes of clustering
methods in Jaccard clustering step.

4 Conclusion

The prevalence of dropouts is one of the major issues in
scRNA-seq data analysis. In this article, we propose a novel
method tsImpute to address the challenge of dropouts in a
two-step manner. Lots of existing imputation methods rely on
cell clustering and involve calculating distance based on the
raw expression matrix, which tends to be distorted due to the
numerous dropouts. Besides, most imputation methods im-
pute all zeros in the expression matrix, which may also intro-
duce extra noise into the data. To overcome these drawbacks,
tsImpute first identifies likely dropouts with ZINB distribu-
tion and calculates initial imputed values combining informa-
tion from both cells and genes. After initial imputation,
tsImpute adopts IDW method to conduct final imputation
only on the dropouts identified in the first step to avoid over-
imputation. To assess the performance of tsImpute, extensive
studies including masking experiments on both simulated and
real data, clustering analysis and DE analysis are conducted,
and tsImpute is compared with several state-of-the-art impu-
tation methods. The numerical results show that tsImpute
achieves desirable performance. Besides, as tsImpute is a two-
step method, we also conduct ablation studies to validate the
significance of each step, results of which prove the necessity
of each component contained in tsImpute.

It is noteworthy that although ZINB distribution is widely
used in modeling the expression level of scRNA-seq data,
there are also studies adopting other distributions for data im-
putation, hence the performance of tsImpute may be further
improved if a more appropriate distribution of scRNA-seq
data is found. Besides, although tsImpute is able to handle
thousands of cells in a few minutes, methods involving dis-
tance matrix calculation such as tsImpute, scImpute, and
DrImpute are not as fast as methods based on matrix decom-
position (Supplementary Table S2), and their computation
speed may be further improved with parallel computation
methods. Furthermore, to avoid over-imputation, tsImpute
fills only the zeros identified as dropouts by ZINB distribution
and does not alter the non-zero values. However, the non-
zero entries may not represent the true expression levels,
hence the expression matrix can be further denoised by prop-
erly modifying those non-zero values.

Supplementary data

Supplementary data are available at Bioinformatics online.
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